
Received December 1, 2021, accepted January 27, 2022, date of publication January 31, 2022, date of current version February 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3147879

A Methodology to Derive a Symbolic Transfer
Function for Multistage Amplifiers
HAMED AMINZADEH 1, (Member, IEEE), ALFIO DARIO GRASSO 2, (Senior Member, IEEE),
AND GAETANO PALUMBO 2, (Fellow, IEEE)
1Department of Electrical Engineering, Payame Noor University (PNU), Tehran 19395-4697, Iran
2Dipartimento di Ingegneria Elettrica Elettronica e Informatica (DIEEI), University of Catania, 95125 Catania, Italy

Corresponding author: Alfio Dario Grasso (agrasso@dieei.unict.it)

ABSTRACT In this paper, a simple while effective methodology to calculate the symbolic transfer function
of a multistage amplifier with frequency compensation is proposed. Three general amplifier models are
introduced and analyzed, which represent basic topologies found in the literature. For these amplifier
models, the symbolic transfer function is derived and specific strategies for the zero and non-dominant pole
expressions are presented. The methodology is suited for hand calculations and yields accurate results while
offering more intuition into the operation of the widely adopted frequency compensation solutions discussed
in the literature. The effectiveness of the proposed approach is validated through various typical cases of
study.

INDEX TERMS Amplifier, compensation capacitance, frequency compensation, Miller compensation,
multistage amplifiers, pole/zero analysis, transfer function.

I. INTRODUCTION
A preliminary and fundamental task to the design of a
multistage amplifier is the derivation of its symbolic transfer
function. Indeed, knowledge of the voltage transfer function
is required to gain more insight into the operation of a
multistage amplifier and to set and design the amplifier
compensation network, which is a fundamental design step
where interactions between the power consumption, noise,
area, bandwidth, and stability are involved. Moreover, start-
ing from a generalized symbolic transfer function expression,
a designer can readily study and compare the several design
features of an amplifier compensatedwith different frequency
compensation solutions.

Since the early years of MOS analog integrated circuits,
the compensation of two or more stage amplifiers was a key
research area [1]–[28]. In this field several novel solutions
were continuously proposed, especially for three- and four-
stage amplifiers, and, despite several decades have been
devoted to this subject, even in the last ten years the interest
on this topic appears active [29]–[40]. Indeed, due to the
continuous degradation of transistors’ intrinsic gain and the
low supply voltage of modern scaled technologies, more gain

The associate editor coordinating the review of this manuscript and

approving it for publication was Teerachot Siriburanon .

stages are required [35] and in any case the development of
novel compensation networks remains an important research
area in advanced CMOS technologies.

Despite from one side several multistage amplifier com-
pensation networks were proposed and analyzed [1]–[40],
and, hence, we know their voltage transfer functions which
are typically reported in the original or successive papers, the
continuous research on this domain maintains unchanged the
need to evaluate the voltage transfer function especially in a
novel more complex topology that could be adopted. Hence,
methodologies to calculate the symbolic voltage transfer
function simply and efficiently are still important.

Traditionally, the calculation of a symbolic transfer
function is a very lengthy and complex task if only
Kirchhoff laws at nodes and meshes are used. To help the
designer, computer-aided design (CAD) tools are developed
to carry out the small-signal analysis such that the transfer
function can be extracted in factorized or non-factorized
form [41]–[48]. Simplifying circuit-level methods are used
for pole/zero extraction, some of which are relied on
dividing the frequency spectrum into small pieces [43],
approximation of the time constants [44], developing new
circuit micromodel [49], [50], or analysis of signal flow-
graph [41]. Despite these approaches could be ideally suited
also for pencil and paper evaluation, the final expressions are,

14062 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7956-624X
https://orcid.org/0000-0002-5707-9683
https://orcid.org/0000-0002-8011-8660
https://orcid.org/0000-0003-1658-9596


H. Aminzadeh et al.: Methodology to Derive Symbolic Transfer Function for Multistage Amplifiers

however, complicated and cannot be analyzed simply, thus
these strategies are more suited for CAD tools rather than for
hand calculations.

Among the several papers and books where compensation
techniques for multistage amplifiers are treated and their
voltage transfer function is calculated, some circuit-level
techniques suitable for a pencil and paper approach can
be found in the literature [51]–[54]. For instance, one may
calculate the location of the poles of a three-stage nested
Miller compensated (NMC) amplifier by assuming that the
second compensation capacitor is short-circuited, and the
inner gain stage is in unity-feedback configuration [51].
Alternatively, the compensation network of an amplifier may
be analyzed directly based on the concepts of control-centric
Local Feedback Loop (LFL) [52], [32] or equivalent output
impedance of the compensation loop [55], [56]. Similar
methodologies facilitate the designer’s ability to calculate
the transfer function given that the type of the amplifier
was specified a priori. A control-centric design-oriented
analysis methodology based on a simplified feedback theory
is presented in [54], helping to quickly evaluate the pole
frequencies. Nevertheless, no clear symbolic expression
can be extracted in general form, hindering a general
understanding of the contributing and the limiting factors of
the amplifier’s performance.

In this paper, we develop a simple methodology that allows
to efficiently calculate the symbolic transfer function of a
multistage amplifier with its specific compensation networks.
The methodology is suited to be also applied with pencil
and paper and gives very accurate results. In particular,
three general amplifier models are introduced and analyzed,
which represent basic topologies found in the literature. For
these amplifier models, the symbolic transfer function is
derived and specific strategies for the zero and non-dominant
pole expressions are presented. Thus, the final symbolic
transfer function can be written in the required standard
form.

The application and accuracy of the approach are reported
for a set of six amplifiers, which includes classical and
advanced topologies that can be considered as typical cases
of study, even if the approach was positively used and tested
for other several topologies. In particular, the amplifiers
considered to validate the methodology are:
– a two-stage Miller compensation with nulling resistor
(MCNR) [1];

– a three-stage with NMC [5], [6];
– a three-stage with reversed Nested-Miller compensation
(RNMC) [6];

– a three-stage with the nested Miller compensation and a
current buffer in the external loop, named active-feedback
frequency compensation (AFFC) [16];

– a three-stage with single Miller compensation named
impedance adapting compensation named (IAC) [29];

– a three-stage with singleMiller compensation and current
buffer, named cross feedforward cascode compensation
(CFCC) [31].

FIGURE 1. The general amplifier models proposed in this section;
(a) type I; (b) type II; (c) type III (combined).

Moreover, the results show that the entire procedure can be
summarized to find the variables used in a symbolic transfer
function expression.

The manuscript is organized as follows. In Section II,
after some preliminary considerations, the methodology is
presented and developed, showing the evaluation of zero and
poles and of the whole transfer function, as well as approx-
imated calculation of the dominant pole. Section III reports
the application, in order of complexity, on the six amplifier
topologies selected as typical cases. Design considerations
and remarks arising from the proposed methodology are
included in Section IV. Finally, the conclusions are given in
Section V.

II. THE PROPOSED METHODOLOGY
A. ABBREVIATIONS AND ACRONYMS
After inspecting the circuit topology of a huge number
of multistage amplifiers presented in the literature, which
includes both the conventional and the novel solutions, it was
found that a generic topology can be modeled by using,
in a recursive way if needed, the generalized three circuit
configurations shown in Fig. 1 and named type I, type II, and
type III.

In particular, as it will be better detailed and explained
in the next Section, considering the well-known topology
reported in references, the type I model can be used for the
amplifier that adopts the Miller compensation [1], NMC [5],
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RNMC [6], single Miller compensation (SMC) [22], together
with the IAC single Miller topology [29], (i.e., compensation
topologies without current or buffer or amplifier in the
external loop). The type II model can be considered for
two-stage amplifiers with Miller compensation and current
buffer [8], [53], [66] and AFFC amplifier [16], while single
miller topologies with a current buffer, like CFCC [31]
and the cascode Miller-compensation with local impedance
attenuation (CLIA) [34] (not included in this manuscript for
space reason) can be reported and analyzed with the type III
model.

It is worth noting that the main difference between the
models in Fig. 1 is the way the input is connected to the
feedback pathway of the frequency compensation network.
In any case, the input transconductance, Gmi, converts
the input voltage into an equivalent ac current, and the
current is applied to the compensation loop. The transcon-
ductance Gmi is considered unchanged at the frequencies
of interest and can be positive or negative depending on
circuit implementation. The compensation loop is com-
prised of the frequency-dependent transconductance Gm(s),
in negative feedback configuration, and supplies the load
impedance zL(s).

Considering the feedback network of the three model
types, for the type I model the feedback elements in Fig. 1(a)
connect the output of Gm(s) to its input directly, whereas for
type II in Fig. 1(b) the one-way current buffer with constant
GmC (and an input impedance of 1/GmC ) buffers the feedback
current, and prevents the feedforward current flowing to the
output through zA(s). Finally, the type III model in Fig. 1(c),
where the input transconductance is broken into identical
Gmi/2 stages, can be seen as a combination of the two other
models in Fig. 1(a) and (b).

Note that also a type IV model could be considered, which
uses a voltage buffer inside the feedback loop instead of the
current buffer [7], [64], but presently, especially for the low
voltage power supply of the typical application, it is not a
practical solution. Moreover, by inspection of Fig. 1, it is
apparent that type III model can be seen as a more general
topology of type II model and hence could be, in principle,
merged. However, since the zeros of the type II model, unlike
to type III model, may depend on Gm(s) (as it will be shown
in the next sub-section), we decided to maintain two different
models which appear to be more effective from a practical
point of view.

In all the cases considered, the symbolic voltage-gain
transfer function from vi to vo can be generally expressed as

AV (s) =
vo
vi
=

A0
1+ s
|p−3dB|

·
NZ (s)
DNP (s)

(1)

where A0 and p−3dB p−3dB denote the DC voltage gain and
the dominant pole, respectively, and NZ (s) and DNP(s) are
the zeros and nondominant poles polynomials, respectively,
being

lim
s→0

NZ (s) = lim
s→0

DNP (s) = 1 (2)

The polynomial DNP(s) contains the most important
bandwidth- and stability-limiting pole frequencies, whereas
NZ (s) contains the zero frequencies which generally may
also affect the overall stability, depending of course on their
frequency.

A symbolic transfer function in the form of relationship (1)
is very helpful for writing all the design expressions in
symbolic form. For instance, a symbolic phase margin (PM)
expression can then be expressed as

PM ≈ 90◦ + tan−1
(
Im [N (jGBW )]

/
Re [N (jGBW )]

)
−tan−1

(
Im [DNP (jGBW )]

/
Re [DNP (jGBW )]

)
(3)

where GBW is the gain-bandwidth product and is given by
A0 · p−3dB.
Moreover, to take advantage of the model treated, it is

conventionally assumed that the amplifier contains linear
elements only. Hence, the transfer function would be
fractional, and contains unchanged coefficients for N(s) and
DNP(s) expressions:

zA (s) =
nzA (s)
dzA (s)

(4)

zB (s) =
nzB (s)
dzB (s)

(5)

zL (s) =
nzL (s)
dzL (s)

(6)

Gm (s) =
nGm (s)
dGm (s)

(7)

Analysis of the transfer function provides insightful knowl-
edge on the behavior of the frequency compensation applied.
To this end, N (s) and DNP(s) in their most general form
must be evaluated. Thus, instead of using a direct transfer
function evaluation, or the adoption or other approaches such
as Rosenstark method [57] or Signal Flow Analysis [58],
the analysis in the rest of this section is devoted to directly
derive N(s) and DNP(s) through a depth circuit observation
and practical considerations. In particular, it will be shown
that the zeros originate from the feedforward pathways and
the shunt elements within the input-output pathway, whereas
the location of nondominant poles is mainly governed by the
compensation loop.

B. ANALYSIS OF ZEROS
It is possible to formulate the transfer function zero
expressions by revisiting the conditions leading to a ‘zero’.
A zero is a complex frequency, szi, where vo evaluated at
its value is equal to zero (i.e., vo(szi) = 0), and it can
be regarded as the input frequency szi that yields a virtual
grounded output. Different scenarios end up with such result
for the models under consideration. In particular, considering
the type I model in Fig. 1(a), we found the zeros under the
following conditions:
a) an input frequency that generates a load impedance equal

to zero (i.e., zL(s) = 0), which in turn means

nzL (s) = 0 (8)
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b) the input of the Gm(s) stage, vF , equal to zero, (i.e.,
zB(s) = 0), or in other terms

nzB (s) = 0 (9)

c) a current through the load impedance equal to zero;
this case corresponds to a complex frequency where
the current supplied by the Gm(s) becomes equal to the
current of the feedback element zA(s) (i.e., Gm(s). vF
equal to vF /zA(s)), which means

dzA (s)
nzA (s)

−
nGm (s)
dGm (s)

= 0 (10)

yielding

dzA (s) · dGm (s)− nzA (s) · nGm (s)
nzA (s) · dGm (s)

= 0 (11)

Thus, any zero of the type I model transfer function is
obtained from one of the three above cases and combining
them in a general and compact form we get

N1 (s) = nzL (s) · nzB (s)

· [dzA (s) · dGm (s)− nzA (s) · nGm (s)] (12)

The two zero expressions in (8) and (9) are valid for the
amplifier model type II illustrated in Fig. 1(b). The one-way
current buffer, GmC , however, prevents zA(s) draining any
current from the input of Gm(s) Hence, since Gm(s). vF =
0, instead of Eq. (10) we have

nGm (s) = 0 (13)

The series combination of zA(s) and 1/GmC is connected
to the output and generates additional zeros. The output will
be grounded when the series impedance of the two elements
becomes zero (i.e., zA(s) + 1/GmC = 0) and we can write

GmCnzA (s)+ dzA (s) = 0 (14)

Thus, the generalized zero expression of model type II is
given by

N2 (s)=nzL (s) · nzB (s) · nGm (s) · [GmCnzA (s)+dzA (s)]

(15)

Equation (8) still holds for the model type III illustrated in
Fig. 1(c). Other zero expressions can be, however, found by
setting the output voltage to zero. In particular, if vo = 0, the
voltage vC can be expressed in terms of the input voltage, vi,
as

vC =
Gmi
2

[
zA (s)

1+ GmC · zA (s)

]
vi (16)

Hence, taking into account the above relation, the feedback
voltage, vF , is related to vi by

vF =
(
GmC · vC +

Gmi
2
· vi

)
· zB (s)

=
Gmi
2
·
1+ 2GmC · zA (s)
1+ GmC · zA (s)

· zB (s) · vi (17)

Thus, applying the current law to the output node yields
vC
zA (s)

− Gm (s) · vF = 0 (18)

and

1− Gm (s) · [1+ 2GmCzA (s)] · zB (s) = 0 (19)

and the zero equation is expressed by

2GmC · nGm (s) · nzA (s) · nzB (s)+nGm (s) · dzA (s) · nzB (s)

−dGm (s) · dzA (s) · dzB (s) ≈ 2GmC · nzA (s)+dzA (s) = 0

(20)

where the approximation holds since the first 1 in relation-
ship (19) can be safely neglected with respect to the other
termswhich are normallymuch higher (remember thatGm(s).
zA(s) and GmC (s). zB(s) represent two gains). The symbolic
zero expression of the model type III can be written as

N3 (s) = nzL (s) · [2GmC · nzA (s)+ dzA (s)] (21)

By inspection of the Ni(s) expressions derived above
for different amplifier models, it is worth noting that the
feedforward pathways and the shunt elements are responsible
for generating a zero.

C. ANALYSIS OF POLES
Remembering that in a network the natural frequencies,
i.e. the poles, only depend on the network topology and
component values, but not on the input [59], to evaluate the
poles of the transfer function we can calculate the input or the
output impedance and take their poles.
Consider the model type I illustrated in Fig. 1(a). The

output impedance is that of a typical simple feedback
circuit and, consequently, it can be simply evaluated by
applying any usual method for impedance evaluation in
feedback amplifiers, such as Blackman [60] or modified
Rosenstark [57], or even directly. In particular, we get

zeq (s) =
zA (s)+ zB (s)

1+ Gm (s) · zB (s)
//zL (s)

=
[zA (s)+ zB (s)] · zL (s)

zA (s)+ zB (s)+ zL (s)+ Gm (s) · zB (s) · zL (s)
(22)

Thus, by using (4)-(7), after routine manipulations, the final
zeq(s) can be expressed by

zeq (s)

=
dGm (nzAdzB + dzAnzB) nzL

dGmdzAdzBnzL + nGmdzAnzBnzL + dGmnzAdzBdzL
(23)

and hence the pole expression of the transfer function, being
the same of the relationship (23), is given by

DP1 (s) = dGmdzAdzBnzL + nGmdzAnzBnzL
+ dGmnzAdzBdzL + dGmdzAnzBdzL (24)
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Concerning the type II and type III models, their output
impedance is equal1 and by inspection of Fig. 1(b) or 1(c),
observing that to evaluate the output impedance type II and
type III models are equivalent to type I if

G′m (s) = GmC · zB (s) · Gm (s) (25)

z′B (s) =
1

GmC
(26)

are used in the compensation loop instead of Gm and zB,
respectively. Thus, from (22) we get2

zeq (s) =
zA (s)+ z′B (s)

1+ G′m (s) · z
′
B (s)

//zL (s)

=

[
zA (s)+ z′B (s)

]
· zL (s)

zA (s)+ z′B (s)+ zL (s)+ G
′
m (s) · z

′
B (s) · zL (s)

(27)

Therefore, from (24) the denominator of type II and type III
models is given by

DP2 (s)

= DP3 (s) = dG′mdzAdz
′
BnzL

+ nG′mdzAnz
′
BnzL + dG

′
mnzAdz

′
BdzL + dG

′
mdzAnz

′
BnzL
(28)

Moreover, being

nz′B (s) = 1 (29)

dz′B (s) = GmC (30)

and

nG′m (s) = GmC · nzB (s) · nGm (s) (31)

dG′m (s) = dzB (s) · dGm (s) (32)

equation (28) becomes

DP2 (s)

= DP3 (s) = GmC (dGmdzAdzBnzL
+ nGmdzAnzBnzL + dGmnzAdzBdzL)+ dGmdzAdzBdzL

(33)

D. GENERAL TRANSFER FUNCTION
Noticing that the feedback element zA(s), contains generally
a series compensation capacitor, which means

lim
s→0

zA (s) = ∞ (34)

for any of the proposed models, the symbolic DC gain
formula can thus be expressed by

A0 = Gmi · Gm (0) · zB (0) · zL (0) (35)

1We are implicitly assuming for type III model, as it happens for real
cases, that the output impedance of the upper Gmi/2 transcoductance can be
neglected (i.e., much higher than 1/GmC ).

2Using (25) and (26), eq. (27) reduces to
zA(s)+z

′
B(s)

1+Gm(s)·zB(s)
//zL (s) but this

form is less practical at this moment.

To ensure that condition (2) is met for the type of the transfer
function in (1), the standard NZ (s) should be implied in the
form of (1 + αs + βs2 + . . .), while inspecting the N(s)
expressions derived in subsection II.B we find a constant
term. Hence, we can write that

NZi (s) =
Ni (s)
Ni (0)

(36)

where i is equal to 1, 2 or 3.
Concerning eqs. (24) and (33), to represent the transfer

function as in (1), despite DPi(s), with i from 1 to 3, contains
all the amplifier poles, we have to identify the dominant
pole and factorize it. At this purpose we can consider that
the dominant pole, p−3dB, can be evaluated by applying
the open-circuit time constant method [62] and, since it is
typically imposed by exploiting the Miller effect on the CC ,
of zA(s) [49], we can write (37), as shown at the bottom of the
next page, where CB and CL are the capacitive contribute of
zB(s) and zL(s).

The function DPi(s) in a general form can be written as

DPi (s) = a0 + a1s+ a2s2 + . . .+ ansn (38)

where, of course,

a0 = DPi (0) (39)

Thus, remembering that a compensated amplifier has a
dominant pole approximated by

p−3dB =
DPi (0)
a1

(40)

the transfer function related to the non-dominant poles only
with the unitary constant term can be expressed by

DNPi (s) ≈
DPi (s)

DPi (0)
(
1+ s

p−3dB

)
= 1+

a2
a1
s+

a3
a1
s2 + . . .+

an
a1
sn−1 (41)

In conclusion, expression (42) summarizes the analysis
of this section, providing a symbolic voltage-gain transfer
function expression for most multistage amplifiers used in the
literature

AV (s) = A0
Ni (s)
Ni (0)

DPi (0)
DPi (s)

=
A0

1+ s
|p−3dB|

·
NZi (s)
DNPi (s)

≈
GBW
s
·
NZi (s)
DNPi (s)

(42)

where i is from 1 to 3 and Ni(s) and DPi(s) are summarized in
Table 1.

E. APPROXIMATED POLE EXPRESSIONS
A useful approximation can be obtained by noting that
in a compensated amplifier the non-dominant poles are at
frequencies higher than the transition frequency. They are,
consequently, much higher than the dominant pole that is
usually entirely set by the Miller compensation capacitor.
Then, at the frequency of the non-dominant poles we can
assume the compensation capacitor is short-circuited.
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TABLE 1. Approximated expressions.

The compensation capacitor is inside zA(s), thus the
assumption of short-circuited compensation capacitor means
to evaluate

zA lim = lim
s→∞

zA (s) (43)

and substitute it to zA(s) in (24) and (32) to achieve
the equation for the non-dominant poles. In particular,
rewriting (24) and (33) by introducing zAlim we respectively
get

DP lim 1 (s)

= dzADNGPN1 (s) = dzA (dGmdzBnzL
+ nGmnzBnzL + dGmzA limdzBdzL + dGmnzBdzL)

(44)

DP lim 2 (s)

= DP lim 3 (s) = dzADNGPN3 (s)

= dzA [GmC (dGmdzBnzL
+ nGmnzBnzL + dGmzA limdzBdzL)+ dGmnzBdzL]

(45)

where DNGNPi(s) are equations with only the non-dominant
poles, but not in the required form. Indeed, note that the
dominant pole of the transfer function can be approximated
by

1+
s

|p−3dB|
≈

s
|p−3dB|

≈ dzADNGNPi (0) (46)

Then, the expression for the non-dominant poles with one as
constant term is given by

DNPi (s) =
DNGNPi (s)
DNGNPi (0)

(47)

Despite being useful, especially when a Miller capacitance
or a nulling resistance in the compensation path is adopted
(i.e., for amplifiers that are represented with type I model),
this approximation may lead to errors when current buffers
are introduced in the compensation path. As such, the small
input resistance of the current buffer in series makes quite
important the size of the Miller capacitance and its ac
current on the location of non-dominant poles. Approximated
DNGNPi(s) are summarized in Table 1.

III. APPLICATIONS OF THE PROPOSED METHODOLOGY
The achieved symbolic transfer function expression can sig-
nificantly reduce the calculations of OTA transfer function.
Fig. 2 presents several well-known circuit diagrams used to
realize two-stage and three-stage amplifiers, where resistors,
capacitors, and transconductors of different blocks are
explicitly represented using conventional notations. In this
section, we shall analyze these amplifiers as a typical case
of study by using the methodology developed in the previous
section based on the models introduced in Fig. 1 and
summarized by equation (42) and Table 1.

A. MILLER COMPENSATION WITH NULLING RESISTOR
As the classical method to stabilize a two-stage ampli-
fier [51], Miller compensation places a compensation capac-
itor among the input and output of the second stage to
dominate the pole of the first stage output. The original
Miller compensation is mostly avoided since it suffers
from stability problems due to a right-half plane (RHP)
zero and improvements that avoid the RHP are usually
adopted [51], [63].

The most known and used solution that allows to avoid the
RHP is based on a nulling resistor (RC ) which is therefore

p−3dB =
−1

zB (0)CB + zL (0)CL + [zB (0)+ zL (0)+ zB (0)Gm (0) zL (0)]CC
(37)
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FIGURE 2. Block diagrams of multistage amplifiers; (a) Miller compensation with nulling resistor; (b) NMC; (c) RNMC; (d) AFFC; (e) IAC; (f) CFCC.

placed in series with the compensation capacitor (CC ) to
create a negative zero according to the circuit diagram shown
in Fig. 2(a). In addition to the input gmi stage with the output
capacitor (C1) and resistor (R1), the block diagram of Fig. 2(a)
is composed of an inverting gmL stage with the feedback RC
and CC , driving CL and RL of the amplifier. This structure
is analogous to the model type I discussed in Section 2,
when taking into consideration Gmi = gmi, and the following
relations for remaining components:

zA (s) =
nzA
dzA
=

1+ RCCCs
CCs

(48)

zB (s) =
nzB
dzB
=

R1
1+ R1C1s

(49)

Gm (s) =
nGm
dGm

=
gmL
1

(50)

zL (s) =
nzL
dzL
=

RL
1+ RLCLs

(51)

The DC gain and dominant pole are obtained from (35)
and (37), respectively. Moreover, usually (37) can be
simplified into

p−3dB ≈
−1

zB (0)Gm (0) zL (0)CC + zL (0)CL

=
−1

gmLR1RLCC + RLCL
(52)

The zeros expressions are easily derived as

Nz1 (s) =
N1 (s)
N1 (0)

=

[
1+ CC

(
RC −

1
gmL

)
s
]

(53)

Concerning the non-dominant poles, we can use the
approximated expression (44). Thus, approximating the first
term of DP1(s) as

dGmdzBnzL = RL + R1gmLRL + RC + R1 ≈ R1gmLRL
(54)

and being

zA lim = lim
s→∞

zA (s) = RC (55)

we get

DNGPN1 (s)

= (dGmdzBnzL
+ nGmnzBnzL + dGmzA limdzBdzL + dGmnzBdzL)

= R1gmLRL + (R1C1RL + R1C1RC + RLCLR1
+RLCLRC ) s

+R1C1RLCLRCs2 (56)

which from (47) gives the non-dominant pole function in the
required form

DNP1 (s) = 1+
[
C1

gmL

(
1+

RC
RL

)
+

CL
gmL

(
1+

RC
R1

)]
s

+C1CL
RC
gmL

s2 (57)

It is worth noting that application of the accurate relation-
ship (41) only adds the negligible term, CLC1/CCgmL , thus
yielding the same result.

B. NESTED MILLER COMPENSATION
Nested Miller compensation is an advanced variant of
the Miller compensation presented formerly for three-stage
amplifiers [3], [5], [6]. Fig. 2(b) illustrates the circuit
schematic of a three-stage NMC amplifier, comprising
from an inverting first stage, a non-inverting second stage,
and an inverting third stage modeled by their equivalent
transconductor (gmi, gm2 and gmL), output stage resistor (R1,
R2 and RL) and output stage capacitor (C1, C2 and CL).

The two compensation capacitors of NMC, i.e. CC 1 and
CC 2, connect the third stage output to the first and the second
stage outputs, respectively. The capacitor CC 1 creates the
main pole of the amplifier, while CC 2 controls the quality
factor of the non-dominant poles. This structure is analogous
to the model type I in Fig. 1(a), when considering

zA (s) =
1

CC1s
(58)
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FIGURE 3. Structure of NMC three-stage amplifier as model type I;
(b) equivalent high-frequency model.

zB (s) = R1//
1
C1s
≈

1
C1s

(59)

where the rightmost approximation in (59) holds if
R1C1s >>1.

The DC gain and the dominant pole can be evaluated
from (35) and (37) noting that zB(0)=R1,Gm(0)= gm2gmLR2
and zL(0) = RL . Nonetheless, it is essential to evaluate the
Gm(s) and zL(s) expressions before the proposed method can
be applied to evaluate Nzi(s) and DNPi(s). To this end, the
elements inside the rectangular dash line in Fig. 3(a) can
be represented by an equivalent transconductor Gm(s), with
input voltage v′i, output voltage v′o, and an output impedance
of z′o.

By applying the current law at the output of the second
stage, the output current, i′o is related to v′i and v′o by

i′0 = Gm (s) v′i +
v′o
z′o

= gm2

[
gmLR2 − R2C2s

1+ R2 (CC2 + C2) s

]
v′i

+CC2s
[
1+ gmLR2 + R2C2s
1+ R2 (CC2 + C2) s

]
v′o (60)

Thus, since typically CC 2>>C2, R2CC 2s>>1 and
gmL>>CC 2s we get

Gm (s) = gm2
gmL − CC2s

CC2s
(61)

zL (s) = z′o//RL//
1
CLs
≈

1
gmL

//RL//
1
CLs

≈
1

gmL + CLs
(62)

Due to the impedance z′o at the output of Gm(s)
the load impedance is modified according to the equiv-
alent high-frequency model of NMC amplifier shown in
Fig. 3(b).

By using (58) to (62), being N1(0) = −gm2gmL , relation-
ship Nz1(s) is expressed by

Nz1 (s) =
N1 (s)
N1 (0)

= 1−
CC2
gmL

s−
CC1CC2
gm2gmL

s2 (63)

which is exactly the expression that is found in papers
[12]–[14] and textbooks [49], and applying the approximated
pole expression, being zAlim = 0 and DNGNP1(0) = gm2gmL ,
we get DNP1(s) as

DNP1 (s) =
DNGNP1 (s)
DNGNP1 (0)

= 1+ CC2
gmL − gm2
gm2gmL

s+ CC2
CL + C1

gm2gmL
s2 (64)

In this case application of the accurate relationship (41)
only adds the terms (CC 2C1/gm2CC 1)s and (CC 2C1/gm2gmL)
(CC 2/CC 1)s2 which are negligible. Moreover, neglecting C1
in the s2 term, which is typically much lower than CL , (64)
gives exactly the approximated denominator reported in
papers [12]–[14] and textbooks [51].

C. REVERSE NESTED MILLER COMPENSATION
When a three-stage amplifier is realized with an inverting first
and second stage and a non-inverting last stage, the NMC
cannot be applied and the RNMC is adopted (Fig. 2(c)),
formerly presented in [6] and analyzed with details in [15].
As compared to NMC, RNMC also shows inherent ben-
efits in terms of speed performance as demonstrated
in [64].

An RNMC amplifier diagram is fitted to the generalized
model type I, where

zA (s) =
1

CC1s
(65)

zL (s) = RL//
1
CLs
≈

1
CLs

(66)

and considering the generalized Gm(s) and zB(s) found
according to Fig. 4. In particular, the elements inside the
rectangular dashed box of Fig. 4(a) can be integrated to
an equivalent transconductor with input voltage v′i, output
voltage v′o, and an input impedance z′o. The voltage v′x of
the second stage output is related to v′i by

v′x =
[
1−

1+ gm2R2 + R2C2s
1+ R2 (CC2 + C2) s

]
v′i (67)

The output current i′o, can be expressed in terms of v′x and
v′i as

i′0 = −gmLv
′
x = gmL

[
1+ gm2R2 + R2C2s
1+ R2 (CC2 + C2) s

− 1
]
v′i (68)
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FIGURE 4. Structure of RNMC three-stage amplifier as model type I;
(b) equivalent high-frequency model.

Thus, by using the usual approximations (gmLR1, gmLR2>>1,
CC 2>>C2, gm2>>C2s, R2CC 2s>>1) we get

Gm (s) = gmL

[
1+ gm2R2 + R2C2s
1+ R2 (CC2 + C2) s

− 1
]

≈ gmL

(
gm2
CC2s

− 1
)

(69)

The ratio between v′i and i′i should be measured to
additionally evaluate z′i of the new transconductor. Applying
the current law at the second stage output, z′i is calculated as

z′i =
v′i
i′i
=

1
CC2s

[
1+ R2 (CC2 + C2) s
1+ gm2R2 + R2C2s

]
(70)

Fig. 4(b) illustrates the equivalent high-frequency circuit
schematic of the RNMC amplifier. The equivalent z′i
modifies zB(s) of the first stage to

zB (s) =
1

CC2s

[
1+ R2 (CC2 + C2) s
1+ gm2R2 + R2C2s

]
//R1//

1
C1s

≈
1

gm2 + C1s
(71)

From (65), (66), (69) and (71), Nz1(s) is again given
by (63), while application of relationship (41) and (24) yields

DNP1 (s)

= 1+
(
CC2CL
gmLCC2

+
CC2
gmL
−
CC2
gm2

)
s

+
CC2 (CL + C1)+ CLC1

CC2
CC1

gm2gmL
s2 (72)

Note that in this case a0 = 0 in (41), but this happens
for the approximation adopted in (65), (66), (69) and (71).
Neglecting the second-order addends in the s2 term of (72),
as suggested in [15], we find exactly the transfer function
reported in [15]. It is worth noting that if we apply the
approximated pole expression, where zAlim = 0, we lack the
two terms (CC 2C1/gm2CC 1)s and (C1CC 2/gm2gmLCC 1)s2,
where the former of the two cannot be considered negligible
as compared to the others in (72).

D. ACTIVE-FEEDBACK FREQUENCY COMPENSATION
Fig. 2(d) illustrates the architecture of the named three-stage
AFFC amplifier [16]. It implements an active feedback net-
work from the third stage output through the transconductor
gmC , and the capacitor CC 1 to the second stage input (i.e.,
a NMC with a current buffer in the external loop). Again
capacitorCC 2 adjusts the quality of the complex poles similar
to NMC and RNMC amplifiers. Moreover, it also includes an
additional feedforward gmf stage, which shunts to the main
signal pathway comprised from gm2 and gmL , extending the
bandwidth for gmf >> gm2 [39].
The AFFC block diagram is similar to that of model type

II for GmC = gmC and Gmi = gmi, and the combination of
the second and the third stages can be analyzed similarly to
the approach used for the NMC amplifier in sub section 3.2.
The result is, hence, an equivalentGm(s) between the first and
third stage outputs reported in (61), but including gmf :

Gm (s) ≈
gm2gmL − gm2CC2s

CC2s
+ gmf (73)

and the load impedance given by (62).
Fig. 5 reports the block scheme of the high-frequency

AFFC amplifier as a model type II. In addition to Gm(s) and
zL(s), it includes the zA(s) and zB(s) given by (58) and (59),
respectively. Of course, the DC gain and dominant pole are
evaluated from (35) and (37), and again the dominant pole
can be simplified with (52).

Beginning from (15), and since N2(0) = gm2gmLgmC , the
zero expressions Nz2(s) is given by

Nz2 (s)=
N2 (s)
N2 (0)

=

[
1−

(
gm2 − gmf

)
CC2

gm2gmL
s

](
1+

CC1
gmC

s
)
(74)

From (41) and (33) (noting that in (41) a0 = 0) we get

DNP2 (s)

=
DNGNP2 (s)
DNGNP2 (0)

= 1+
[

1
gmL

(
gmf
gm2
− 1

)
+

1
gm2

C1

CC1

]
CC2s

+

[
1
gmL

(
1+

CL
CC1

)
+

1
gmC

]
C1CC2
gm2

s2

+
C1CC2CL
gm2gmLgmC

s3 (75)

If the approximated expression (44) is used, where zAlim =
0 and DNGNP1(0) = gm2gmLgmC , we lose in the s term the
negligible addend with C1/CC 2, but also the term with the
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FIGURE 5. Block scheme of the three-stage AFFC amplifier as model
type II.

ratio CL /CC 1 in the s2 term. It is worth noting that neglecting
in the s term of the denominator the contribute with C1/CC 2
we find that the first non-dominant pole is almost perfectly
cancelled by the first zero in (74). Thus (74) and (75) reduce
to the relationship reported in the original paper [16].

E. SINGLE MILLER CAPACITOR COMPENSATION
Amore recent compensation techniques with respect to NMC
and RNMC is based on the use of only a single Miller
capacitor [26], [27], [29]–[32], [34]–[36], [39]. Since the first
paper dates back twenty years ago [11] and another one five
years later [22], investigation and application of this kind
of strategy is increasing, especially for multistage amplifiers
having high capacitive loads, such as [32], [34]–[36] and [39].

Among the various single Miller topologies with only
passive components on the compensation loop, one of
the most popular topologies named Impedance Adapting
Compensation (IAC) [29] is considered in the following. The
topology reported in Fig. 2(e) adopts a series R-C network
(RD and CD) added to the second stage output, to further split
the non-dominant real poles.

In order to evaluate the voltage-gain transfer function, the
following model parameters have to be used

zA (s) =
1

CC1s
(76)

zB (s) = R1//
1
C1s
≈

1
C1s

(77)

zL (s) = RL//
1
CLs
≈

1
CLs

(78)

For CD >> C2, R2 >> RD, and R2CDs >> 1, the
equivalent Gm(s) is expressed as

Gm (s) = gm2gmL

[
R2//

1
C2s

//

(
RD +

1
CDs

)]
≈ gm2gmL

(
1+ RDCDs

CDs

)
(79)

The expressions zB(0) = R1 and zL(0) = RL should be used
when evaluating the dominant pole and the DC gain from (35)
and (37). The zeros are given by the polynomial

Nz1 (s) =
N1 (s)
N1 (0)

≈ 1+ RDCDs−
CDCC
gm2gmL

s2 (80)

and from the approximated pole expression, being zAlim =
0 and DNGNP1(0) = gm2gmL , we get

DNP1 (s) ≈ 1+ RDCDs+
CD (CL + C1)

gm2gmL
s2 (81)

Note that the precise relationship (41) has onemore negligible
term (CDCLC1/gm2gmLCC )s2. The resulting transfer function
is the same of that reported in [29], even if the order
of the numerator and denominator is reduced due to the
approximation adopted on Gm(s) according to (79).

F. CROSS FEEDFORWARD CASCODE COMPENSATION
Among the amplifier with single Miller compensation the
first specifically devoted to high capacitive load was the
topology named cross feedforward cascode compensation
(CFCC) [31]. A single compensation capacitor with a
current buffer realizes an active feedback network to enable
driving the ultra-large load capacitors, according to the
CFCC diagram in Fig. 2(f). The amplifier also contains two
feedforward stages gmf 1 and gmf 2, which improve the large-
and small-signal operation [36].

As shown in Fig. 6, we simplify the analysis by transferring
the input of gmf 1 from the first stage to the second stage
input. Thus, the equivalent transconductor, denoting Av1(s)=
gmi(R1//(1/C1s)) as the gain of the first stage, is gmf 1/Av1.
The CFCC architecture matches with the type III model

(GmC = gmC and Gmi = gmi), with the corresponding zA(s),
zB(s) and zL(s) are again given by (76), (77) and (78),
respectively.

The new transconductor gmf 1/Av1, is now shunted to gm2
resulting to an effective transconductance of gm2 + gmf 1/Av1.
Hence, Gm(s) is

Gm (s) =
(
gm2 +

gmf 1
Av1

)
gmL

(
R2//

1
C2s

)
+ gmf 2

≈ gm2gmL
R2

1+ R2C2s
(82)

Being N3(0) = 2gmC , Nz3(s) yields

Nz3 (s) =
N3 (s)
N3 (0)

= 1+
CC
2gmC

s (83)

and from (41) with (33) we get

DNP3 (s) = 1+
C1

(
1+ CL

CC

)
gm2gmLR2

s

+

C1C2

(
1+ CL

CC

)
gm2gmL

+
C1CL

gm2gmLgmCR2

 s2
+

C1C2CL
gm2gmLgmC

s3 (84)

Relationship (83) and (84) gives zeros and non-dominant
poles also reported in [31], even if the results are more
accurate since in the original manuscript additional approx-
imations are done from the assumption that CL is much
higher than CC . It is worth noting that, in this case in
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TABLE 2. Summary of the model type and model parameters of the amplifiers considered in Section III.

FIGURE 6. Equivalent block diagram of CFCC amplifier as model type III.

which the compensation loop has an active component,
the approximated pole expression may be not sufficiently
accurate since it lacks the two terms (CLC1/gm2gmLR2CC )s
and (CLC1C2/gm2gmLCC )s2.

IV. COMPARISON AND REMARK ON THE ANALYZED
MODELS
Table 2 summarizes the model parameters of the compen-
sation schemes analyzed in Section III. By inspection of
Table 2, it is apparent that, regardless of the amplifier model,
the main difference between different schemes is from the
perspective of Gm(s). It affects the entire features of the
amplifier with frequency compensation and results in many
advantages and disadvantages in terms of power and area.
Of course, the type of the model is another factor that impacts
considerably the operation of an amplifier.

Moreover, from Table 2, it is evident that NMC and AFFC,
and IAC and CFCC have similar model parameters. The
differences of the amplifier models, however, enhance the
operation of the AFFC and CFCC topologies over their
counterparts. Indeed, for identical model parameters, both
models type II and III employ a series GmC with zA(s),
a property that leads to superior operation as compared
to model type I, for identical parameters. This can be
demonstrated by investigating the pole expressions of the
three models.

In particular, looking into (24), among the four terms
appearing in DP1(s) the factor nGmdzAnzBnzL is typically the
term with the lowest order, as it contains three nominators
that are mostly constant (see Table 2). And considering this
condition, we can factorize the terms in (24) that can be
rearranged as

DP1 (s) = nGmdzAnzBnzL

[
1+

1
Gm (s) zB (s)(

1+
zA (s)+ zB (s)

zL (s)

)]
(85)

For the same reason, the order of GmCnGmdzAnzBnzL term
is mostly the lowest in the DP2,3(s) of models type II and III.
Thus, factorizing this term in (33), yields

DP2,3 (s) = GmCnGmdzAnzBnzL

[
1+

1
Gm (s) zB (s)(

1+
zA (s)+1

/
GmC

zL (s)

)]
(86)

Since typically zB(s)>>1/GmC , the models type II and III
generate larger nondominant poles for identical CL (i.e.,
zL(s)) andCC (i.e., zA(s)), zB(s) andGm(s) of the model type I.
The pole expressions in (85) and (86) also suggest the

following design rules for improving the performance when
the load and compensation capacitors are known a priori
(unchanged zL(s) and zA(s), respectively):
1. The impedance zB(s), of the first stage should be

increased to reduce the second term of the standard pole
expressions, thereby pushing the nondominant poles to
higher frequencies (this can be accomplished by trying
to further reduce the parasitic output capacitor C1 of the
first stage).

2. The second term inside the brackets in (83) and (84)
can be suppressed by further enlarging Gm(s). This
can be made possible by increasing Gm(0), and by
pushing further the nondominant poles of Gm(s) to
higher frequencies.
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FIGURE 7. Flowchart to apply the proposed methodology.

For all the models proposed in Fig. 1, the zeros of zL(s)
will be also the same zeros of the transfer function. Such
zeros are, indeed, very common in low-dropout regulators
(LDOs) [64]–[66]. The zeros of the models type I and II
may depend on Gm(s), contrary to model type III which does
not contain a zero related to Gm(s). An advantage of model
type II is its potential to generate a LHP zero at frequencies
lower than that of model type III, which can be concluded by
comparing the zero expressions appeared for these models
in (15) and (21). More LHP zeros might be generated by
model type II via Gm(s) and zB(s).

V. CONCLUSION
A simple methodology to quickly carry out a closed-form
expression for the symbolic transfer function of multistage
amplifiers with frequency compensation is proposed.

The method can be applied to any amplifier that can
be modelled through the general models reported in Fig.1,
which, to the best of the authors’ knowledge, unless for
the old and not used case where a voltage buffer is
used [7], allows to represent all the different solution reported
in the literature so far. Anyway, it can also be simply
extended to other novel and original topologies that cannot
be represented by the model in Fig. 1, by simply following
the procedure described in Section II for the three type
models.

While simplifying the fundamental task of symbolic anal-
ysis of an amplifier, the methodology gives an insightful view
into the operation of the applied frequency compensation
network, offering design rules for improving the performance
when the load and compensation capacitors are known a
priori. The proposed method is validated through the analysis
of a number of the widely adopted amplifiers found in the

literature and it is shown that, in all cases, the same transfer
function reported in the original paper is obtained.

To sum up, the main advantages of the proposed
methodology are as follows:

1. It happens frequently that, after writing several pages of
the small-signal equations for a multistage amplifier, the
designer gets confused by the theoretical complications
and is forced to get back and check the results again.
The same problem led to different forms of transfer
functions with inaccurate results in the literature, some
of which happen to be even incorrect. With the proposed
systematic solution, the designer will not deal with
the lengthy and complex small-signal equations of the
amplifier. They should only specify the amplifier’s
model and find the elements before using the proposed
symbolic transfer function. This is equivalent to breaking
a difficult problem into several simple and easy steps.

With the aim of providing the reader with a guideline to
apply the proposed methodology, Fig. 7 show a flowchart
that summarizes the steps to follow in order to carry out the
transfer function.

Modeling the transfer function of several amplifiers in
the form of a single symbolic equation paves the way to
compare their properties easily. Some results can be found
in Section IV where the terms inside the symbolic transfer
functions are compared.
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