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ABSTRACT A vast majority of the Internet of Things (IoT) devices will be connected in a topology where
the edge-devices push data to a local gateway, which forwards the data to a cloud for further processing.
In sizeable outdoor deployment regions, the edge-devices may experience poor connectivity due to their
distant locations and limited transmission power. Repeaters or relays must be placed at a few locations to
ensure reliable connectivity to either a gateway or another node in the network. A big challenge in achieving
reliable connectivity and coverage is the outdoor propagation environment being heterogeneous. Engineers
often deploy networks based on resource-intensive field visits, detailed surveys, measurements, initial test
deployments, followed by fine-tuning. For scalability to large scale IoT deployments, automated network
planning tools are essential. Such tools should predict connectivity based on the edge-device locations
using available Geographical Information System (GIS) data, identify the need for relays/repeaters, and,
if needed, suggest the number of relays needed with their locations. Furthermore, such tools should also
be extended to suggest the minimum number and locations of base stations that maximise coverage. In this
paper, we propose an automated network deployment framework using a black box received signal strength
estimation oracle that provides signal strength estimates between candidate pairs of transceiver locations in a
heterogeneous deployment region. Our proposed methodology uses either Ant Colony Optimisation (ACO)
or Differential Evolution (DE) to identify the number and locations of relays for meeting specified quality
of service constraints. We discuss adaptations of our techniques to handle scenarios with multiple gateways.
Further, we show the effectiveness of these algorithms to find suitable candidate base station locations to
provide coverage in a heterogeneous propagation environment that meets the specified quality of service
constraints. We then demonstrate the effectiveness of our algorithms in two deployment regions.

INDEX TERMS Coverage, GIS, heterogeneous propagation environment, Internet of Things, IoT, RF prop-
agation tool, RSSI, sub giga hertz, sub-GHz.

I. INTRODUCTION

Enabling automation in outdoor Internet of Things (IoT)
network deployment is crucial for the expansion of IoT sys-
tems at the currently projected scales. Traditional network
deployment strategies involved time- and engineering-
resource consuming field surveys for estimating network cov-
erage in the deployment region. Instead, if we could predict
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coverage in the region, based on prior knowledge of the
terrain, we can save not only valuable engineering resources
but also enable rapid deployment. In this paper, we highlight
many interesting problems and solutions in creating work-
flows for automating network deployment.

Given a collection of data sources, i.e., edge-devices with
data to push into the IoT network, and a destination node
(a gateway to a cloud computing and storage platform), all
of which are located on a Geographical Information System
(GIS), the connectivity problem is to identify suitable relay
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locations that can help transport data from the IoT edge-
devices to the gateway by meeting certain specified Quality
of Service (QoS) constraints.

We divide this problem into two subproblems.

o In the first subproblem, we predict the link quality
between an arbitrary pair of points that comprise a poten-
tial transmitter-receiver pair. A solution to this subprob-
lem is typically difficult because outdoor environments
are often heterogeneous: carrier pathways traverse dif-
ferent propagation environments having different path
loss exponents, shadowing parameters, fading parame-
ters, etc., and this renders their estimation difficult.

o In the second subproblem, we deploy the network for
either connectivity, as described above, or coverage,
as we shall see later in the paper. Connectivity or cov-
erage involves the determination of a suitable number
of relays or base stations, their locations, their transmit
powers, etc., for meeting specified QoS requirements.

One approach to solve the first problem was presented in
Rathod and Sundaresan [2], [3] which provided a coverage
estimation tool that could handle heterogeneity in the propa-
gation environments. Rathod and Sundaresan [2], [3] reported
extensive measurements in example environments and pro-
posed a ’library’ of propagation models. They then processed
the GIS data for the deployment region and partitioned it into
subregions of locally homogeneous propagation conditions.
Next, they mapped each of these to one of the propagation
models in the library. They then used a composite signal prop-
agation model to predict the received signal strength indi-
cation (RSSI) between any pair of potential transmitter and
receiver locations. The coverage estimation tool of [2], [3]
has sufficient flexibility to be used as a black-box or an oracle
to predict the RSSI between an arbitrary pair of points located
in the deployment region.

In this paper, we focus on the second subproblem, which
includes network deployment for connectivity and network
deployment for coverage. Our contributions are as follows.

o We first formulate and address the problem of relay
placement for connectivity. Formally, given a set of IoT
edge-device locations, a gateway location, and a mini-
mum RSSI threshold R, the connectivity problem is the
following:

Find the minimum number of relays and their locations
so that there is a (spanning) tree with all links having
RSSI at least R.

The above relay placement problem, to meet QoS
requirements, is likely to be computationally hard
because it is a version of the computationally hard
Steiner tree problem [4]. Furthermore, as we shall soon
see, the geometric structure is complex because the link
cost between an arbitrary pair of nodes depends on the
link quality for wireless transmission in the associated
heterogeneous environment. In particular, the geomet-
ric structure is more complicated than the well-studied
Euclidean case.
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« We propose two biology-inspired heuristics to solve this
connectivity problem in the single gateway setting: the
Ant Colony Optimisation (ACO) algorithm and the Dif-
ferential Evolution (DE) genetic algorithm. However,
both algorithms do not directly apply to our settings and
require adaption to handle our objective.

« The above development is for a single gateway. We next
consider a variation with multiple gateways. The mod-
ified objective of the network deployment problem for
connectivity with multiple gateways is to make each
IoT edge-device connect to any one of the gateways
using the minimum number of relays, suitably located,
so that the resulting ““forest’” has RSSI at least R on each
link. Again we adapt the ACO and the DE algorithms to
handle the modified objective.

o We then study the problem of network deployment
for providing coverage in a heterogeneous environ-
ment with the minimum number of additional nodes,
which we now call base stations instead of relays.
We demonstrate the suitability of the DE algorithm for
this problem.

« We explain our ideas, algorithms, and results by run-
ning them for the Indian Institute of Science campus
(IISc campus). We study both connectivity and cover-
age. One reason for using the IISc campus is that, despite
its relatively small size (roughly 2km-by-2km), it offers
diverse propagation environments that are representative
of a big city. Additionally, we explore coverage for
Kakinada, the sixth-largest city in the Indian state of
Andhra Pradesh.

The rest of the paper is organised as follows. In Section II,
we provide a brief overview of the existing literature and the
off-the-shelf commercial solutions. In Section III we intro-
duce the relay placement problem, describe the Ant Colony
Optimisation (ACO) algorithm, explain how ACO is adapted
to find acceptable solutions to the NP-hard Steiner tree prob-
lem [4]. We also show some example outcomes. We then turn
to the relay placement problem in a heterogeneous region
with one gateway, and show how ACO can be adapted to
solve it. We end the section by showing the outcomes of our
adapted ACO algorithm for the IISc campus. In Section IV,
we deal with the Differential Evolution (DE) algorithm and
follow the same sequence of developments as in Section III.
In Section VI, we extend the algorithms to address the
relay placement problem with multiple gateways. We first
use the ACO and DE algorithms following a local divide-
and-conquer strategy. We then explain shortcomings of the
local approach, then propose two algorithms to overcome the
shortcomings, and compare them with each other. In the next
Section VII, we introduce the coverage problem, highlight the
effectiveness of the Differential Evolution (DE) algorithm in
solving the coverage problem and showcase the outcomes of
the DE algorithm. We end the paper with some concluding
remarks. Unlike prior relay placement works (e.g., [5], [6]),
the main feature of this work is the ability to handle het-
erogeneous environments in conjunction with the coverage

13271



IEEE Access

N. Rathod, R. Sundaresan: Relay Placement Algorithms for IoT Connectivity and Coverage

tool of [3]. State-of-the-art results of [7], which are more
applicable to problems arising from homogeneous propaga-
tion environments, are therefore not directly applicable to our
setting of the heterogeneous propagation environment.

Il. RELATED WORKS
Algorithms for relay placement is an active area of research
in computer networks, Internet of Things, and wireless com-
munications. Prior works tackled this multi-faceted problem
to meet specific QoS requirements in different ways, which
we now highlight. Nikolov et al. [8] jointly optimised the
relay locations and the resulting traffic through the network
in order to minimise the number of packet retransmis-
sions. Perez et al. [9] proposed a hybrid evolutionary algo-
rithm for the simultaneous optimisation of the number of
relays and the energy dissipation in wireless sensor net-
works. Efrat et al. [10] showed that the one-tier version of
relay placement problem does not have any polynomial-
time approximation scheme (PTAS), given P # NP.
They then presented a 3.11—approximation algorithm for
the one-tier version and a PTAS for the two-tier version.
Minelli et al. [11] addressed the problem of placing relays
in a cellular network setting with the goal of maximising
the cell capacity. Here, they used a dedicated Simulated
Annealing (SA) algorithm to search for an optimal solution.
Li et al. [12] introduced the notion of ‘balanced data paths’ to
the sink to extend the lifetime of the sensor network using a
Voronoi-based placement algorithm. Lin et al. [13] translated
the joint problem of relay placement and bandwidth alloca-
tion to an integer linear program and solved it using IBM’s
CPLEX tool. Al-Turjman et al. [14] studied the relay place-
ment problem in a federated setting to connect disjointed
sectors while maintaining cost constraints. Lately, algorithms
like the Jarvis March approach [15], moth flame optimiser
algorithm, interior search algorithm, and bat algorithm [16]
have also been used to solve the relay placement problem. All
of these works involve Euclidean costs and do not handle the
complexity arising from a heterogeneous propagation envi-
ronment. Thus, the distinguishing feature of this paper is our
handling of heterogeneity in the propagation environment.
The network coverage problem has also been actively
researched in the wireless sensor network context.
Howard et al. [17] tackled the problem of deploying a mobile
sensor network in an unknown environment. The proposed
to place the base stations in such a way that each node is
repelled by both obstacles and by the other nodes, so that the
base stations are spread throughout the environment for better
coverage. Moysen et al. [18] provided a data-driven machine
learning (ML) framework to find the best locations of
base stations for a microcell deployment. Quintao et al. [19]
proposed evolutionary algorithms to solve the Dynamic Cov-
erage Problem (DCP). Mahboubi et al. [20] used a multi-
plicative weighted Voronoi diagram to discover coverage
holes and moved sensors to minimise the uncovered or vacant
regions in the target field. Cardei and Wu [21] provided a
survey of the field of energy-efficient coverage problems
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in the context of static wireless sensor networks. They pre-
sented coverage formulations, their assumptions, and pro-
vided an overview of some proposed solutions. Recently,
Tossa et al. [22] used a heuristic genetic algorithm to cover
a two-dimensional Euclidean area with a given number of
sensors and thus found suitable placements for good network
coverage. Again, we need to go a little further than these
works to handle heterogeneous propagation environments,
which we do in this paper.

Heterogeneous networks (HetNets), different from het-
erogeneous propagation conditions, have also been studied.
Shin and Zain [23] maximised cellular coverage probabil-
ity in a heterogeneous network by placing pico cell towers
where the coverage is poor. Gazda et al. [24] used novel
models for pedestrian and vehicular UE and employed a
self-learning algorithm for optimisation of HetNet deploy-
ment using self-organising maps (SOMs). Li et al. [25]
used Gibbs sampling based optimisation for the deploy-
ment of small cells in 3G Heterogeneous Networks. Again,
we need to go a little further than these works to handle
heterogeneous propagation environments, which we do in
this paper.

There exist many network planning tools, both open source
and commercial, that aim to make the process of network
deployment efficient. See for example Gotz [26], Teoco RAN
Solutions [27], Intermap [28] and Wireless Insite [29], [30].
The problem that these tools are trying to solve is dif-
ferent from those articulated in our problem above. These
tools try to predict the link quality or coverage area for
a given transmitter location based on a variety of models
such as the Longley-Rice model [31]-[33], the Edwards-
Durkin model [34], [35], the Okumura model [36], the Hata
model [37], the COST-231 model [38], etc. Our work instead
tries to address the core problem of finding the relay and
base station locations in an automated way to meet cer-
tain QoS requirements. These QoS can be estimated via the
above-reported tools if the deployment area is homogeneous.
However, our outdoor IoT deployment region is in general
heterogeneous. To handle this heterogeneity, the aforemen-
tioned traditional models do not suffice, and we resort to
using the prediction methodology proposed in [3].

IIl. ANT COLONY OPTIMISATION FOR RELAY
PLACEMENT WITH SINGLE GATEWAY
Consider the following network deployment problem in a
given deployment region. We are given the GIS data for
the deployment region, the location of a single gateway,
and the locations of all the IoT edge-devices (which we
call transmitters). We must connect these transmitters to the
single gateway, either directly or through other transmitters
or through newly introduced relays, in such a way that every
link in the path to the gateway has received signal strength
indication (RSSI) of at least R.

Given any pair of nodes in the deployment region as input,
the RSSI computing algorithm in [3] acts like an oracle and
returns the average RSSI between the pair of nodes. If each
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transmitter has direct connectivity (RSSI exceeds R) or con-
nectivity via other transmitters to the gateway (RSSI exceeds
R in every link in the path), then no relay nodes are required,
and can consider the network deployed.

If even one node is unable to reach the gateway, we will

need relays. However, we must minimise the number of relays
because they involve extra hardware, increased maintenance,
and therefore higher cost. Identification of the minimum
number of relays for connectivity is then related to the well-
known Steiner tree problem. If the propagation environment
is homogeneous, then the problem reduces to the Euclidean
Steiner Tree Problem (Euclidean STP), which is defined as
follows:
STP: Given n points in the plane {x1, x2, ..., x,}, connect the
points by line segments of minimum total length in such a
way that any two points in the set may be connected either
directly by a line segment, or indirectly via line segments
through other points in the set, or via line segments passing
through other points in the set and other new points that may
be introduced for enabling the connectivity.

The resulting graph with the new points is a minimal span-
ning tree (after including the new points). It is well-known
that for a general n, STP is NP-hard [4]. Given this compu-
tational intractability, we next describe an ant colony optimi-
sation based meta-heuristic algorithm to find an acceptable
solution. We first introduce ACO, then describe its use in a
homogeneous propagation environment, and then discuss its
use in a heterogeneous propagation environment.

A. ANT COLONY OPTIMISATION (ACO)

In the natural world, ants often start their search for food by
wandering off, initially, in random directions. Upon finding
a food source, they return to their colony, leaving the trail
of a substance called “‘pheromone’. This attracts other ants
and encourages them to explore along the existing pheromone
trails rather than exploration at random. As more ants find
the food source, the pheromone trails to the food source get
reinforced.

Pheromone trails evaporate with time, and this decreases
the attractiveness of longer paths. Indeed, the more the time
taken by an ant to travel on a particular path and return,
the more the evaporation of pheromone on that path. On the
other hand, a shorter path has lesser evaporation initially,
is therefore discovered more easily and travelled more fre-
quently. This leads to greater pheromone accumulation and
a reinforcement of the shorter paths. Evaporation of the
pheromone is thus the key feature that enables the discovery
and reinforcement of shorter paths. Indeed, if the pheromone
evaporation did not take place, then ants may get locked to the
trail blazed by the first ant, thereby constraining the discovery
of alternate shorter and better paths to the food source.

Ant colony optimisation (ACO) algorithm is a meta-
heuristic algorithm inspired by this natural behaviour of ants.
ACO is known to produce acceptable solutions within a rea-
sonable time for some NP-hard problem instances, such as
the Travelling Salesman Problem. Further, due to its iterative
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nature, ACO can dynamically adapt to changes in the graph
structure. Due to these attractive properties, we choose ACO
to solve our problem. In the rest of this section, we describe
our adaptation of ACO to first solve the Euclidean STP
problem and then to solve the relay placement problem in a
heterogeneous environment.

B. ACO FOR THE EUCLIDEAN STEINER TREE PROBLEM
Readers familiar with the ACO for Euclidean TSP may skip
this subsection, which is provided only for completeness. The
ACO metaheuristic optimises a function of several variables.
It takes as input the variables, their ranges, and a method to
evaluate the function. The ACO also takes an initial guess as
an input. Further, it has a few algorithmic parameters such
as the number of ants, the maximum number of iterations,
the error tolerance values, etc. We keep them fixed to default
values in our experiments, and do not discuss their impact on
the output of the algorithm.

Our use of ACO is as follows. We first create a function
that assesses the benefit of one new relay node (k = 1) at
location (dy, d;y), as a function of this location. To evaluate
this function, we form a minimum spanning tree (MST) on
the graph with nodes (djx, diy) U {x1,x2,...,x,} and link
costs between a pair of points given by the Euclidean distance
between the two points. We then add the link costs of all
the links in this MST, and return it as the function value at
the point (djy, djy). ACO takes this function and a random
initial point, and tries to minimise it across (djy, d;y). After
executing its iterations, when either successive evaluations
were within the specified tolerance or the maximum num-
ber of iterations was reached, ACO will output a possibly
better location (d;,, di’y). We then restart the algorithm, but
this time with two (k = 2) new nodes placed at random.
We then continue to increase the number of extra nodes k
until we reach n — 2, a known upper limit on the extra nodes
for the Euclidean STP [39]. We then pick the best choice
of k, which is the choice that yields the lowest MST weight.
This approach may need multiple random restarts for each
k because the iterative algorithm may settle down at a local
minimum.

Fig. 1 shows ACO outcomes on Euclidean STP for trans-
mitters placed at the vertices of regular polygons. The n
transmitters were kept at vertices of different polygons. Case
numbers printed next to the solutions are referenced in the dis-
cussion. The choice of regular polygons allows us to validate
our implementation outcomes with those in the literature [39].

As shown in Fig. 1, in the triangle with all the angles
less than 120° (n = 3, case 1), the ACO algorithm solves
the STP with k = n — 2 = 1 Steiner node. Further, the
location of the Steiner node is at the centroid of the triangle,
which is intuitive. For a square (n = 4, case 3), a rectangle
(n = 4, case 4), a parallelogram (n = 4, case 5), and
a trapezoid (n = 4, case 6), the ACO output matches with
the best possible solution described in the literature [39].
For n = 4, case 6, not only does it stop at k = 2,
but it also gives the correct locations of the Steiner nodes.
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FIGURE 1. Solutions to Steiner tree problems for regular polygons.

For a pentagon (n =5, case 7), the solution was obtained
with k = 3. For Case 2, a triangle with one of the angles
larger than 120° (n = 3), the solution has a very interesting
interpretation: ACO outputs a Steiner node on the line con-
necting the triangle corners; this is marked as a red circle.
It means that the solution to STP is to connect three points
directly. There is no other better way to form the MST in this
case. Interestingly, we did not configure our algorithm to treat
the triangles in cases 1 and 2 differently based on the angles.
The ACO algorithm identified these correct solutions without
any special considerations. This highlights the robustness of
the algorithm for different configurations of n points. Note
that the objective function involves Euclidean distances with
exploitable properties such as the triangle inequality. In the
next subsection, we adapt this algorithm and highlight our
approach to solve the relay placement problem with arbitrary
pairwise link costs arising from propagation in a heteroge-
neous environment.

C. ACO FOR SOLVING THE RELAY PLACEMENT PROBLEM
IN A HETEROGENEOUS REGION

We now come to the use of ACO for relay placement in a
heterogeneous region. We use a fixed link cost function f that
maps a link RSSI to a link cost f (RSSI), i.e., if i, j are a pair of
nodes and RSSI(, j) is the received signal strength between
the transmitter-receiver pair located at i and j, respectively,
then the link cost wy; is given by w;; = f(RSSI(i, j)). We take

RSSI!—* — | ~0 .
FRSSh={ 1o «=0e7
— log(RSSI) a=1

with a suitable parameter « > 0 and with RSSI in linear
scale. We will soon discuss the choice of the parameter «.
The function f is the negative of the so-called generalised log-
arithm [40] with parameter ¢ > 0. Observe that f(RSSI) =
1 — RSSI for ¢ = 0 and f(RSSI) = —1og(RSSI) for o = 1.
We will shortly discuss our choice of f and «. For now
observe that it is a decreasing function of RSSI.

Note that RSSI(,j) now depends on the propagation
environments in which nodes i and j are located and on
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the different propagation environments traversed by a path
from i to j due to heterogeneity. We use the procedure of
Rathod et al. [3] as an oracle to provide us with the RSSI
between a given pair of nodes.

The problem can then be stated as follows:

Problem: Given a heterogeneous deployment region,
an RSSI threshold R, n transmitter locations {x1, x2, ..., X,},
and a gateway or aggregating location {y} in the heteroge-
neous region, find the minimum number of relays k and their
locations {d1, da, ..., di} so that each link e of the resulting
Minimum Spanning Tree on S = {y} U {x1,x2,...,x,} U
{di,d>, ..., d;}, with link costs coming from the function f
that takes link RSSIs to link costs, has RSSI > R on each link,
that is,

min RSSI@, j) > R, (1)
(i,)EE(MST(S))
i#i
where E(MST(S)) is the set of links of the graph MST(S),
a minimum cost spanning tree with the cost of each link (i, j)
being w;; = f(RSSI(, /).

If f(RSSI) = 1 — RSSI, obtained by setting « = 0, then
the MST(S) attempts to get a tree with the highest possible
RSSI-sum across the links in the tree. We then require that
this tree has RSSI at least R on every link.

Let us now discuss the choice of the o parameter defining
the function f. Observe that the following is a more ideal
objective:

max —min

T (G.)eET)
i

RSSIG, j) = R,

where the first maximum over 7 is across all trees, i.e.,
it suffices if there is some tree T, all of whose links have
RSSI at least R. But the number of trees is |V|!VI=2, where
V] = n + k 4+ 1 is the number of nodes in the graph,
by Cayley’s formula, and one needs to look at the tree with
the highest minimum RSSI among these superexponentially
large number of trees. If we can turn the max-min objective
over trees into a suitable min sum-cost objective over trees,
we can then apply Prim’s MST algorithm. This is exactly
what is enabled by choosing f with a large «. As @ — o0,
the min sum-cost tree approaches the max min-RSSI tree.
So our heuristic in (1) is to fix a large «, solve the min sum-
cost problem using Prim’s algorithm, and then demand the
additional condition that RSSI > R on every link of the MST.

We are now ready to apply the ACO algorithm. See Fig. 2
for a flow diagram of our approach. As already mentioned in
Section ITI-B, ACO is an iterative algorithm, and the iterative
step is highlighted in red in Fig. 2. The function indicated
“Cost(- - -)” constructs the Minimum Spanning Tree on {y}
U {x1,x2,...,x,} U {dy,d>,...,d;} in each iteration and
outputs the negative of the minimum RSSI (across links) on
the MST, i.e., the negative of the left-hand side of (1). ACO
tries to minimise this value (which is the same as maximising
the minimum RSSI). Only when the algorithm converges or
when the maximum number of iterations is reached do we
check whether each link has the minimum required RSSI R.
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FIGURE 2. Flow diagram of the ACO algorithm.

If all the links have at least this minimum RSSI threshold R,
then we accept the solution. If the minimum RSSI for the
Steiner tree with a given number of relays is not above R,
we increase the number of relays by one and start over.

We next chose several adversarial instances and conducted
stress-tests on our algorithms. We set the value of parameter
a = 0, i.e. MST(S) finds the tree with the highest possible
RSSI-sum across the links in the tree. We set R = —110 dBm.
As an example, in Fig. 3, we kept our transmitters and the
gateway at the four corners of the image, each marked as
“4”. Any one of the four locations may be taken as the single
gateway to which the other transmitters must connect. The
transmitters and gateway were kept so far apart that direct
communication between any pair was impossible. Then we
let our algorithm suggest the relay locations, after taking
heterogeneity of the propagation environment into account.
Fig. 3 shows two outcomes of the experiment. The suggested
relay locations are marked as red circles. In both outcomes,
the number of relays used for network connectivity is six,
with both outcomes meeting the minimum RSSI constraint.
The locations suggested by the two outcomes are different
due to the presence of several local minima (several relay
location configurations) for the relay placement problem’s
objective function with six relays.

IV. DIFFERENTIAL EVOLUTION FOR RELAY PLACEMENT
WITH A SINGLE GATEWAY

In this section, we discuss Differential Evolution (DE) which
is another biology-inspired heuristic. We then show how
it can be adapted to solve the relay placement problem in
Section III. DE is a stochastic, parallel, direct search global
optimisation method. It is robust and is often fast. DE tries to
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mimic the Darwinian theory of evolution based on the notion
of the ““survival of the fittest”.

A. DIFFERENTIAL EVOLUTION (DE)

DE is an iterative algorithm like ACO. The inputs to the
algorithm are similar to the inputs for the ACO algorithm:
an objective function and variables over which the objective
function is minimised, the variables’ ranges, a procedure to
evaluate the objective function for the given variable values.
DE has a few other algorithm parameters which are different
from ACO parameters, for example, the number of solu-
tions generated in each iteration (also known as population),
a mutation coefficient, a crossover probability, the maximum
number of iterations allowed, etc. As we did for the ACO
algorithm, we fix these algorithm parameters, and so do not
discuss their effects on the output of the algorithm.

The DE algorithm works as follows. In the very first iter-
ation, it generates a population of solutions for the given
problem as specified by the population parameter. It then
evaluates a “fitness” for each solution based on the objective
function value. In the next iteration, it evolves the current
population of solutions via crossovers among themselves, and
generates a new population of solutions. It then compares the
fitness of the new population against the fitness of the old
population. Any new individual with better fitness replaces
an old individual. All the other new individuals, whose fitness
are worse than those of the old individuals, are dropped from
the list; see the pseudo-code provided in Algorithm 1 for
details. Thus, a few ‘individuals’ in the older population get
replaced with new ‘individuals’ having better fitness, thereby
making the solution quality of the new population better than
that of the old population. This process is then repeated for a
certain number of generations while constantly monitoring
the solution quality across the population. The algorithm
terminates early if all the individuals converge to a common
solution.

As is evident from the description above, there is no gra-
dient computation for finding the next iterate. DE can thus
handle objective functions that are not necessarily continu-
ous or differentiable. Let us now see how to use DE in the
homogeneous propagation environment first before turning
to the heterogeneous propagation environment.

B. DE FOR THE EUCLIDEAN STEINER TREE PROBLEM
Returning to the Euclidean Steiner Tree problem, we first
generate a population for just one (k = 1) relay location
(dix, d;y). We then generate a minimum spanning tree (MST)
on nodes (dix, diy) U{x1, x2, . .., x,}. The link cost is taken as
the Euclidean distance between two points.

Next, we calculate the fitness of each candidate relay loca-
tion (djx, d;y) in the population. As before, we take the fitness
of the location to be the maximum of the link cost of the
generated MST. (This would be equivalent to the negative
of the minimum RSSI in the generated MST). The lower the
maximum link cost, the better the fitness. The objective of
the DE algorithm is to maximise the fitness of the population.
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FIGURE 3. Results of the ACO algorithm for a single gateway and three transmitters in a heterogeneous region.

When the fitness stabilises across the generations, we stop the
execution of the algorithm. We then increase the number of
relay location by one (k = 2) and rerun the DE algorithm.
We compare the result of k = 2 with k = 1. If the solution
improves for k = 2 then we continue the algorithm with
k = 3. This process continues till k = n — 2, the upper
limit of the number of extra nodes needed for solving the
Euclidean Steiner tree problem. If we do not get better results
by increasing the number of relays, then we retain the solution
with the previous value of k.

Reassuringly, all the solutions shown in Fig. 1 were also
achieved using DE.

C. DE FOR SOLVING THE RELAY PLACEMENT PROBLEM
IN A HETEROGENEOUS REGION

We now turn to our problem of relay placement in
heterogeneous propagation environments. We adapt the
aforementioned algorithm into one for a heterogeneous prop-
agation environment in exactly the same way as described in
Section III-C for the ACO solution framework. Again, we set
the RSSI between a pair of transmitter and receiver to be the
RSSI estimate put out by the algorithm in [3], which we view
as an oracle. Similar to the ACO algorithm, we set the value
of o« = 0 while applying the DE algorithm. While explaining
DE, we did not mention the exact steps to generate a new
population from the old population. There are many ways to
do this, namely, rand/1/bin, rand/2/bin, best/1/bin, best/2/bin,
rand-best/1/bin, etc. These different approaches are suited to
different problems. For our relay placement problem, we used
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the rand/1/bin scheme, which is explained in more detail in
the pseudo-code in Algorithm 1.

To stress-test our algorithm, as before, we placed the
transmitters and a single gateway at the corners of the map.
We then let DE find the best relay locations. Fig. 4 shows the
results of DE when we ran it independently. The two solu-
tions are quite different yet providing similar quality network
outcomes. Furthermore, the relay locations (red nodes) are
chosen to maximise the minimum RSSI of the links of the
network. DE was able to connect the transmitters with five
relays.

This completes the workflow description and scenario
outcomes for the connectivity of the given transmitters to
a single gateway or sink. In the next section, we pose the
problem with multiple gateways. We then show we can
use a modified algorithm to solve the multiple gateways
problem.

V. HETEROGENEITY VS HOMOGENEITY: A COMPARISON
WITH A BASELINE

We now demonstrate the need for handling heterogene-
ity in the propagation environment while building the net-
work. Using the field measurements that were collected by
us, which were reported [1], we build a channel model
assuming homogeneity, estimate parameters, and then sub-
sequently build a network using the proposed ACO and
DE algorithms, using the homogeneous propagation environ-
ment model. We then compare this resulting network with
the network obtained by our proposed methods assuming
heterogeneity.
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FIGURE 4. Results of the DE algorithm for a single gateway point and three transmitters in a heterogeneous region.

Fig. 5 shows the results obtained from running the ACO
and the DE algorithms assuming the best fit homogeneous
propagation model for the entire region. As before, the trans-
mitters are located at the four corners of both the maps. The
regression was done on the data from [1]. This gives us a
single path-loss model for the entire region, which we then
use for estimating the link quality or RSSI. In particular,
only distances matter. The ACO algorithm suggests placing
six relays to establish the connection between the transmit-
ters situated at the corners of the region. The DE algorithm
suggests placing seven relays to achieve connectivity. When
compared with the heterogeneous estimation, the number of
relays required by the ACO algorithm remains the same. But,
the DE algorithm with homogeneity suggests two additional
relays. Going a little further, Tables 1 and 2 highlight the dif-
ference between the RSSI estimation of the ‘Homogeneous’
and ‘Heterogeneous’ models. As evident from the tables, the
differences are substantial. The estimations from the ‘Homo-
geneous’ model, second columns of Tables 1 and 2, are over-
optimistic because of which both the algorithms, ACO and
DE, suggest relay locations that do not work in the actual
heterogeneous environments, third columns of Tables 1 and 2.
The link quality when heterogeneity is taken into account is
way below the RSSI threshold of —110 dBm, except in link
6 in both cases. This simulation experiment clearly shows
the importance of taking heterogeneity into account while
building the network.

VI. RELAY PLACEMENT PROBLEM WITH MULTIPLE
GATEWAYS IN A HETEROGENEOUS REGION

Often large-scale networks that cover large deployment areas
require multiple gateways. They enable connectivity over
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larger areas and help to distribute traffic across multiple gate-
ways. Despite the presence of multiple gateways, transmitter
nodes in large deployment areas (say city-wide deployment)
may still need relays to connect to the nearest gateway among
the multiple gateways available. In this section, we explain
a heuristic to solve the connectivity problem when there
are multiple gateways. We begin with a formal problem
description.

Problem: Given a heterogeneous region, an RSSI thresh-
old of R, n number of transmitter locations {x1, x>, ..., X},
m number of aggregating locations {y1, y2,...,Vn} in the
heterogeneous region, find the minimum number of relays
k and their locations {di, d3, ..., d} so that each link e of
the resulting constrained Minimum Weight Forest on S =
{vi.y2, .- s ¥ym} U {x1,x2, ..., x5} U {d1,d2,...,dr} has
RSSI > R. Further, the forest must cover all the transmitter
locations, every component of the forest must contain at least
one of the aggregators, and the RSSI condition can be written
as:

min RSSI(i,j) = R. )
(i./)EE(cMWF (S))
i
Here cMWF(S) is a minimum weight spanning forest that
meets the spanning constraint and the constraint that every
component of the forest contains at least one aggregator.

Remarks similar to those following equation (1) apply here
as well. One could have searched over all possible forests
meeting the minimum RSSI condition on each link. Since
the max-min computation (maximum over forests, minimum
over RSSIs on links, or the best forest with the highest
minimum RSSI across links) is a search over a superexpo-
nential number of possibilities, our heuristic in (2) similarly
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FIGURE 5. Results of the ACO algorithm (left) and the DE algorithm (right) for a single gateway point and three transmitters under the

homogeneous environment assumption.

settles for the minimum weight forest meeting the minimum
RSSI constraint, after applying the f transformation with a
suitable .

In the example deployments in Fig. 6 and Fig. 8, When we
used the same minimum required R as in the single gateway
setting (—110 dBm), we found that there was no need for
relays since direct links to gateways sufficed. In order to
illustrate our approach, we therefore raised the threshold to
R = —100 dBm. The example outcomes in Fig. 6 and Fig. 8
are for this more stringent RSSI requirement.

A. SOLUTION USING ACO FOR MULTIPLE GATEWAYS:
GREEDY APPROACH

Our heuristic is to follow a divide-and-conquer approach.
To ensure that the constraint is satisfied, we subdivide the
above-mentioned problem into smaller problems each of
which is similar to the problem solved in section III-C.
We then solve the smaller problems individually. The steps
are as follows. First, calculate the RSSI between each trans-
mitter and gateway. Associate each transmitter to the gateway
with which it has the largest RSSI even if it is <—100 dBm.
Create a cluster for each gateway by collecting all the trans-
mitters associated with it. By doing this, we divide the entire
network into smaller sub-networks corresponding to each
cluster having precisely one gateway. Moreover, the use of
the computed RSSI based on the propagation environment
ensures that the clustering takes both heterogeneity and geo-
graphical locations into account. We can now use the same
algorithm described in section III-C to find relay locations
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FIGURE 6. Network design for four gateways and multiple transmitters in
a heterogeneous region.

for each cluster. Fig. 6 shows the solution obtained using this
approach.

In Fig. 6, all the points marked with (4+) were actual
locations of an in-house IoT deployment for an intelli-
gent water distribution application that connected ground
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Algorithm 1: Differential Evolution (DE) Algorithm

k < 0; nj; < number of iteration;

p < population; m < mutation coefficient;
¢p < crossover probability, 0 < ¢, < 1;
Vpest < 0, minimum function value;

Ipest < 0, index of minimum function value;
DPrest <— J, best relay locations;

Repeat
fori < 1topdo
0 __ 0 0 0 3.
D} = Random{d; |, d;), ..., d;,};
S = {xl,xz,...,xn}UD?;

FO = min RSSI(p1, p2);
b (pr.p)eEMST(S)) (P1.p

end

end

(Viest» Ipesr) = min Fl'o;pbest =
D’ = (D, ..., DY);

for j < 1 to nj;- do

fori < 1topdo

P1#P2

#[F is negative of fitness];

0 .
DI best’

Htemp =p"! \{Di'_l};

a,b,c=rand € Hiepp;

diemp = a+mx* (b —c);

#[NOtCZ dtemp = (dtemp(l)» cees dtemp(k));]
D« o,

for [ < 1tokdo

biemp = Random(0, 1);

if beyp > cp then
‘ D), < DU djomp(1) #{replace];

else

‘ D« Di U D{fl(l) #[retain];

1
end

end
Sy = {x1,x2, ..., x,} UD
F, = min RSSI(p1, p2);
M (1, pa)eE(MST(S,)) P1.p
) P1#P2
if Fromp < F‘f_l then
‘ D§=D§§F{=Ftemp;
else
| pi=p[ L =F,
end

end ‘
(Vbest’ Ibest) = minF{;pbes, = D]I ;

best

if Vpessr > R then

print “Solution Reached”;
Output < Ppes;
break;

else
k<~—k+1;
end

end
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Data: A set of n transmitters T = {x1, x2, ..., x,} Where
each x;, 1| <i < nrepresents a transmitter
location in the deployment region and RSSI
Threshold R.

Result: A set of k relays D = {dy, da, ..., dr} where

each d;, 1 <i < k represents a relay location in
the deployment region.

TABLE 1. Link quality estimation difference between heterogeneous and
homogeneous environment: ACO algorithm.

RSSI RSSI
Link  Homogeneous  Heterogeneous
No (dBm) (dBm)
1 -105.8014 -121.6824
2 -108.3341 -117.6230
3 -108.3521 -118.7415
4 -108.0741 -134.6670
5 -108.2856 -124.2164
6 -108.3412 -99.4867
7 -108.3440 -137.8975
8 -108.3522 -146.0792
9 -108.3478 -134.4170

TABLE 2. Link quality estimation difference between heterogeneous and
homogeneous environment: DE algorithm.

RSSI RSSI
Link  Homogeneous  Heterogeneous
No. (dBm) (dBm)
1 -107.4510 -122.6603
2 -106.9426 -114.4766
3 -107.5933 -126.8801
4 -102.5357 -132.6543
5 -109.2834 -109.5772
6 -109.0543 -110.2381
7 -108.1727 -113.6653
8 -104.5568 -127.1674
9 -110.3977 -152.1958
10 -110.0066 -115.9396

level reservoirs, overhead tanks, and flow meters [41].
Gateway locations are marked with the triangle symbol.
The relays are identified by the ACO algorithm by first
dividing the multiple-gateway relay-placement problem into
four single-gateway subproblems, and then each of the
smaller problems using the previously outlined solutions. Our
multiple-gateway algorithm suggested the use of nine relays.
Their locations are marked with the red circles in Fig. 6.
Observe that we have much more efficient and localised
networks. Fig. 7 zooms into the cluster on the north side
of the IISc Campus. This subproblem has solution with
three relays which are shown by the red dots in the figure
(nodes 9, 10, 11). As Table 3 shows, all links are above the
minimum RSSI threshold R of -100 dBm. Note that one
should not compare this solution with the solutions of Fig. 3
or 4 which are for a different set of transmitter and gateway
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Algorithm 2: Algorithm for Generating Subnetworks
Based on RSSI Matrix

Initialisation;

Ste < {x1,x2, ..., X,};

Ssnk < {1, Y25 -+ -5 Ym)s

DTx,Snk <~ 0
fori < 1tondo
D <~ @;
for j < 1tomdo
| D' =D URSSI{x;, yj};
end
DTx,Snk = DTx,Snk ) D/;
end
Gsubnetworks <— ?;
fori < 1tomdo
G./S'ubnerwork <~ @;
forj < 1tondo
if min D7y—j suk=vi = D71x=j snk—=i then
/ / .
‘ GSubnetwork = GSuhnetwork U] ’
end

~ A y )
Gsubnetworks = GSubnetworks Y GSubnetwork’
end

OUtPUt: Gsubnetworkss

FIGURE 7. The network design for North side of the 1ISc campus using
ACO.

locations, and more importantly, for a lower RSSI require-
ment of R = —110 dBm.

B. SOLUTION USING DE FOR MULTIPLE GATEWAYS:
GREEDY APPROACH

We now apply the same divide-and-conquer approach of
Section VI-A, and solve the subproblems using the DE algo-
rithm. Fig. 8 shows the simulation outcomes. The number
of relays needed using both ACO and DE are nine, but the
identified locations are different. Fig. 9 zooms into the cluster
on the North-side of the IISc Campus. This subproblem also

13280
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FIGURE 8. Network design for four gateways and multiple transmitters in
a heterogeneous region, using the DE algorithm.

FIGURE 9. The network design for the North side of the 11Sc campus,
using the DE algorithm.

requires three relay nodes for local connectivity. Table 4
shows the observed RSSI between each transmitter-receiver
pair. Notice that all the links in both deployments have RSSI
greater than RSSI threshold R of —100 dBm. The link RSSIs
are however a little more balanced than in Table 4 suggesting
that, in this case, the DE solution may be preferable to the
ACO solution.

C. DISCUSSION

The algorithms described in subsections VI-A and VI-B start
with a certain way of dividing the larger problem into smaller
problems, and might lead to sub-optimal solutions. One
hypothetical situation is shown in Fig. 10 where our earlier
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TABLE 3. Network connectivity for ACO.

RSSI
NodeId Nodeld Heterogeneous

(Tx) (Rx) (dBm)

1 8 -99.1163

1 11 -95.7368

2 10 -85.7739

3 9 -74.9758

3 10 -85.8552

3 11 -87.83436

4 5 -69.9692

5 9 -88.9698

6 11 -80.6244

7 8 -77.2838

TABLE 4. Network connectivity for DE.
RSSI RSSI
NodeId Nodeld Heterogeneous

(Tx) (Rx) (dBm)

1 11 -85.80281

2 10 -85.3519

3 9 -87.5490

4 9 -81.2334

5 4 -71.8457

8 11 -88.5876

10 3 -89.2899

10 6 -87.2158

11 6 -88.8446

11 7 -86.2015

Gateway 1
Optimal Iin[(_,.

Gateway 2 Sub-optimal link

FIGURE 10. A hypothetical scenario leading to a sub-optimal solution
when the divide-and-conquer approach is used.

proposed divide-and-conquer approach would associate the
red transmitter (+) to the red gateway 2 and the green trans-
mitters to the green gateway 1. However, a better solution in
this situation is to connect all the transmitters (+) to the green
gateway 1 and to let the red gateway 2 operate by itself. Our
proposed divide-and-conquer procedure is a local approach
to identify the smaller single-gateway sub-problems whereas
the objective in equation (2) requires global considerations.
In the next subsections, we discuss two remedies.

D. MODIFICATION BY RESHUFFLING
In this section, we propose an improvement over the basic
divide-and-conquer technique of Sections VI-A and VI-B
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and address the sub-optimal scenario highlighted in
Section VI-C. This algorithm introduces additional steps
after the generation of individual sub-networks. Once the
sub-networks are generated along with the relay locations,
the algorithm does the following for each non-sink node:
identify the nearest neighbour, NN 1, from the current sub-
network and the nearest neighbour, NN2, from the full net-
work. If NN1 = NN2, do nothing and move to the next
node. If NN1 # NN2, assign the current node to the sub-
network containing NN2. We call this step a ‘reshuffling’
step. One thing to note here is that we never reassign the
sinks (gateways) using this reshuffling step. Reassigning a
sink to another network results in one sub-network with two
sinks and another with no sink. Every reshuffling results
in a change to two subnetworks (a subnetwork that loses
a node and a subnetwork that gains a node). The single-
sink algorithm is then re-run on the two subnetworks before
proceeding with the next node. The algorithm stops when
there are no nodes to be shuffled or when we reach a repeated
configuration.

E. MODIFICATION BY ELIMINATION FROM MINIMUM
SPANNING TREE

In this section, we propose an alternative algorithm to par-
tition the network into a collection of sub-networks. In the
first step, the algorithm generates a minimum spanning tree
consisting of all the transmitters and all the sinks. To identify
the sub-networks, we remove certain links as per the follow-
ing steps. First, for each pair of sinks, we find the path that
connects them. From the union of these paths, we pick the
link with the lowest RSSI and remove it. As a consequence
the number of sub-networks increases by one, and one pair
of sinks is separated. We then repeat the procedure in each
sub-network that has two or more sinks. This procedure is
guaranteed to stop after a removal of N — 1 links where N
is the number of sinks. Further, this procedure will end with
precisely one sink per sub-network. The single sink solution
methodology is then applied on each of the sub-networks.

F. A COMPARISON OF THE MODIFICATIONS

In this subsection, we explain the results obtained by employ-
ing the algorithms explained in Section VI-D and VI-E. The
results can be seen through the lens of many metrics such
as the RSSI of the weakest link in all the sub-networks,
the average number of hops to reach a sink, the average
number of transmitter nodes per sink, etc. The outcomes of
the algorithms are shown in Fig. 11 to 16.

In the first set of figures, Fig. 11 and 14, the result obtained
from both the algorithms are the same. Even though both the
algorithms started with a different initial state, they converged
to the same solution.

In the next set of figures, Fig. 12 and 15, the results
obtained from both the algorithms are quite different. Here,
the sub-networks obtained using the ‘reshuffling’ algorithm
are well segregated (better distribution of transmitter nodes
to sinks) and with a lower average number of hops to reach
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Algorithm 3: Reshuffling Based Approach
Initialisation;
STX <~ {xla -x25 ... 7-x}’l};
Ssnk < {1, ¥2, -, Ym)s

D7y snk < 9
fori < 1tondo

D <~ @;

for j < 1 tomdo

| D' =D URSSI{x;, yj};

end

Dy sk = D1, suk UD';
end

Gsubneworks < ¥;

fori < 1tomdo
/ .
Subnetwork < Q’
forj < 1tondo
if min D7y —j suk=vi = D1x=j snk=i then

/ _ v L
‘ GSubnerwork - GSubnerwork Uj
end

- - / .
Gsubnerworks = GSubnetworks Y GSubnetwork’
end

Sait < S1x U Ssnks
G < CompleteGraph(Say);
Flag = True;
while Flag do
Flag = False;
fori < 1tondo
nn = NearestNeighbour(x; € G);
fOI’j < 1}0 |GSubnetworks| do
if i € Gsubnetworks(j) then
‘ subnetwork; = i,
if nn € Gsypnerworks(j) then
‘ subnetworky = nn;
end
if subnetwork, # subnetwork, then
G§ubnetw0rks (subnetworky) =
Gsubnerworks(subnetworky) & {i};
G§ubnenvorks(subnetwork2) =
Gsubnerworks(Subnetworky) U {i};
Flag = True;
break;

end
end

Output: Gsupnerworks

the sink, for e.g., node 3 is 6 hops away from the designated
sink node 21 in Fig. 12 while the same node is 8 hops
away from the designated sink node 23 in Fig. 15. Thus,
the sub-networks obtained with MST based approach leads
to a solution where one sink is connected to the majority of
the transmitter nodes, and other sinks are connected to three
transmitter nodes at best. This solution also leads to a higher
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FIGURE 11. Reshuffling using nearest neighbour (NN) for the
multi-gateway connectivity.

FIGURE 12. NN Based Approach: The initial configuration (left) and the
final network configuration (right).

number of hops to reach the sink. So, for this distribution
of transmitters and sinks, the ‘reshuffling’ algorithm leads to
better sub-networks.

In the last set of figures, Fig. 13 and 16, the situation is
reversed, and the MST-based approach fares better than the
‘reshuffling’ algorithm. Notice that in Fig. 16, node 18 is
3 hops away from its assigned sink node 20 whereas the
same node is 10 hops away from its assigned sink node 22 in
Fig. 13. Here, the resulting sub-networks arising from the
MST-based approach has a better distribution of transmitter
nodes per sink, with lower average number of hops to reach
the sink.

These sets of results show that both algorithms result in
better sets of sub-networks for different distributions of trans-
mitter nodes and sinks. The end-user has to define other crite-
ria/metric to evaluate the resulting sub-networks and choose
the one which fares better on that metric.

VIi. DIFFERENTIAL EVOLUTION FOR COVERAGE
OPTIMISATION

In coverage problems, the network is designed not for con-
necting a fixed or static set of transmitters but to accom-
modate future transmitters that may arise at any location in
the deployment region. We can then have a layer of sep-
aration between IoT application developers (who develop
innovative applications like water distribution monitoring,
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FIGURE 13. NN Approach with the initial configuration on the left hand
side and the final configuration on the right hand side.
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FIGURE 14. The MST approach for the multi-gateway connectivity.

:

FIGURE 15. MST approach results in a worse configuration than NN
approach outcome.

energy systems monitoring, etc.) and IoT data transport
service providers (who focus on the coverage problem,
e.g., LoRaWAN [42]). IoT application developers then have
the flexibility to evolve their end-application service offerings
to adapt to changing requirements, knowing that the IoT data
transport service provider has deployed a network with good
coverage. In this section, we try to address the coverage
problem in a heterogeneous propagation environment. The
formal description of the problem is as follows. Relays now
become base stations.

Problem: Given a heterogeneous deployment region,
an RSSI threshold R, and a minimum coverage percentage
of P%, find the minimum number of base stations required
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FIGURE 16. MST approach from the initial configuration on the left hand
side to the final outcome on the right hand side.

to provide the P% coverage of the heterogeneous region with
RSSI > R on the covered region.

To tackle this problem, we fall back to Algorithm 1 but
with a modified cost function. The cost function used to solve
this problem is the uncovered fraction and is explained in
Algorithm 5. The function Coverage(x;) is the region covered
by a base station located at x; and takes into account the
heterogeneity of the deployment region. The DE algorithm
attempts to minimise this cost and thus maximise coverage.

The modified objective introduces computational chal-
lenges at two levels, which we now describe.

First, given N base stations, we need to compute the cover-
age fraction, which requires the computation of the coverage
area of each base station. This has to be done in a brute-force
way because of heterogeneity. We, however, note that the het-
erogeneity does not render the RSSI to be completely unstruc-
tured. This is because the deployment region can be usually
partitioned into reasonably regular component subsets with
homogeneous propagation parameters within each subset.
We, therefore, divide the deployment region into smaller cells
of a fixed shape capable of tiling the entire region; we used a
square. Each cell is sufficiently small that we may assume
uniform propagation conditions within the cell. Each cell
also has a representative point (e.g., the centre of the cell
in case of a square). The RSSI between a pair of points is
taken to be the RSSI between the centres of cells containing
the points under consideration. Additionally, we proceed in a
spiral fashion around the candidate base station until we are
able to completely enclose the base station with cells of RSSI
lower than the target R, and declare the coverage region as
the subset of this region with RSST > R. We use the oracle
in [3] to estimate the RSSI. This simplifies the computation
of the coverage region of a base station to some extent, but it is
nevertheless computationally intensive, O(number of cells).

The second computational difficulty is at the level of the
differential evolution algorithm. Being an iterative algorithm,
DE introduces additional computation overhead with a mul-
tiplication factor of p - nj,-, where p is the population size
and n;;, is the number of iterations. This means that during
a single run of the algorithm, during which the number of
base stations N is gradually increased from 1 to k, we will
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Algorithm 4: Minimum Spanning Tree Based Approach

Initialisation;
STX <~ {xla -x25 o 7-x}’l};
Ssnk < {1, ¥2, -, Ym)s

Derived quantities;
Sail < Stx U Ssnks
MST <« Minimum Spanning Tree(Su1);
SsukPairs < 9;
fori < 1tomdo
forj < (i+1)tomdo
‘ SSnkPuirs = SSnkPairs U {yh yj};
end
end
#[Note: [Ssnkpairs| = (m(m — 1)/2)];
Spaths <~ U
for i < 1 to |Ssuipairs| do
TXl = S.lSnkPairs(l);
T = S.lgnkPairs(z);
ETxl T = Patthl N (MST)’
Spaths = SpathS UET, T,
end
NUMsypnetworks <— 1 ;
Gsubnetworks = Spaths;
while numgpnenvorks # m do
for VH upnerwork € GSubnerworks 40
Nguk <0
for V € Hypnerwork do
if V € Sg,;x then
Nsnk <= Nsnk + 1;
end
if N5, > 1 then
Eyear < 0;
for £ € Huppenvork do
if E < E,cqr then
‘ Eveak < E;
end
Gsubnetwork <— Gsubnerwork \Eweak;
NUMsypnetworks <— MUMsybpetworks + 1;

end

end
Output: Ggupnenworks:

compute the coverage area for a total of p - njy,- - Z;‘\,: N =
p - nig - (k- (k+1)/2) number of base station locations, where
k is the minimum number of base stations required to cover
P% of given heterogeneous region with RSSI > R.

To speed up the running time of our algorithm, we opti-
mised the combination of the two steps as follows: we gener-
ated the grid of possible transmitter locations, computed the
coverage area of the transmitters at each of these grid loca-
tions, and saved the coverage area matrix with RSSI values
for each cell of the grid (termed pixel). Subsequently, while
running the DE algorithm, we directly fetched the coverage
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Algorithm 5: Cost Function for the Coverage Problem.
The Function Coverage(x;) Is the Region Covered by a
Base Station at x;

Trial Solution;
STrial < {x] k] x25 ce ey xi’l};

Scover < ¥;
fori < 1tondo
S’ = Coverage(x;);
Scover = Scover U S’
end
Output: Cost = 1 — Scoyer /Total Area;

matrix entries associated with these possible transmitter loca-
tions. These steps helped us avoid redundant coverage area
calculations and thus improved the running time of our algo-
rithm to some extent.

A. RESULTS

The results obtained using the above described coverage
algorithm are shown below in Fig. 18-20. The results are
generated with the following parameters: transmission power
of 14 dBm, RSSI threshold R of —110 dBm, and a target
coverage percentage P = 90%. The entire deployment area
was subdivided into 620 x 1080 pixels, and each cell of the
partition comprised 20 x 20 pixels.

Fig. 18 shows two distinct sets of results obtained for
providing coverage in the heterogeneous regions of the IISc
Campus, shown in Fig. 17, which is spread over 170 hectares
(each pixel is of area roughly 2.5m? and so each cell is
of area 1000 m?). Both figures demonstrate achievement of
the targeted coverage (90%) for the given minimum RSSI
requirement with three base stations. In both the results, the
algorithm chose to maximise the coverage area by prioritising
the coverage of a moderately wooded area, which is the
largest portion of the propagation environment, and avoided
the highly residential buildings area towards the upper portion
of the map. Before we return to discuss the uncovered area, let
us explore another example, this time a town in South India.

Fig. 20 shows the results for providing coverage in Kak-
inada, the sixth-largest city in the Indian state of Andhra
Pradesh. The Kakinada deployment has a larger and hetero-
geneous deployment area than the IISc Campus. We pro-
vide two candidate outcomes using the DE algorithm. Both
outcomes achieve the target coverage (90%) at the specified
RSSI threshold with seven base stations. One point to note is
that we had only partial GIS data available for the Kakinada
town. Rich GIS categorisation, such as that available for the
IISc Campus on OpenStreetMaps, was not yet available for
the Kakinada. There were only three available categorisations
of Kakinada — buildings, open area, and roads, as shown in
Fig. 19. The GIS map plays a very crucial role in predicting
the coverage area and explains the surprisingly few number
of transmitters required for providing coverage to 90% of
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FIGURE 17. The Indian Institute of Science Campus. The picture on the right is colour-coded to show the layers of the GIS

data. There are five layers—open area, moderately wooded area, heavily wooded area, roads, and buildings.

FIGURE 18. Two different solutions for coverage of the heterogeneous 11Sc campus.

Kakinada City. The algorithm converges to a solution where
all the recommended transmitter locations are all in the open
area. Again, note that the buildings areas are left uncovered
by the algorithm. A re-weighted objective can increase the

VOLUME 10, 2022

importance of these areas for better coverage. Comparing
the two sets of results, there are a couple of transmitters
placed at similar locations. This suggests that the significance
of these locations in achieving good coverage of Kakinada.
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FIGURE 19. Kakinada city: the sixth largest in the Indian state of Andhra Pradesh with its GIS

layered map.

FIGURE 20. Two different solutions for the coverage of Kakinada city with seven transmitters, assuming

heterogeneity.

Similar to the results of the IISc campus, the area which
is not covered by the both the solutions remains largely
the same between both the two solutions for the Kakinada

town.
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B. COMPARISON WITH THE GIBBS-SAMPLING BASED

ALGORITHM
We compare our algorithm for coverage with the Gibbs-

sampling based algorithm of [25]. Under Gibbs-sampling a
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FIGURE 21. Gibbs sample-based optimisation for coverage of the 11Sc Campus (left) and Kakinada city (right).

random node is selected, its position is perturbed randomly
and the new position is either accepted or rejected with a
certain probability that depends on the improvement of the
new solution. Fig. 21 shows the results of the Gibbs-sampling
based algorithm for coverage of the IISc campus and the
City of Kakinada. For the IISc campus, the left subfigure
of Fig. 21, the Gibbs sampling-based algorithm suggests
placing five transmitters while our DE algorithm is able to
achieve coverage with three transmitters (for a given mini-
mum RSSI). For coverage of Kakinada, the right subfigure
of Fig. 21, the Gibbs-sampling based algorithm suggests
using nine transmitters while our DE-based algorithm uses
only seven.

In both the comparisons, the DE-based algorithm out-
performs Gibbs-sampling based algorithm. In both the
cases, required number of transmitters are more than
those of the DE Algorithm. While both the algo-
rithms are iterative in nature, the search space that the
DE-based algorithm explores is larger than that of Gibbs-
sampling based algorithm and therefore yield a better
outcome.

If the areas which are uncovered are of importance and
should be covered, one can adapt our approach by assigning
weights to each pixel (in terms of its importance), modifying
the cost to be the total weight of the uncovered pixels, and
then using our coverage algorithm with this modified cost
function. This adaptation is straightforward and is therefore
not pursued here.

VOLUME 10, 2022

VIil. CONCLUSION
In this paper, we first introduced the relay placement problem
in a heterogeneous region and articulated the challenges in
solving it in the setting of a heterogeneous propagation envi-
ronment. We solved this problem using a two-step approach.
First, we used an oracle function to provide the RSSI across
a pair of transmitter and receiver points which handled the
complexity arising from heterogeneity. Next, we used either
the Ant Colony Optimisation (ACO) or the Differential Evo-
lution (DE) heuristic to tackle the intractability of the result-
ing minimum cost Steiner tree problem. We then combined
the two steps to solve the relay placement problem in single
gateway scenarios under heterogeneous propagation environ-
ments, and highlighted the results obtained from the ACO
and the DE algorithms. We then extended the approach to the
problem with multiple gateways using a divide-and-conquer
approach. We highlighted a problem associated with a local
clustering approach and proposed two modifications: reshuf-
fling and minimum spanning tree pruning. We then compared
the performance of these two approaches through the lens of
objectives such as the average number of hops to reach the
sink and the average number of transmitter nodes per sink.
In some situations, the reshuffling approach works better,
while in other situations, the pruning approach is better.
We then showed how to deploy for connectivity in the IISc
Campus.

We also studied the coverage area problem in the setting
of heterogeneous propagation environments. We highlighted
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the computational challenges, which are partly due to the
modified cost function and partly due to the heterogeneity
of the propagation environment. We explained optimisations
arising from pre-computation of the coverage area for the
gridded transmitter locations in order to improve the running
time of the algorithm. We highlighted satisfactory solutions
for deployment in two different deployment regions — the
IISc campus and Kakinada, Andhra Pradesh, India. We ran
two instances in each case and found that the number of
relays/base-stations were in agreement.

In summary, the automatic deployment workflows that
we have created, for providing connectivity and coverage
in heterogeneous propagation environments, can save sig-
nificant time- and engineering-resources, thereby enabling
widespread outdoor IoT deployments.

DATA SHARING
The computer code that generated the outcomes of this study

is accessible from [43]. The data used in this study are avail-
able from [44], [45].
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