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ABSTRACT In this study, we propose a systematic deep network based on independent component
analysis (ICA) called ICANet1, which is subsequently modified into an improved model called ICANet2.
The existing principal component analysis network (PCANet) has a smaller computational complexity and
is faster than deep learning. However, any modifications in the data lower the performance, which is a
limitation. The ICANet algorithm has been proposed to solve this problem. Although ICANet2 does not use
eigenvectors, it uses PCA feature vectors. To eliminate the correlation between the PCA feature vectors, the
ICA algorithm is used to determine those that are statistically independent. The feature values obtained from
the final histogram are vectorized and used as input to the classifier. On using ICANet2, the performance
achieved is lower than that of deep learning; however, it is expected to be superior with respect to the
recognition speed, especially for mobile devices. The classifier performance is demonstrated using extreme
learning machine (ELM), artificial neural network (ANN), k-nearest Neighbor (KNN), and support vector
machines (SVM). We use the MIT-ECG, Chosun University-electrocardiogram (CU-ECG), and noise ECG
databases to verify the performance of the proposed method. Both ICANet1 and ICANet2 demonstrate better
experimental performance than PCANet because the ECG noise data are affected by time. In addition, when
noise ECG data are used, the ICANets achieved a better performance than PCANet, further proving its
validity.

INDEX TERMS Chosun University-electrocardiogram (CU-ECG), independent component analysis
network (ICANet), personal identification.

I. INTRODUCTION
Deep learning is defined as a set of machine-learning algo-
rithms that depend on neural networks derived via machine
learning, and it attempts a high level of abstraction (a task
that summarizes key content or functions in large amounts
of data or complex data) by combining several nonlinear
transformation techniques. It is also considered a field of
machine learning that teaches computers the mechanism by
which people think general thought process of people. Data
are always expressed in a form that the computer understands
(for example, in the case of images, a column vector repre-
sents the pixel information.) As a result of these efforts, vari-
ous deep-learning techniques, such as deep neural networks,
convolutional neural networks (CNNs), and deep belief
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networks are used for realizing computer vision, speech
recognition, and natural language processing. Such tech-
niques have been applied in the field of voice/signal process-
ing and have yielded cutting-edge results [1]–[3].

However, there are certain limitations in deep learning,
such as the time and cost of collecting big data, low efficiency
(which can be resolved by repeating the procedure several
times), poor theoretical verification of algorithms (except
slope descent), and the black box which is the lack of trans-
parency in the functioning of the algorithm [4]–[6].

A CNN is a basic deep learning architecture, which has
been applied to text, image, and speech recognition. Another
advantage of CNN is its ability to automatically extract and
learn hidden representations of data across a number of
blocks consisting of a convolutional layer, activation function
layer, and max-pooling layer. However, choosing the method
for selecting the parameters and configurations including the
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filter sizes, number of layers, and pooling function, remains a
significant challenge. Consequently, the use of network struc-
tures such as AlexNet, ResNet, and GoogLeNet are expand-
ing. Despite the great success of deep learning, researchers
have determined the best feature learning mechanism and
optimal network configuration yet. To this end, Chen studied
the principal component analysis network (PCANet), which
is a shallow and intensive deep learning network. The sim-
plicity of training basic deep learning networks and their
ability to adapt to different databases and tasks are benefi-
cial. Consequently, such a basic network could serve as a
suitable empirical reference for researchers to justify the use
of more advanced processing components or sophisticated
architectures for their deep learning networks. To organize the
structure of the ICANet algorithm, we examined the trends
across various research papers.

First, we list the trends concerning principal component
analysis (PCA), which is the origin of the PCANet algorithm.
Jolliffe proposed PCA in 2002 [7]. Chungnam National Uni-
versity Bui et al. [8] studied in-video human detection and
proposed estimation using motion data based on the robust
PCA (RPCA) algorithm. Chosun University [9] performed
personal identification using electrocardiogram (ECG) sig-
nal data based on a multilinear PCA (MPCA) algorithm.
The existing one-dimensional (1D) ECG signal was trans-
formed into a three-dimensional (3D) shape to improve the
recognition rate. Seoul National University Park and Oh [10]
classified images using kernel PCA (KPCA) with an image
database class. At Suwon University, Kim et al. [11] used a
numerical incremental PCA based on handwritten numerical
data.

Studies conducted overseas that employed RPCA are
listed as follows. Jin et al. [12] detected contrast-filled ves-
sels using X-ray data based on RPCA. Lu et al. [13] clas-
sified facial images and object data based on RPCA.
Li et al. [14] used RPCA on image data to detect moving
objects. Vaswani et al. [15] performed subspace tracking and
restoration using image data based on RPCA. Liu et al. [16]
performed tumor classification using RPCA on MRI data.
Sun and Du [17] performed geospatial classification using
RPCA on hyperspectral data. Zhong et al. [18] classified
faces and numbers using a robust linear discriminant anal-
ysis (LDA) on facial and numerical data. Yan et al. [19] used
face and numerical data based on RPCA.

The following studies used KPCA. Kuang et al. [20] per-
formed intrusion detection using KPCA on communication
data. Liu et al. [21] performed mental fatigue estimation
using the KPCA-hidden Markov model based on EEG data.
Vinay et al. [22] and Wang [23] performed facial recognition
using KPCA on facial data. Romero et al. [24] classified
images using KPCA on satellite image data. Xia et al. [25]
performed image classification using KPCA on hyperspectral
image data. Yuan et al. [26] studied smoke detection using
KPCA on image data. Hotta [27] performed scene classifica-
tion using KPCA on image data. Xiao et al. [28] performed

novelty detection using KPCA on image data comprising
square, spiral, and banana motifs.

The following paragraph lists the studies concerning the
independent component analysis (ICA) algorithm and algo-
rithms derived from ICA. First, Hong andCho [29] performed
facial-expression recognition using facial data based on ICA
in Korea. Hwang and Kim [30] studied the mode separa-
tion of buildings using ICA based on sound data. Baek and
Hong [31] classified images using ICA on image data. Kwon
and Lim [32] used ICA on image data to classify images of
red peppers. Kang et al. [33] studied the translational warping
mode of dry matter using ICA on sound data. Kim [34]
analyzed the vibration-source contribution of plate structures
using ICA on vibration signal data. Kim et al. [35] studied the
identification of vibration source signals of structures using
ICA on sound data. Quan and Bae [36] studied frequency
binarization using frequency-domain ICA on sound data.
Park [37] studied blind signal separation using ICA on voice
data. Hwang [38] studied a new mode separation technique
that employed the acceleration response of structures using
sound data based on ICA. Lee and Lee [39] designed a
dynamic noise-reduction filter using ICA. Symposium [40]
designed a partial discharge pattern classifier using ICA
based on high-dimensional data.

Wu et al. [41] performed gender recognition using multi-
scale ICA on image data. Sun et al. [42] performed tumor
classification usingmicroarray data on ICA.Martis et al. [43]
performed ECG beat classification using ECG data based
on the ICA. Wang and Zhang [44] performed video event
classification using ICA on video data. Yu et al. [45] per-
formed image classification based on image data and ICA.
Falco et al. [46] performed hyper-spectral image classifica-
tion using ICA algorithms with different levels of effective-
ness. Stewart et al. [47] performed a single-trial classification
using ICA based on EEG data. Xiao et al. [48] studied sparse
representations using an image-reconstruction ICA.

An initial motivation of our study is to apply a sim-
ple deep learning network using ECG. There is a lot of
approaches to make a model simple such as mobilenet to
apply mobile environment. Similarly, ICANet is applied to
propose a lightweight model that can be used in a mobile
environment. PCANet is an algorithm that is mainly used in
face recognition and facial data is mainly composed of two
dimensions.

The contributions of this study are as follows. First,
we generalize the ICANet algorithm. The theoretical and
structural background of the proposed ICANet1 algorithm
is explained. In addition, this study aims to extend the algo-
rithms from ICANet1 to ICANet2 to explore the concept fur-
ther. Second, we performed a detailed analysis and visualized
the effects of the parameters such as number of filter and
block size. Finally, the ECG data were used to supplement
the personal authentication security problem.

The remainder of this paper is organized as follows.
Section 1 describes the motivation for developing the ICANet
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algorithm and lists the algorithms derived from the PCANet
algorithm that overcome the shortcomings of deep learn-
ing. This indicates the emergence of PCANet and ICANet.
In Section 2, we present the research studies involving
ICA, deep learning, PCANet, and local binary pattern (LBP)
algorithms. In addition, we list the methods utilized in the
PCANet and ICANet algorithms. Section 3 presents ICANet,
which is the focus of this study. We prove the validity of the
proposed algorithm using an ECG database and compare the
effects of each parameter, which is described in Section 4.
Finally, Section 5 concludes the paper.

II. PCANET AND ITS VARIANCE WITH ICA
A. ICA
In this section, we present the ICA algorithm used to address
the recognition problem and describe the procedure for devel-
oping it for different architectures.

First, we address the motivation behind the ICA. Let us
assume that two persons in a room speak simultaneously.
The room has two microphones that are placed at different
locations to obtain two voice signals, which are denoted by
x1(t) and x2(t), where x1 and x2 represent the amplitudes,
and t represents the time index. The signal recorded using the
microphone is the weighted sum of the speech signals emitted
by the two speakers, which we denote as s1(t) and s2(t). This
can be expressed by the following linear equation:

x1 (t) = a11s1 + a12s2 (1)

x2 (t) = a21s1 + a22s2 (2)

where a11, a12, a21, and a22 are parameters that depend on the
distance between the speakers and microphones. Thereafter,
we estimated the two original speech signals s1(t) and s2(t)
using only the respective recorded signals x1(t) and x2(t).
In summary, the motivation for developing ICA is similar
to that of CPP, and therefore, it is robust against noise.
Second, we defined ICA using an algorithm. To define ICA,
we used a statistical ‘‘latent variable’’ model. Let us assume
that we observe n linear mixtures, x1,. . . , xn of n independent
components.

xj = aj1s1 + aj2s2 + · · · ajn, sn, for all j (3)

We originally defined the time index t in the ICA algorithm.
Now, let us assume that each mixture, xj, as well as each
independent component sk , is a random variable instead of
a suitable time signal. The observed data xj(t), which are the
microphone signals in the CPP, can then be considered as a
sample of this random variable. Without loss of generality,
we assume that both the mixture and the independent compo-
nents have a zero mean. If this is not true, then the observable
variables xi can always be centered by subtracting the sample
mean, which makes the model zero-mean.

We use the vector-matrix notation instead of summation
notation herein. Let x be a random vector with xi, · · · , xn
elements and s be a random vector with s1, · · · , sn elements.
Let A be amatrix with elements aij. Generally, bold lowercase

letters indicate vectors, and bold uppercase letters denote
matrices. All vectors are assumed as column vectors; thus,
xT , or the transpose of x, is a row vector. Using this vec-
tor matrix notation, the abovementioned mixing model from
equation (1) can be expressed as follows.

x = As (4)

However, the objective of the first architecture model is
to identify a set of statistically independent basis images
from the eigenvectors obtained using the PCAmethod. Fig. 1
depicts the ECG representation of the ICANet.

FIGURE 1. ECG representation of ICANet.

B. PCANet
In this section, we first review the PCANet. Its architecture
is depicted in Fig. 2, and Fig. 3 depicts the ICANet workflow
for extracting features from the training dataset.

Stage 1 of PCANet performs patch sliding operation fol-
lowed by the mean removal step. The equation is as follows.

Y = patc hY − patc hYi ∈ Rk
2
s×(m−kS+1)(n−ks+1) (5)

Thereafter, convolution is performed using PCA.

vi = Y
T
v′i, s.t. v′i = Y

T
vi (6)

The final output obtained can be expressed as:

I si, l i = viXpadding (7)

The second stage is similar to the first, and the binary hashing
of the output layer can be calculated as:

Pi,l,ι = H
(
I IIi,l,ι

)
, l = 1, 2, . . . ,L1;

ι = 1, 2, . . . ,L2; i = 1, 2, . . . ,N (8)

Finally, the histogram step can be performed as follows.

fi = [Hist
(
zi,1,1

)
· · ·Hist

(
zi,1,B

)
· · ·Hist

(
zi,L1,1

)
· · ·Hist

(
zi,L1,B

)
] ∈ R

(
2L2

)
L1B (9)

The final output is as follows.

Output : fi = (f1 · · · fN ) ∈ R
(
2L2

)
L1BN (10)

A detailed description of the workflow is provided below.
[Step 1 ] A mean removal step was performed to obtain the

center image. The central image was obtained using
an average value.

[Step 2 ] The PCA filter bank extracts PCANet filters.
[Step 3 ] The PCA filter bank outputs eigenvectors.
[Step 4 ] Original images are convoluted with the output of

the PCANet filters for the next step.
[Step 5 ] Eigenvectors is convoluted with the output of the

PCANet filters for the next step.
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[Step 6 ] The output image is binarized, and block-wise
histograms are calculated. Here, we create a weight
map and proceed with binary quantization and
weighted combination of the elements in the input
data.

FIGURE 2. Diagram of PCANet.

III. PROPOSED ICANet
A. ICANet1
ICANet1 (statistically independent basic image Net) is a
modified ICA algorithm, which is an algorithm that extracts
independent components through the ICA filter using eigen-
vectors obtained from PCA. The first stage is one of simple
deep learning, wherein the PCA and ICA algorithms form a
cascade network. In the second step, three algorithms, PCA,
ICA, and LBP, were implemented using image patch data.
In the hashing code step, which is similar to that of the LBP,
the feature using the histogram is vectorized. Finally, the
classification was completed using SVM. Fig. 3 depicts the
structure of ICANet1.

FIGURE 3. Structure of ICANet1.

To identify a statistically independent basic image set
according to a set of ECGs, the independent components of
the ECG image are separated based on the image synthesis
model shown in Fig. 4. Because existing eigenvectors are not
statistically independent, the goal of ICANet1 is to identify
eigenvectors that are statistically independent using ICA. The
ECG image of X is assumed to be a linear mixture of an
unknown set of statistically independent source images S,
and A is an unknown mixing matrix, as depicted in Fig. 4.
The source is reconstructed using a W-learning filter matrix,
which produces a statistically independent output. When
there is an ECG image called S, the noise signals A and the

ECG data S are combined to generate noise data called X.
Here, the noise component is separated, and the output U can
be represented. The coefficients of the linear combination of
the independent basic images of U that comprise each ECG
image are shown in Fig. 4. In this model, the coefficient
matrix B is obtained by mixing matrix A , W−1I . Each row
of A contains a coefficient b for one image x.

FIGURE 4. An image synthesis model.

The following describes the steps in ICANet1 from the first
to the last stages.
[Step 1 ] First patch sliding process.

Before sliding, the images are padded to I ′i ∈
R(m+k1−1)×(n+k2−1), and the out-of-range input pix-
els are assumed to be zero. This ensures that all
weights in the filters reach the entire area of the
images. We used a patch of size k1 × k2 to slide
each pixel of the ith image, I ′i ∈ R

(m+k1−1)×(n+k2−1),
and subsequently reshaped each k1 × k2 matrix into
a column vector.

Xi = [xi,1x i,2 · · · xi,mn] ∈ R
k1k2×mn (11)

where xi,j denotes the jth vectorized patch in Ii. Thus,
for all input training images Ii, i = 1, 2, . . . ,N ),
we obtain the following matrix:

X = [X1,X2 · · ·XN ] ∈ Rk1k2×Nmn (12)

X = [X1,X2 · · ·XN ] ∈ Rk
2
s×(m−ks+1)(n−ks+1)N

(13)

[Step 2 ] First mean removal process.
In this step, we subtracted the patch mean from each
patch and obtained the following:

patc hXi= [X i,1X i,2 · · ·X i,mn] ∈ Rk
2
s×(m−ks+1)(n−ks+1)N

(14)

By subtracting each patch image from (14),
we obtain the following expression:

X = patc hX − patc hX i ∈ Rk
2
s×(m−ks+1)(n−ks+1) (15)
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[Step 3 ] First PCA process with ICA
In this step, the eigenvalues and eigenvectors were
determined via (17) using the PCA algorithm. The
covariance was obtained by repeating (17) for all
patches and images.

SXCov =
∑NL

N=1
(X × X

T
) (16)

In the above equation, N is the number of images
and L is the number of filters. The eigenvector can
be obtained using the following equation:

XCov × XCov
T
vi = λivi (17)

XCov
T
× XCov(XCov

T
vi) = λi(XCov

T
vi) (18)

vi × X
T
v′i, s.t v′i = X

T
vi (19)

U = WICAvi(PCA) (20)

Let us assume that the eigenvector obtained from (19)
is L. To use the ICA algorithm to estimate the inde-
pendent component, we applied eigenvectors to the
ICA. First, the centering and whitening operations
of ICA were applied, and thereafter, data normaliza-
tion was performed. Subsequently, the initial weight
was set randomly, and the initial weight and the
data obtained from the whitening were linearly com-
bined. Kurtosis and negentropy are two ICA meth-
ods. Therefore, the expression is as follows.

kurt (y) = E{y4 − 3
(
E{y2}

)2
(21)

The values obtained using (21) and the whitening
data were linearly combined and normalized. Singu-
lar value decomposition was performed to remove
any correlation. Thereafter, the delta value was
obtained as the difference between the dot product of
the weight obtained from the singular value decom-
position, the initial weight obtained randomly, and
one. If the delta value exceeds 0.000001, the data
obtained from the final weight and whitening are
linearized, and these values are called independent
components. The obtained independent components
U and the linear image of the center image of the
zero-padded original image were combined. A lin-
ear combination of the obtained independent com-
ponents U and the center image of the zero-padded
original image was obtained.

I si, l = UiXpadding (22)

s is the stage, and there are two stage. l refers to
the independent elements. By subtracting each patch
image from Equation (14), we obtained the following
expression: For each input image Ii ∈ Rm×n, we
obtained L1 output images I si,l = 1, 2, . . .L1, I si,l ∈
Rm×n after the first stage of ICANet1. We
denoted I s as,

I s = [I s1,1 · · · I
s
1,L1 · · · I

s
N ,1 · · · I

s
N ,L1 ] ∈ R

m×NL1n (23)

Fig. 5 depicts the first stage of ICANet1, wherein the PCA
and ICA are cascaded and a two-dimensional (2D) convolu-
tional output is obtained. Fig. 6 depicts the feature CU-ECG
database in the first stage of ICANet1. Fig. 7 depicts the
second and output stages of ICANet1, and Fig. 8 depicts the
feature CU-ECG database in the second and output stages of
ICANet1.

FIGURE 5. First stage of ICANet1.

FIGURE 6. Feature CU-ECG database in first stage of ICANet1.

The detailed description of the workflow is given below.
(1) The center image was obtained in the PCA phase,

and the eigenvector was obtained by normalizing the
covariance.

(2) The centering and whitening processes in the ICA stage
were performed, and we obtained an independent eigen-
vector using the updated weights.

(3) We obtained the center image from the basic data, and
convolution was performed with the zero-padded image
and the independent eigenvector obtained via ICANet1
in step (2), after which the ICA convolution output value
was extracted.

(4) In the LBP step, the feature value was extracted using
the hashing code, patch sliding, and histogram steps.

(5) Finally, the feature obtained in step (4) was vectorized,
and classificationwas performed using the feature value.

B. ICANet2
ICANet2 is a modified version of the ICANet1 algorithm,
and it extracts independent components by applying feature
vectors obtained from PCA to ICA filters. We used the ICA
algorithm to obtain a statistically independent basic image set
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FIGURE 7. Second and output stages of ICANet1.

FIGURE 8. Feature CU-ECG database in second and output stages of
ICANet1.

according to a set of ECGs. Because existing feature vectors
are not statistically independent, it was the goal of ICANet2 to
identify statistically independent feature vectors using ICA.
[Step 1 ] First patch sliding process.

Before sliding, the images were padded to I ′i ∈
R(m+k1−1)×(n+k2−1), and the out-of-range input pix-
els were assumed to be zero. This ensured that all
weights in the filters reach the entire area of the
images. We used a patch of size k1 × k2 to slide
each pixel of the ith image I ′i ∈ R

(m+k1−1)×(n+k2−1),
and subsequently reshaped each k1×k2 matrix into a
column vector, and then concatenated these vectors
to obtain the following matrix:

Xi = [xi,1x i,2 · · · xi,l,mn] ∈ R
k1k2×mn (24)

where xi,j denotes the jth vectorized patch in Ii. Thus,
for all input training images Ii, i = 1, 2, . . . ,N ),
we obtain the following matrix:

Xi,l = [X1,l,X2,l · · ·XN ,l] ∈ Rk1k2×Nmn (25)

X = [X1,X2 · · ·XN ] ∈ Rk
2
s×(m−ks+1)(n−ks+1)N

(26)

[Step 2 ] First mean removal process.
In this step, we subtracted the patch mean from each
patch and obtained the following:

patc hXi= [X i,1X i,2 · · ·X i,mn]∈ Rk
2
s×(m−ks+1)(n−ks+1)N

(27)

Algorithm 1 ICANet1
1. Reading of image or signal data
2. Initialization of variables (patch size, number of filters,

block size)
3. Stage 1 of ICANet1

- Patch mean-removal:

X = patc hX − patc hX i ∈ Rk
2
s×(m−ks+1)(n−ks+1)

- Compute Eigenvector using PCA:

vi × X
T
v′i, s.tv

′
i = X

T
vi

- Compute convolution using ICA:

U = WICAvi(PCA)

- Output: I si, l = UiXpadding
4. Stage 2 of ICANet1

- Patch mean-removal:

Y = patchY − patc hY i ∈ Rk
2
s×(m−ks+1)(n−ks+1)

- Compute Eigenvector using PCA:

vi × Y
T
v′i, s.t v′i = Y

T
vi

- Compute convolution using ICA:

U = WICAvi(PCA)

- Output: I si, l = UiXpadding
5. Output layer

- Binary hashing: compute the decimal-valued image:

Pi,l,l = H
(
I IIi,l,`

)
,

l = 1, 2, . . . ,L1; ` = 1, 2, . . . ,L2; i = 1, 2, . . . ,N ,

- Histogram:

f1 =
[
Hist

(
Zi,1,1

)
· · · Hist

(
Zi,1,B

)
· ·

·Hist
(
Zi,L1,1

)
· · · Hist

(
Zi,L1,B

) ]T ∈ R
(
2L2

)
L1

- Output: f = [f1 · · · fN ] ∈ R
(
2L2

)
L1BN

-

By subtracting each patch image from (27),
we obtained the following expression:

X = patc hX − patc hX i ∈ Rk
2
s×(m−ks+1)(n−ks+1) (28)

[Step 3 ] First PCA process with ICA
In this step, the covariance was obtained by repeat-
ing (28) for all patches and images.

XCov =
∑NL

N=1
(X × X

T
) (29)
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In the above equation, N is the number of images
and L is the number of filters. The eigenvector can
be obtained using the following equation:

XCov × XCov
T
vi = λivi (30)

XCov
T
× XCov(XCov

T
vi) = λi(XCov

T
vi) (31)

vi × X
T
v′i, s.t v′i = X

T
vi (32)

Vi =
Xcov
N

vi (33)

Vi = normalized(Vi) (34)

Fi =
Xcov
N

Vi (35)

U = WICAFI i(PCA) (36)

FI i(pca) refers to the whitened process and centered
feature vector. Let us assume that the eigenvector
obtained using (36) is L. To apply the ICA algo-
rithm for estimating the independent component,
we applied it to the ICA based on the feature vec-
tor. First, ICA centering and whitening algorithms
were applied, and data normalization was performed
thereafter. Then, the initial weight was set randomly,
and the initial weight and the data obtained from
the whitening were linearly combined. The ICA was
performed using Kurtosis and Negentropy, and we
obtained the following expression:

kurt (y) = E{y}4 − 3
(
E{y2}

)2
(37)

The values obtained from (37) and thewhitening data
were linearly combined and normalized. Singular
value decomposition was performed to remove any
correlation. Thereafter, the delta value was obtained
as the difference between the dot product of the
weight obtained from the singular value decompo-
sition and the initial weight obtained randomly and
one. If the delta value is greater than 0.000001, the
data obtained from the final weight and whitening
are linearized, and these values are called indepen-
dent components. The obtained independent compo-
nents U and the linear image of the center image
of the zero-padded original image are combined.
A linear combination of the obtained independent
components U and the center image of the zero-
padded original image is obtained as follows:

I si, l = UiXpadding (38)

s indicates the stage, and the first stage is one. l refers
to independent elements one to l. By subtracting
each patch image from (38), we obtain the following
expression: For each input image Ii ∈ Rm×n, we
obtained L1 output images I si,l = 1, 2, . . .L1, I si,l ∈
Rm×n after the first stage of ICANet2. Let us denote
I s as

I s = [I s1,1 · · · I
s
1,L1 · · · I

s
N ,1 · · · I

s
N ,L1 ] ∈ R

m×NL1n (39)

FIGURE 9. First stage of ICANet2.

FIGURE 10. Feature CU-ECG database in first stage of ICANet2.

Fig. 9 shows the first stage of ICANet2, and the PCA
and ICA are cascaded. In the first stage, a 2D convo-
lutional output is obtained. Fig. 10 shows the feature
CU-ECG database in the first stage of ICANet2.
One covariance was generated for each image, and
the second stagewas affected by the number of filters
to generate 40 covariance values (L1L2 = 4), further
resulting in 40 convolution outputs in the first stage.

[Step 4 ] Second patch sliding process.
By almost repeating the same process as in the first
stage, the second stage of ICANet2 also includes
three steps: similar to step 1, we used a patch of
size k1 × k2 to slide each pixel of the ith image
I ′i,l ∈ R

k1k2×mn, l = 1, 2, . . . ,L1 and obtain a matrix
as follows:

Yi = [yi,l,1yi,l,2 · · · yi,l,mn] ∈ R
k1k2×mn

l = 1, 2, . . . ,L1, i = 1, 2, . . . , (40)

where yi,l,j denote the jth vectorized patch in
I Ii,l . Thus, for all input training images Ii,l, i =
1, 2, . . . ,N ), we obtain the following matrix:

Y = [X1,l,Y2,l · · · YN ,l] ∈ Rk1k2×Nmn (41)

We concatenated the matrices of all the filters and
obtained a matrix,

Y = [Y1,Y2 · · · YL1 ] ∈ R
k2s×(m−ks+1)(n−ks+1)N (42)

[Step 5 ] Second mean removal process.
In this step, we subtracted the patch mean from each
patch and obtained the following:

patc hYi= [Y i,1Y i,2 · · · Y i,mn]∈Rk
2
s×(m−ks+1)(n−ks+1)N

(43)
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By subtracting each patch image from (43),
we obtain the following expression:

X = patc hY − patc hY i ∈ Rk
2
s×(m−ks+1)(n−ks+1) (44)

[Step 6 ] Second PCA process with ICA
In this step, the covariance was obtained by repeat-
ing (44) for all the patches and images.

XCov =
∑NL

N=1
(X × X

T
) (45)

where N is the number of images and L is the number
of filters. The eigenvector can be obtained using the
following equation:

XCov × XCov
T
vi = λivi (46)

XCov
T
× XCov(XCov

T
vi) = λi(XCov

T
vi) (47)

vi × X
T
v′i, s.t v′i = X

T
vi (48)

Vi =
Xcov
N

vi (49)

Vi = normalized(Vi) (50)

Fi =
Xcov
N

Vi (51)

U = WICAFI i(PCA) (52)

A linear combination of the obtained independent
components U and the center image of the zero-
padded original image is obtained as follows:

I si, l = UiXpadding (53)

where s represents the stage, and the first stage is one.
l refers to independent elements one to l. By sub-
tracting each patch image from (53), we obtained
the following expression: For each input image I si ∈
Rm×n, we obtained L2 output images I ssi,l,ι, ι =
1, 2, . . . ,L2, I ssi,l,ι ∈ Rm×n after the second stage
of ICANet2. Thus, we obtained NL1L2 images
I ssi,l,ι, l = 1, 2, . . .L2, ι = 1, 2, . . . ,L2, i =
1, 2, . . . ,N , I ssi,l,ι ∈ Rm×n after the first and second
stages. Let us denote I s as

I ss = [I ss1,1,1 · · · I
ss
1,1,L2 · · · I

ss
1,L1,1 · · · I

ss
1,L1,L2

· · · I ssN ,1,1 · · · I
ss
N ,1,L2 · · · I

ss
N ,L1,1 · · · I

ss
N ,L1,L2 ] (54)

The second stage processed the data for each image
by updating the eigenvectors and independent eigen-
vectors accordingly. Therefore, the feature values of
the output stage exhibited different feature values.
Fig. 11 shows the CU-ECG database in the second
stage of ICANet2, and Fig. 12 shows the feature
CU-ECG database in the second and output stages
of ICANet2. The number of eigenvectors increased
based on the number of filters (L2 = 4), and four
feature values were extracted from one image.

The detailed description of the workflow is as given below:
(1) Perform the PCA step in the same manner as in

ICANet1.

(2) Patch sliding of all images was performed, and the aver-
age image and eigenvector obtained from the PCA were
convoluted.

(3) The eigenvectors are updated through the normalized
eigenvectors, and then the convolution is performed
using the average image determined using all the images
and updated eigenvectors. This is called a feature vector.

(4) The center image is obtained from the basic data. The
zero-padded image and the independent eigenfeature
vector obtained in step (2) are convoluted, and the ICA
convolution output value is extracted. Steps (5) and (6)
are the same as those in ICANet1.

FIGURE 11. Second and output stages of ICANet2.

FIGURE 12. Feature CU-ECG database in second and output stages of
ICANet2.

[Step 7 ] Binary quantization.
In this step, we binarized the outputs of the second
stage of PCANet to obtain:

Pi,l,l = H
(
I IIi,l,l

)
, l = 1, 2, . . . ,L1;

l = 1, 2, . . . ,L2; i = 1, 2, . . . ,N , (55)

where H (·) is a Heaviside step function whose
value equals one for positive entries and zero in all
other cases. Let us denote P as,

P = P1,1,1 · · · P1,1,L2 · · · P1,L1 ,1 · · · P1,L1 ,L2
· · ·PN ,1,1 · · · PN ,1,L2 · · · PN ,L1 ,1 · · · PN ,L1 ,L2

(56)
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[Step 8 ] Weight and sum.
Around each pixel, we can see the vector of
L_2binary bits as a decimal number. This converts
the binary images Pi,l,l back into integer-valued
images as follows.

Ti,l =
∑L2

l=1
2l−1 (57)

Let us denote T as follows.

T = [T1,1 · · · T1,L1 · · · TN ,1 · · · TN ,L1 ] ∈ Rm×NLL1n

(58)

[Step 9 ] Block sliding.
We used a block of size h1 × h2 to slide each of the
L1 images Ti,l, l = 1, . . . ,L1, with overlap ratio R,
and subsequently reshaped each h1 × h2 matrix into
a column vector, which was then concatenated to
obtain a matrix as follows:

Zi,l = [zi,l,1zi,l,2 · · · zi,l,B] ∈ Rh1h2×B, i = 1, 2, . . . ,N

(59)

Let us denote T as follows:

T = [T1,1 · · · T1,L1 · · · TN ,1 · · · TN ,L1 ] ∈ Rm×NLL1n

(60)

where zi,l,j denotes the jth vectorized patch in
Ti,l, l = 1, . . . , .B represents the number of blocks
when using a block of size h1 × h2 to slide each
Ti,l, l = 1, . . . ,L1, with overlap ratio R, and can be
expressed as

B = [1+ (m+ k1 − 1− h1)/stride1]

[1+ (n+ k2 − 1− h2)/stride2] (61)

where strides 1 and 2 are the vertical and horizontal
steps, respectively, and round refers to the rounding
off function.

stride1 = ∂ ((1− R)× h1) ,

stride2 = ∂((1− R)× h2) (62)

∂(.) means to round off. As shown in (62), the
number of blocks B increases as the overlap ratio
R increases. For L1 images, we concatenated Zi,l to
obtain the following matrix:

Zi =
[
Zi,1Zi,2 · · · Zi,B

]
∈ Rh1h2×L1B, i = 1, 2, . . . ,N

(63)

Let us denote Z as follows.

Z = [Z1,1 · · · Z1,B · · · ZN ,1 · · · ZN ,B] ∈ Rh1h2×L1BN

(64)

[Step 10 ] Histogram.
We computed the histogram (with 2L2 bins) of the
decimal values in each column of Zi and concate-
nated all the histograms into one vector to obtain

f1 =
[
Hist

(
Zi,1,1

)
· · · Hist

(
Zi,1,B

)
· ·

·Hist
(
Zi,L1,1

)
· · · Hist

(
Zi,L1,B

) ]T ∈ R
(
2L2

)
L1

(65)

which is the ‘‘feature’’ of input image I1, and
Hist (.) denotes the histogram operation. Let us
denote f as,

f = [f1 · · · fN ] ∈ R
(
2L2

)
L1BN (66)

The feature vector is then sent to a classifier, such
as an SVM. Fig. 13 shows the hashing codes in the
output stage of the ICANet2.

FIGURE 13. Hashing codes in the output stage of ICANet2.

The hashing code is similar to that of the LBPs. It is a binary
algorithm that codes zero if the feature value is less than zero
and one if the feature value is greater than zero, as shown
in Fig. 13. Therefore, the independence component obtained
from ICA is simplified to zero and one.
�Advantage of ICANet�
I. The network structure is simple and computationally

efficient.
II. The ICA filter is trained with an unsupervised algo-

rithm using unlabeled samples, which is practical.
III. Compared to deep learning models, each layer param-

eter in ICANet can be easily trained.

IV. EXPERIMENT AND RESULTS
This section describes the data acquisition process and envi-
ronment, evaluates the data. In addition, we presented the
performance assessment and effectiveness of ICANet.

A. CU-ECG DATABASE
We obtained the CU-ECG database from Chosun University,
Korea. We recruited many volunteers to acquire and collate
the data. The dataset contained 95 participants. The duration
of each measurement was 10 s, and there were 60 measure-
ments for each participant over a three-day period. The partic-
ipants were allowed to sit on a chair in a relaxed state, and the
measurements were obtained with a sampling rate of 500 Hz.
All acquired ECGs were of the Lead1 type that were obtained
using wet electrodes. We used a processor, amplifier, band-
pass filter, and low-pass filter as the primary board and sensor.
An Atmega8 processor was used, and the analog-to-digital
converter had a 10-bit resolution. We used a USB-to-serial
cable to establish a communication link. The gain of the
amplifier was 1000, and the signal was measured using a
+5 V power source. To obtain the ECG data, the patient was
allowed to sit on a chair in a relaxed state. The patch depicted
in Figure 14 was attached to the arm, and the data were
acquired. The acquired data were stored on a PC using univer-
sal synchronous/asynchronous receiver/transmitter (USART)
communication. Fig. 14 depicts the data acquisition
environment for ECG biometrics, and Fig. 15 shows the
preprocessing using the CU-ECG database. Fig. 16 shows
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Algorithm 2 ICANet2
1. Reading of image or signal data
2. Initialization of variables (patch size, number of filters,

block size)
3. Stage 1 of ICANet2

- Patch mean-removal:

X = patc hX − patc hX i ∈ Rk
2
s×(m−ks+1)(n−ks+1)

- Compute PCA feature vector using PCA:

Vi =
Xcov
N

vi, Vi = normalized (Vi) ,Fi =
Xcov
N

Vi

- Compute convolution using ICA:

U = WICAFI i(pca)

- Output: I si, l = UiXpadding
4. Stage 2 of ICANet2

- Patch mean-removal:

Y = patc hY − patc hY i ∈ Rk
2
s×(m−ks+1)(n−ks+1)

- Compute PCA feature vector using PCA:

Vi =
Xcov
N

vi, Vi = normalized (Vi) ,Fi =
Xcov
N

Vi

- Compute convolution using ICA:

U = WICAvi(PCA)

- Output: I si, l = UiXpadding
5. Output layer

- Binary hashing: compute the decimal-valued image:

Pi,l,l = H
(
I IIi,l,`

)
,

l=1, 2, . . . ,L1; `=1, 2, . . . ,L2; i=1, 2, . . . ,N ,

- Histogram:

f1 =
[
Hist

(
Zi,1,1

)
· · · Hist

(
Zi,1,B

)
· ·

·Hist
(
Zi,L1,1

)
· · · Hist

(
Zi,L1,B

) ]T ∈R(2L2 )L1
- Output: f = [f1 · · · fN ] ∈ R

(
2L2

)
L1BN

-

the samples of the CU-ECG database with a noise CU-ECG,
whereas Fig. 17 shows samples of the CU-ECG database with
a size scale. Noise (white Gaussian) was used to determine the
robustness of ICA. In addition, additive white Gaussian noise
was a basic noise model used in information theory to mimic
the effects of several random processes occurring in nature.

The database was divided into 90% and 10% for training and
testing, respectively.

FIGURE 14. Data acquisition environment for ECG biometrics.

FIGURE 15. Preprocessing using CU-ECG database: (a) raw signal;
(b) mean variance; (c) spike removal; (d) R peak detection.

B. MIT-BIH ECG DATABASE
The MIT-BIH ECG database includes 48 parts that contain
two-channel ECG recordings. These parts were recorded
between 1975 and 1979 at Boston’s Beth Israel Hospital (now
the Beth Israel Deaconess Medical Center). The MIT-BIH
ECG database is consist of 47 participants. This database
was acquired in approximately 30 minutes. The participants
comprised 25 men and 22 women, with age-ranges of 32 to
89 years and 23 to 89 years, respectively. The sampling rate
was 360 samples per second, and the resolution for digiti-
zation was 11-bit over a 10-mV range. Twenty sets of data
were obtained for each class. The size of the training data
was 940 × 1600, and both lead types I and II were used.
Fig. 18 shows an example of the MIT ECG data with a
scalogram.

C. PERFORMANCE EVALUATION AND SETTING
PARAMETERS WITH CLASSIFIER
True positives (TPs) and true negatives (TNs)are the number
of correct predictions made for the positive and negative
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FIGURE 16. Samples of CU-ECG database with noise CU-ECG: (a) ECG
scalogram; (b) salt noise with ECG scalogram; (c) noise signals.

FIGURE 17. Samples of CU-ECG database with size scale: (a) 28 × 28;
(b) 20 × 20; (c) 12 × 12.

FIGURE 18. Example of MIT ECG data with scalogram.

samples, respectively, and false negatives (FNs) and false
positives (FPs) are the number of incorrect predictions made
for the positive and negative samples, respectively.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(67)

D. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS
To demonstrate the performance of the proposed algorithm,
we used various classifiers. The feature extractors were

FIGURE 19. Effect on the number of filters in ICANet. (a) CU-ECG
database. (b) noise CU-ECG database.

FIGURE 20. Effect on the number of filters in ICANet. (a) CU-ECG
database. (b) noise CU-ECG database.

PCANet, ICANet1, and ICANet2. The performance obtained
using CU-ECG data showed a performance similar to that of
PCANet without noise data. However, as the data changed
shape, they showed a higher performance in ICANet2 than
in PCANet. If the training data and testing data are similar,
the PCANet can have a good effect, but if non-similar real-
life data are used, the ICANet2 algorithm becomes robust.
In particular, when noise ECG data and scale data are used,
the robustness of the ICANet2 algorithm can be verified.
In addition, the classifier confirmed that the SVM algorithm
worked well, and the verification time was important for per-
sonal ECG authentication. The verification time of PCANet
was approximately 0.2 s, and that of ICANet2 was 0.15 s,
which is approximately equal to that of PCANet. There-
fore, the effectiveness of the ICANet algorithm for personal
authentication with respect to the classification time was
demonstrated.

1) EFFECT ON THE NUMBER OF FILTERS
The number of filters is an important factor, which determines
the recognition performance in the convolution layer on
ICANet because the amount of information starts increasing
when the number of filters in the first stage gradually
increases. Fig. 19 shows the effect of the number of filters
on ICANet performance.

2) EFFECT ON BLOCK SIZE
Unlike in the case of an increase in the number of filters, the
performance tends to decrease as the block size increases.
As the block size increases, the spacing between the strides
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FIGURE 21. Correlation of PCANet, ICANet1 (a) PCANet. (b) ICANet1.
(c) ICANet2.

FIGURE 22. Histogram of sample CU-ECG.

becomes wider, resulting in a loss of data and degradation
of performance. Fig. 20 shows the effect of the ICANet
block size on performance, and Fig. 21 shows the correlation
between PCANet and ICANet. Fig. 22 shows the histogram of

FIGURE 23. Performance of MIT BIH-ECG.

FIGURE 24. Performance of CU-ECG with noise by SVM.

TABLE 1. Performance of CU-ECG in terms of classifier.

sample CU-ECG; Fig. 23 indicates the performance of MIT
BIH-ECG. Fig. 24 shows the performance of the CU-ECG
with noise. Fig. 25 shows the performance of the scale
CU-ECG, and Table 1 lists the performance of the CU-ECG
in terms of the classifier. Fig. 25 Confusion Matrix of
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FIGURE 25. Performance of scale CU-ECG.

TABLE 2. Performance of CU-ECG (28∗28) with SVM classifier.

FIGURE 26. Confusion matrix of CU-ECG with SVM.

CU-ECG with SVM and Table 2 lists performance of
CU-ECG (28∗28) with SVM classifier.

V. CONCLUSION
In this study, we developed the ICANet2 algorithm to over-
come the disadvantages of PCANet. The experimental results
demonstrated that the PCANet algorithm had a lower perfor-
mance when using noisy data and small feature data. Gener-
ally, when processed data are used, the performance is similar

to that of PCANet. However, the PCANet that used eigen-
vectors was weak against noise, and the feature vector that
used statistical independence was robust to noise. In addition,
ICANet2 exhibited robustness compared to PCANet, even
with the loss of data. Furthermore, the performancewas better
than that of the basic deep learning of auto-encoders, and the
classification time was approximately 0.05 s faster than that
of PCANet.
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