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ABSTRACT Research on heterogeneous combat networks (HCNs) has attracted considerable interest in
the military field since they can provide useful insights into the provision of decision-making assistance.
The characteristics of high-operational-capability HCNs are not well studied, which limits the ability to
construct a better combat network. To fill this gap, an integratedmethodology named genetic algorithm-based
high-capability HCN analysis (GAHCA) is presented to elucidate the characteristics of high-operational-
capability combat networks. In GAHCA, an improved genetic algorithm is proposed to search more
efficiently for high-operational-capability HCNs. Then, the properties of these HCNs are studied by the
cartographic picture analysis and contribution analysis of nodes and links. The results unveil the critical
topological structures of operational capability generation and quantitatively demonstrate the importance of
the military criterion of ‘‘concentration of superior forces’’. These results further emphasize that blindly
increasing military resources may not enhance the operational capability of the HCN and, worse yet,
may instead cause a decrease in network capability. These are all meaningful findings for assisting in the
construction of a better HCN. Finally, the reliability of the improved genetic algorithm is demonstrated by
comparison with two state-of-the-art algorithms and one classical algorithm.

INDEX TERMS High operational capability, characteristic analysis, heterogeneous combat network, genetic
algorithm.

I. INTRODUCTION
Heterogenous combat networks (HCNs) have attracted
increasing interest in recent years since their study is an
effective approach to understand the properties of combat sys-
tems [1], [2]. The operational capability of a combat network
is a critical index to evaluate the performance of HCNs to win
a war [3], [4]. Maximizing the operational capability of the
HCN is the ultimate goal for combat forces [5]. Therefore,
the characteristics of a high-operational-capability1 HCN
are more valuable to understand than those of an ordinary
HCN because we can learn more about success from the
best. If we obtain findings about the characteristics of HCNs
with high operational capability, the findings would be
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1Hereafter, high operational capability will be abbreviated as high

capability.

valuable and could serve as useful guidance for buildingmore
resilient and robust combat networks. For example, from the
topology of high-capability HCNs, we can identify the critical
structures of capability generation. By analyzing high-
capability HCNs with different scales, we can understand
the maximum capabilities produced by different amounts of
resources to assist professionals in optimizing the allocation
of resources on the battlefield [6]. Therefore, analyzing
the characteristics of high-capability HCNs is of significant
military value for providing critical information for combat
network construction and optimization.

However, previous studies on combat networks were
limited to discovering and evaluating the characteristics of
HCNs with unknown capability [3], [7]–[10]. These HCNs
are abstracted from military maneuvers or constructed based
on certain principles [3], [7]. The authors did not clarify
whether these HCNs are high-capability, thus the findings
may lose some value. For instance, if we mistakenly regard
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the inferior network as a high-capability network, then
the research results may provide negative guidance for the
construction of subsequent HCNs. To some extent, valuable
information about the characteristics of HCN is not clearly
identified. To solve this problem, a proper methodology for
efficiently acquiring and deepening our knowledge of the
high-capability combat network should be applied.

In view of these matters, this paper aims to demystify
elements of high-capability combat networks, including the
properties of their topological structure and their capabil-
ity generation mechanisms. Accordingly, we propose an
integrated methodology called genetic algorithm-based high
capability HCN analysis (GAHCA). In this methodology,
we first obtain a high-capability HCN by using an improved
genetic algorithm. Then, the characteristics of high-capability
HCNs are analyzed by multiple methods. The contributions
of our work can be summarized as follows.

1) An integrated framework called GAHCA is presented
to solve high-capability HCN analysis problems.
GAHCA integrates multiple algorithms and methods
and provides efficient analysis strategies that can help
us better understand high-capability combat networks.

2) A novel genetic algorithm is proposed to obtain high-
capability combat networks. Based on the operational
chain, the operators in the genetic algorithm are
enhanced by considering the cooperation and critical
activities among combat entities. The efficiency of the
algorithm is apparently improved.

3) Many experiments are conducted based on GAHCA
to thoroughly analyze high-capability networks. The
results provide critical information on topological
structure and resource allocation that can be useful in
HCN construction and optimization.

The remainder of this paper is structured as follows.
Section II introduces related works about combat networks.
A detailed description of GAHCA is provided in Section III.
The core algorithm is introduced in Section IV. Section V
describes the conduction of numerous experiments and the
useful insights these experiments provide. Finally, we draw
conclusions and discuss future works in Section VI.

II. RELATED WORKS
Heterogenous combat networks, as representations of combat
systems, are a central topic in the military field to study
the properties of military organizations. To the best of
our knowledge, studies on HCNs can be classified into
four aspects: HCN model establishment, link prediction,
performance evaluation and characteristic analysis. Estab-
lishing a more accurate and convincing model of HCNs
is the basis work of other HCN studies, which provides
suitable descriptions for HCNs. Link prediction, focusing
on assessing the existence probability of links, aims to
identify missing information of acquired combat network
topology, which would be helpful to enhance the accuracy
of decision-making. Performance evaluation provides various
measures to assess the network effectiveness to understand

the ability of HCNs to win a war. Characteristic analysis
seeks to explore the properties of HCNs and help us
identify their key structures and understand their capability
generation mechanisms. Characteristic analysis will deepen
our understanding of HCNs and provide inspiring insights
for design of a more resilient combat systems. Next, we will
introduce these aspects in detail.

A. MODEL ESTABLISHMENT OF COMBAT NETWORKS
By employing the network science, researchers seek to
characterize the complexity of combat systems and build
a compact but accurate model of HCNs. Dekker [11]
introduced the social network analysis method for combat
systems and proposed a combat network model named FINC
(Force, Intelligence, Networking and C2), which included
force, intelligence, C2 (command and control) nodes and
networking edges. Subsequently, Yang et al. [12] extended
the FINC model and added functional attributes, such as
weight for heterogeneous nodes and edges. Jeffrey [13] built
an Information Age Combat (IACM) model for combat
networks that divided combat entities into sensors, decision
points, influencers and targets. Wu et al. [14] constructed
an awareness combat network based on closed-loop control
model considering the real-time data transmission with a
dynamic routing protocol mechanism. In the literature [15],
a combat network model with three types of meta-functional
nodes is presented. Recently, Li et al. [8] introduced
temporal interaction mechanism into combat network and
tried to describe the operation process more accurately.
Overall, these HCN network models have one thing in
common (except [14]). Specifically, the combat network is
heterogeneous and contains at least three types of nodes:
sensors, deciders and influencers. The modeling idea of this
type of combat networks is widely accepted and used in the
follow-up studies [2], [3], [5], [7], [8], [15]–[17]. Thus, this
work also chooses HCN model that consists of three entities:
sensor, decider and influencer.

B. LINK PREDICTION OF COMBAT NETWORKS
In addition to building an accurate combat network model,
obtaining complete combat network data is also the basis
of HCN research. On the battlefield, given the uncertainty
and complexity of warfare, collecting complete intelligence
about HCNs is a costly task. Researchers tried to find the
missing information of network topology by using advanced
technology. In the literature [16], a concept of meta-paths
was employed to predict the heterogenous links of HCN.
Compared with nodes, the links are more difficult to detect
when conducting military operations, so the intelligence
about links is the main component of missing or erroneous
data. Subsequently, using meta-path as input, Li et al. [18]
proposed a back-propagation neural network-based link
prediction methodology to enhance the link prediction
efficiency. Then, Chen et al. [19] proposed an advanced link
prediction method of HCN based on representation learning,
which had an advantage when facing spare HCNs.
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C. PERFORMANCE EVALUATION OF COMBAT NETWORKS
Evaluation of the performance of a combat network is a
critical task to understand its ability to win a war, and
various measures have been proposed to achieve this goal.
Jeffrey [13] noted that the cycle, consisting of links and
nodes, of the networks can reflect their dynamic mechanisms
and thus generate operational capability for the network.
He used the Perron-Frebonius eigenvalue (PFE), which
corresponds to the quality of these cycles, to measure
the effectiveness of combat networks. Using quantitative
analysis, Deller [5] demonstrated that the PFE is related
to the connectivity of a network, further supporting the
PFE as a valid measurement of the effectiveness of an
HCN. Subsequently, Deller et al. [20] improved the PFE
by adding a measurement value to enhance its utility
as a quantifiable metric of network performance. In the
literature [15], the concept of natural connectivity was
extended, and a measure named directed natural connectivity
was introduced to evaluate the structural robustness of combat
networks. This measure considers the redundancy and quality
of the Observe, Orient, Decide, and Act (OODA) cycle [21]
in combat networks. Then, a concept named operational
chain, which represents the OODA process in HCNs,
is proposed [7]. Based on this chain, a significant measure
called the operational capability index is proposed to evaluate
the effectiveness of dynamic cooperation among combat
entities and the coordination of various capabilities [3].
The operational capability index also concentrates on the
significant process to generate capability and is an important
model to evaluate the capability of HCNs [2]. Useful insights
and suggestions for operational process were obtained by
analyzing this index [2], [3], [7]–[9], [22]. Therefore, this
paper selects operational capability index to evaluate whether
the combat network has a high capability.

D. CHARACTERISTICS ANALYSIS OF COMBAT NETWORKS
Analyzing the characteristics of combat networks can provide
useful information to deepen our knowledge of HCNs. Then,
useful guidance for constructing and optimizing the system
architecture can be obtained. Therefore, many inspiring
studies have been performed to study the properties of HCNs.
Dekker [11] analyzed the delay, centrality and intelligence
of a combat network, which has a simple and relatively
traditional military structure. Yang et al. [12] chose scale-free
and small-world combat networks and then recognized their
critical nodes or links based upon key potential. Li et al. [15]
generated a combat network with scale-free distributions
and also investigated its key equipment and links. In the
literature [8], seven entities were randomly chosen to generate
a temporal combat network, and the equipment contribution
in this network was analyzed by an integrated analysis
framework. In another study [7], an HCN was constructed
according to a case of military maneuvers. Taking this HCN
as an example, the critical role of combat entities in military
engagements was studied. To evaluated the disintegration

FIGURE 1. GAHCA framework.

efficiency of operational capability, Li et al. applied an
united framework to an HCN, which is constructed by the
operation process [3]. In one study [10], taking a special
HCN as a case, the importance of each meta-path was studied
in the weapon-target recommendation mission. In addition,
Yang et al. constructed an HCN according to the connection
probability and identified the critical nodes by community
structure [23]. In Tab. 1, we summarize the studied combat
networks and network characteristics in the above literatures.
As noted, these studied HCNs were abstracted from military
maneuvers or constructed based on certain principles, and
the authors did not clarify whether these HCNs have high
capabilities. The characteristics of high-capability combat
networks remain unclear. Our work aims to fill this gap
and to provide valuable information for assistance in HCN
construction and optimization.

III. GENETIC ALGORITHM-BASED HIGH-CAPABILITY
HCN ANALYSIS (GAHCA)
This section will introduce the integrated framework named
GAHCA, which aims to find high-capability HCNs and then
analyze their characteristics. The GAHCA procedures are
shown in Fig. 1. The high-capability topologies, namely,
the optimized topologies, of combat networks, obtained
by an improved genetic algorithm (GA), form the core
of GAHCA. Then, the high-capability HCNs are analyzed
from three perspectives: first, by employing a community
detection algorithm, a cartographic picture of the topology is
obtained, which provides significant topological information
and the structural properties of combat networks; second,
using a genetic algorithm multiple times by increasing and
decreasing the number of links, the capability contribution of
information links is analyzed; finally, we study the capability
contribution of combat entities by running a genetic algorithm
with different numbers of nodes. In the following sections,
we illustrate GAHCA in detail.
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TABLE 1. Related works on characteristics analysis of combat networks.

TABLE 2. Notations.

The notations in the problem formulation and equations are
summarized in Tab.2.

A. DEFINITION OF A HIGH-CAPABILITY HCN
An HCN consists of combat entities (nodes) and directional
information links (edges). The combat network can be
expressed as G = (V ,E), where V = (v1, · · ·, vi, · · ·, vn)
represents the set of combat entities, and n is the total number
of combat entities. E = (e1, · · ·, ek , · · ·, em) is the set of
information links and ek = (vi, vj). m is the total number of
information links. In this paper, combat entities are divided
into three categories: sensor entities (S), such as radars or
scout planes; decider entities (D), such as command vehicles
or operational centers; and influential entities (I ), such as
artillery or fighters. The edges are grouped into five types:
sharing intelligence links (vSi , v

S
j ), uploading intelligence

links (vSi , v
D
j ), commanding reconnaissance links (vDi , v

S
j ),

controlling fire links (vDi , v
I
j ) and communicating information

links (vDi , v
D
j ).

As discussed in Section II.C, this paper chooses oper-
ational capability index to evaluate whether the combat
network has a high-capability. The operational capability
index of a combat network can be expressed as follows [9]:

P(G) =
∑
lj∈G

P(lj) (1)

FIGURE 2. Operational chains.

where lj is an operational chain (OC) in combat network [3],
[7], [17], and P(lj) is operational capability of lj. OC is
a special chain in combat networks, which consists of a
sequence of combat entities and information links. As shown
in Fig. 2, the operational chain carries the OODA loop [21]
and suggests the procedures to accomplish a specific mission.
In an OC, sensor entities detect the enemy information and
then transfer the intelligence to the decider entities; the
decider entities analyze the information and give an attack
order to the influential entities; the influential entities respond
to the order and accomplish the attack task. The OCs can be
divided into basic OC and general OCs. A basic OC consists
of one sensor, one decider and one influential entity. General
OCs have multiple sensors and deciders. The operational
capability of one operational chain lj can be expressed as [3]:

P(lj)=
1
|lj|
×maxPS (vS,j)×maxPD(vD,j)×maxPI (vI ,j)

(2)

wherePS (vS,j),PD(vD,j) andPI (vI ,j) are the capabilities of the
combat entities in operational chain lj, and |lj| is the length
of this chain. Equation (2) suggests that shorter chains and
many alternative chains in an HCN lead to higher operational
efficiency [2], [3], [7].

Therefore, to calculate the operational capability of a
combat network, the operational chains in this combat
network should be identified. Then, the capability of
each operational chain is calculated according to (2).
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The operational capability of HCN is obtained by integrating
all operational capability of OCs (see (1)).

According to the above theories, the high-capability
combat network in this paper is defined as follows:
Definition 1: High-capability combat network. In all

heterogeneous combat network topologies that meet military
constraints, the network with the highest operational capabil-
ity index (Eq. (1)) is defined as the high-capability combat
network.

There are two military constraints these HCNs should be
satisfied.
Constraint 1: The three types of nodes cannot be converted

to each other because of their unique functions. However,
the edges, which are composed of information links, can be
replaced with each other.
Constraint 2: No isolated node is permitted since each

combat entity has its own strategic value.

B. ALGORITHM TO SEARCH HIGH-CAPABILITY HCNS
Topology optimization is a crucial design stage in the search
for the best connections among and distribution of network
components and thus is an appropriate strategy to find the
high-capability topology of an HCN [24]. The heuristic
algorithms used in topology optimization can creditably find
the network with the expected performance under a given
set of constraints [25]. If properly revised, these heuristic
algorithms can effectively handle the heterogeneity [2] and
the large scale of the selected network [26]. Compared
with other heuristic algorithms, genetic algorithms are more
commonly used to solve information network optimization
problems [2], [6], [27]–[31]. This is because GAs have
superior convergence capability and flexibility in solving
combinatorial optimization problems [32]. Therefore, this
paper also chooses a GA for obtaining a high-capability
combat network.

Specifically, a depth-first search algorithm is applied to
search for operational chains and enables us to calculate the
value of (1). Then, with (1) as the objective function and
satisfying constraints 1 and 2, an improved genetic algorithm
is introduced to optimize the HCN. As a result, a high-
capability combat network is obtained. The details of these
algorithms are illustrated in Section IV.

C. HIGH-CAPABILITY HCN ANALYSIS METHODS
It is challenging to intuitively obtain valuable information
from high-capability HCNs given their complexity and
size. Valid techniques and strategies should be employed
to illustrate and investigate the structure and functional
properties of high-capability HCNs.

1) TOPOLOGICAL STRUCTURE ANALYSIS METHOD
Here, as shown in Fig. 1, we first apply the community
detection algorithm [33] to obtain a cartographic representa-
tion of the high-capability network to analyze its topological
structure [34]. The cartographic representation, consisting
of community modules, provides a simplified description of

the HCN and thus can conveniently summarize information
about the nodes and links. This representation enables us
to obtain scale-specific information at a glance, similar
to reading a geographic map [35]. Consequently, we can
easily obtain deep insights into the topological properties of
combat networks. Identifying communities is the first, critical
step in generating cartographic pictures. In recent decades,
numerous algorithms have been proposed for community
detection [36]–[38]. The modularity-based algorithm is
the classical method, whose detected results are usually
regarded as the evaluation criteria for community division
owing to their reliability and accuracy [39], [40]. Therefore,
the modularity-based method is chosen in this paper to
detect the communities of high-capability HCNs. Then,
we can intuitively acquire and comprehend the topological
structure of the network, providing useful guidance for HCN
construction.

The detailed procedures to analyze the topological struc-
ture are as follows (See Fig. 3):

FIGURE 3. Procedures to analyze a topological structure.

Step 1: the high-capability HCN is obtained by the genetic
algorithm;
Step 2: the cartographic representation of this high-

capability HCN is generated by a modularity-based commu-
nity detection algorithm;
Step 3: the topological structures of HCN are analyzed.

2) LINK CONTRIBUTION ANALYSIS METHOD
Then, we analyze the link contributions to the operational
capability of a high-capability HCN. The purpose of this
method is to investigate the change in capability with different
node-to-link ratios. A previous study demonstrated that this
strategy enables us to understand the maximum capability
produced by different amounts of battlefield resources and
the optimal allocation of military resources; thus, it deepens
our knowledge of the relationship between nodes and links in
high-capability HCNs [6].

The detailed strategy to study the link contribution to
operational capability is as follows (See Fig. 4):
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FIGURE 4. Procedures to analyze the link contribution.

Step 1: obtain one high-capability HCN using the genetic
algorithm;
Step 2: record the operational capability of this high-

capability HCN;
Step 3: if the number of links does not reach the maximum,

add 1 to the number of links and return to Step 1. Else, go to
Step 4.
Step 4: analyze the relationship between operational

capability and number of links.

3) NODE CONTRIBUTION ANALYSIS METHOD
The detailed strategy to study node contribution to opera-
tional capability is similar to the link strategy. The difference
is that we change the number of nodes, rather than the links,
in this strategy.

IV. OPERATIONAL CAPABILITY ORIENTED GENETIC
ALGORITHM (OCOGA)
In this section, we will detail the improved genetic algorithm,
named the operational capability-oriented genetic algorithm,
which considers the generation mechanism of the operational
capability and consequently permits enhancement of the
convergence efficiency of the algorithm.

A. DEPTH-FIRST SEARCH ALGORITHM FOR OPERATIONAL
CAPABILITY CALCULATION
In genetic algorithms, the chromosome represents a combat
network topology G = (V ,E). To select the best
chromosome of the genetic algorithm in each iteration, the
fitness, namely, the operational capability, of the network
should be calculated by (1). In this equation, the operational
capability of the HCN is the accumulation of the capabilities
of its operational chains. Therefore, the operational chains,
as the foundation of the capability calculation, should be
first searched. In our previous work, two techniques were

employed to accomplish this task: the matrix power-based
method and the depth-first search algorithm [2]. The matrix
power-based method has a fast calculation speed; however,
it cannot search specific information about each chain and is
typically used to acquire only the total number of chains in the
network. In contrast, the depth-first search (DFS) algorithm
can accurately identify each operational chain despite its
high time complexity. For a very large network, however,
the time consumption of the DFS algorithm is unacceptable.
Fortunately, however, most operational chains have a low
contribution to operational capability; in other words, they are
useless in military missions [2], [3]. Thus, some constraints
can be added to the DFS algorithm so that we can only search
the truly valuable chains and thus decrease the calculation
time. In OODA theory, the tempo of the OODA loop is crucial
because combat forces who make decisions faster can gain a
tremendous advantage [41]. Since theOODA loop in a shorter
operational chain is faster and more reliable than that in a
longer chain, the most valuable operational chain is the one
that has the shortest length.

Therefore, we introduce a new parameter α, known as
the chain length threshold, which determines the maximum
length of the valuable operational chain. The DFS algorithm
is constrained to search only for operational chains shorter
than α. By neglecting long and useless operational chains,
the DFS algorithm with α has a low time consumption. For
additional details regarding this DFS algorithm, please refer
to [2]. Based on the valuable operational chains obtained
by the DFS algorithm, we can calculate the operational
capability of the HCN according to (1).

B. CAPABILITY-ORIENTED CROSSOVER OPERATOR
In this section, we propose a new crossover operator for
HCNs that considers the mechanism for generating opera-
tional capability and thus improves the iteration efficiency.
According to equation (1), the quality and quantity of
operational chains determines the capability of the combat
network. After crossover, if the number of operational
chains in the new HCN is increased and their quality is
enhanced, this HCN, compared with its parents, will have a
higher operational capability. The most remarkable feature
of high-quality operational chains is a short length. The
basic operational chain (OC1 in Fig. 2) has the shortest
length and consists of two kinds of links: intelligent
upload links (vSi , v

D
j ) and controlling fire links (vDi , v

I
j ).

The second shortest general operational chains (OC2 and
OC3 in Fig. 2), in addition to (vSi , v

D
j ) and (vDi , v

I
j ), also

contain an intelligence sharing link (vSi , v
S
j ) or an information

communicating link (vDi , v
D
j ). Therefore, the information

links (vSi , v
D
j ), (v

D
i , v

I
j ), (v

S
i , v

S
j ) and (vDi , v

D
j ) contribute to a

high-quality operational chain, whereas the reconnaissance
command link (vDi , v

S
j ), if it exists, will lead to longer and

inferior operational chains, containing at least 4 links since
the operational chain is initiated by the sensor entity [3], [7].
Given these observations, the procedures of the improved
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FIGURE 5. Improved crossover operator.

crossover operator are shown in Fig. 5. First, referring to
the EX operator [32], the genes that are present in both
parents are identified and preserved in the offspring. Then,
the reconnaissance command links (vDi , v

S
j ) are assigned in

the inferior child since they result in a low-quality operational
chain. To increase the differences between the offspring and
their parents, the remaining genes were mixed and reshuffled
and then distributed to the two children. Then, two HCNs,
i.e., the superior child and the inferior child, are obtained. The
superior child contains more high-quality operational chains
and thus has a higher operational capability.

C. CAPABILITY-ORIENTED MUTATION OPERATOR
Similar to the crossover operator, to produce HCNs contain-
ing high-quality operational chains, the mutation operator is
also revised. The calculation rule of this operator is shown
in Fig. 6. First, the chromosome is transformed into an
adjacency matrix. Then, the single point mutation method,
converting one ‘‘1’’ to ‘‘0’’ or one ‘‘0’’ to ‘‘1’’, is employed
for gene mutation [2]. In our operator, not all genes can
be selected and changed in the adjacency matrix. As shown
in Fig. 6, a mutation can only occur in the colored (blue
and red) parts, which represent the five types of information
links in an HCN. Remarkably, after a mutation in the
red part, gene ‘‘0’’ cannot be mutated to ‘‘1’’, decreasing
the number of reconnaissance command links (vDi , v

S
j ).

Consequently, the inferior operational chains in offspring are
decreased, and the operational capability of the new HCN is
enhanced.

D. CALCULATION PROCEDURES OF HIGH-CAPABILITY
HCNS
The calculation procedures of high-capability HCN are
shown in Fig. 7. First, a set of random combat networks
that are subject to battlefield resource constraints as well as
the heterogeneity requirements of the HCN are generated
as the initial population. Then, taking (1) as the objective
function, the higher-capability combat networks are selected

FIGURE 6. Improved mutation operator.

FIGURE 7. Calculation procedures of a high-capability HCN.

and reserved. Through capability-oriented crossover and
mutation, new offspring are reproduced to replace their
parents and form the new population. These procedures are
repeated until the iteration ends, and the formulation of this
calculation process is described as:
maxP(G)

s.t.


ei ∈ ((vSi , v

S
j ), (v

S
i , v

D
j ), (v

D
i , v

S
j ), (v

D
i , v

D
j ), (v

D
i , v

I
j ))

ei /∈ (vi, vi)
∀ei 6= ∀ej

(3)

Because combat networks are usually large with hundreds
of nodes and links, it is worth noting that to improve the
calculation speed, the connectivity of the network is not
checked by each operator; instead, we judge and repair
the network connectivity after the iteration ends. After the
iterations, we first transform link set E of the high-capability
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topology into an adjacency matrix. Then, the below formula
is used to determine its connectivity:

I + E + E2
+ · · · + En−1 > 0 (4)

For topologies with isolated nodes, we randomly select
a certain number of existing links to connect them to the
main network. This connectivity repair process, in which
the connection relationship among a small number of nodes
is changed, will inevitably decrease the fitness of the
optimal solution. Therefore, we define a threshold for fitness
loss: when the fitness loss of the network is less than
the threshold after connectivity repair, the corresponding
network is selected as the final optimized combat network.
This repair strategy provides the algorithm with the ability
to optimize the large combat network and will significantly
reduce the computational time.

Finally, we analyze the time complexity of the critical steps
of OCOGA. In the fitness calculation, the DFS algorithm
is employed to identify the valuable operational chains of
combat networks. For each source vertex (sensor entity),
we run DFS once. Thus, the time complexity of the fitness
calculation is O(ns · (n + m)). The meanings of ns, n and
m are shown in Tab. 1. The capability-oriented mutation
operator, which converts one ‘‘1’’ to ‘‘0’’ or one ‘‘0’’ to ‘‘1’’,
is independent of the network scale, so its time complexity
is O(1). The capability-oriented crossover operator mixes
and reshuffles each gene of the chromosome, so the time
complexity is O(n).

V. CASE STUDY
To prove the effectiveness of GAHCA and obtain useful
insights into high-capability combat networks, we conduct
numerous network optimization and high-capability HCN
analysis experiments. The topological structure of a high-
capability network is analyzed in section V.A. The opera-
tional capability contributions of the information links and
combat entities of the network are analyzed in section V.
B and V.C.

A. TOPOLOGICAL STRUCTURE ANALYSIS
To investigate the topological structure of a high-capability
network, we set the parameters of the combat network
based on those of an actual combat mission [3], [7].
Leveraging OCOGA and the community detection algorithm,
we generate a cartographic picture of the high-capability
topology of the network, enabling a thorough analysis of the
topological structure. Tab. 3 details the specific information
of the network, which includes 66 sensor entities, 15 decider
entities, 39 influential entities and 260 information links that
can be allocated. α is set to 2 and 3 when running the genetic
algorithm. The number of iterations for termination is 5000.
The network connectivity of optimized results is repaired
after the iterations; after 3000 repairs, the result with the low-
est capability loss is taken as the final network. The heuristic
method based on modularity optimization is applied to detect
the community of high-capability combat networks [42].

TABLE 3. Network information.

FIGURE 8. High-capability topology of the HCN at α = 2.

The modularity-based algorithm is the most commonly used
algorithm for functional cartography [34], [35] and has
high calculation stability. Because this method is embedded
into Gephi software [43], we directly use Gephi to obtain
cartographic pictures of the combat network.

When α is set to 2, Fig. 8(a) shows the random layout
of the high-capability HCN topology, whereas Fig. 8(b)
is the cartographic representation of the topology. In Fig. 8(b),
the size of the node represents its degree, and nodes with
the same color belong to the same community. Compared
with the random layout, the cartographic picture disentangles
the complexity of the topological structure of the network.
Fig. 8(b) indicates that the high-capability HCN consists
of 7 communities, 4 large communities (communities 1-4)
and 3 small communities (communities 5-7). A large-
degree decider entity, which connects almost all the other
nodes in the community, is present in each of the 4 large
communities. This decider entity can directly connect sensors
and influential entities, resulting in a typical topological
structure that can yield an enormous number of basic
operational chains. The basic operational chain, with a length
of 2, is themain contributor to operational capability when the
value of α is set to 2. Therefore, in the optimization process,
the genetic algorithm prefers retaining topological structures
consisting of a large number of basic chains. The 3 smaller

14724 VOLUME 10, 2022



K. Chen et al.: GA-Based Methodology for Analyzing the Characteristics of High-Operational-Capability Combat Networks

communities contain a series structure of decider nodes.
Comparedwith the structure of the 4 large communities, these
structures have relatively more difficulty generating the basic
chain. However, they effectively connect multiple decider
nodes and ensure the full connectivity of the combat network.

FIGURE 9. High-capability topology of the HCN at α = 3.

When α is set to 3, the resulting random layout and
cartographic picture of the high-capability topology take
the forms shown in Fig. 9(a) and Fig. 9(b), respectively.
The high-capability HCN again consists of 7 communities.
Communities 1 and 2 are composed purely of sensor entities,
which means that the function of these two communities is
intelligent collection. Community 3 contains only decider and
influential entities, and its function is to make decisions and
then execute striking assignments. Community 3 cooperates
with communities 1 and 2 to form a large number of
operational chains with a length of 3. Compared with the
basic operational chain, these chains contain one more sensor
entity. Although the operational chains of lengths 2 and 3 are
all valid contributors to operational capability at α = 3,
the optimizing algorithm is inclined to choose the longer
chains. The low capability and large number of operational
chains of length 3 leads to higher capability accumulation
than for shorter chains, resulting in a better capability value
for the entire network. Therefore, communities 1 to 3 form
the core structure in the combat network for the generation
of operational capability. Communities 4 to 7 form the
peripheral structure of the combat network, the result of a
compromise between network connectivity requirements and
operational capability requirements.

From Fig. 8 and Fig. 9, we can see that certain sensor or
decider entities have a high degree. These entities, whose
main function is information processing, form the core

structure for capability generation. Therefore, to obtain a
combat network with high operational capability, network
builders should provide more information support for
stronger decider entities and sensor entities, which will help
generate more valid operational chains and consequently
enhance the operational capability of the HCN.

B. LINK CONTRIBUTION ANALYSIS
This section will study the contribution and influence of
information links to operational capability in a combat
network. In an HCN, the number of information links
usually corresponds to the network resources; for exam-
ple, the number of links in a microwave relay network
is related to the number of optical terminals [6]. Link
contribution analysis can provide useful insights into
resource allocation, thus improving the network construction
efficiency.

To ensure that the genetic algorithm converges to the opti-
mal value, three small-scale HCNs are selected to investigate
the link contribution. For different α values and the number
of linksM of the network while fixing the number of combat
entities, the differences in operational capability among
the resulting high-capability topologies are studied. The
parameters of the genetic algorithm are mutation probability
0.2, crossover probability 0.8, iterations 150, and repair loss
threshold 0. For each combination of parameters, the genetic
algorithm executes 20 runs, and the optimal operational
capability (OOC) is recorded and plotted. The dependence
of the OOC on the number of information links M is shown
in Fig. 10. As M increases, the OOC first increases and then
slows and tends to plateau. A similar situation occurs when
α is 3 or 4. This analysis indicates that when the number of
combat entities is fixed, a continuous increase in the number
of information links cannot always improve the operational
capability. To enhance the efficiency of HCN construction,
the total number of pieces of communication equipment must
be calculated in strict accordance with the number of combat
entities.

C. NODE CONTRIBUTION ANALYSIS
This section studies the contributions of nodes (combat
entities) to and their influences on the operational capability
of combat networks. When building a combat network, the
number of decider entities corresponds to the command-
and-control organization, which is strictly affected by the
military mission and the organizational structure of the
associated combat forces; therefore, it is difficult to increase
or decrease this number. Sensor and influential entities are
usually composed of weapons and equipment, and their
number is relatively easy to change by allocating battlefield
resources.

To ensure that the genetic algorithm converges to the
optimal value, two small-scale HCNs are selected to inves-
tigate the node contributions. Under different α values,
by fixing the number of information links and changing
the number of sensors or influential entities of the network,
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FIGURE 10. Optimal operational capability versus the number of
information links with different α.

the differences in operational capability among different
high-capability topologies are studied. The proportion of
the number of different combat entities refers to the actual
combat network [3]. The parameters of the genetic algorithm
are: mutation probability: 0.2; crossover probability: 0.8;
number of iterations: 150; and repair loss threshold: 0. For
each combination of parameters, the genetic algorithm is
executed for 20 runs, and the optimal operational capability
is recorded and plotted. The dependence of the OOC on the
number of sensor entities (ns) is shown in Figs. 11(a)-(b).
When ns increases, the OOC first increases, subsequently
tends to a plateau, and finally shows a decreasing trend.
The reason is that when there are too many sensor entities,
to ensure the connectivity of the whole network, the
information links are forced to form a peripheral structure that
cannot produce a sufficient number of high-value operational
chains, which decreases the operational capability for the

FIGURE 11. Optimal operational capability versus number of combat
entities with different α.

HCN. The situation is slightly improved when α is 2 or 3; for
these values, there is not a considerable difference between
the peripheral structure and the core structure of the combat
network, and the decrease in capability with increasing ns is
not as obvious as for α = 4.
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FIGURE 12. Nop of 4 genetic algorithms with different parameters.

Figs. 11(c)-(d) show the curve of the OOC changing
with the number of influential entities (ni). Similar to the
trends observed for ns, when ni increases, the OOC first
increases, subsequently slows down, and finally declines.
Therefore, if communication resources (i.e., information
links) are limited, a continuous increase in number of sensors
or influential entities will not always improve the operational
capability of the HCN. Even worse, an excessive increase
in number of combat entities will exhaust information and
communication equipment, make it difficult to form the core
structure and decrease the operational capability of the HCN.

D. RESULTS AND DISCUSSION
Based on the above analysis, some critical characteristics can
be found for high-capability combat networks.

First, high-capability HCNs are composed of two kinds
of structures: core structures and peripheral structures. Core

structures, which centralize information links and high-
performance combat entities, are the main participants in
operational capability generation. In contrast, peripheral
structures ensure the connectivity of the network and employ
fewer communication resources. The presence of core struc-
tures in a high-capability HCN quantitatively demonstrates
the importance of the military criterion of ‘‘concentration of
superior forces’’. If we want to construct a high-capability
HCN, we should concentrate superior forces and form the
core structure.

Second, to construct a high-capability combat network,
wemust find the optimal allocation point of various resources
to guarantee the coordinated distribution of weapons and
equipment. Blindly increasing the number of combat entities
or information links may not enhance the operational
capability of the HCN and, worse yet, may instead lead to
a decrease in network capability. Therefore, high-capability
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HCNs should have a reasonable proportion of nodes and
links.

VI. PERFORMANCE EVALUATION OF OCOGA
A. COMPARISON ALGORITHMS
To prove the reliability and efficiency of the improved genetic
algorithm (OCOGA) in HCN optimization, its convergence
speed is compared with that of three other genetic algorithms
in this section. The three comparison algorithms are:

1) The key-gene oriented coding transition genetic algo-
rithm (KCTGA) [2] was recently proposed to handle
the capability model validation problem for combat
networks. KCTGA can fully account for the het-
erogeneity of combat networks and has excellent
convergence for HCN optimization.

2) The genetic algorithm for sensor-weapon–target
assignment (GA-SWTA) [32] was proposed to solve
the SWTA problem by Li et al.. The optimization
problems of both SWTAs and HCNs have strict
constraints and heterogeneous genes; GA-SWTA is
therefore a proper benchmark to test the OCOGA.

3) The single-point crossover genetic algorithm (SGA)
[28], a classical genetic algorithm, can be considered
a standard for evaluating the convergence capability of
new genetic algorithms.

B. EXPERIMENTAL SETTINGS
The following methods are used to test the convergence
speeds of the four algorithms. First, the optimal fitness
OCSGA

op is obtained by the SGA. As a classical algorithm,
SGA has a known performance and a wide range of search
spaces [28]. When the number of runs and corresponding
iterations is sufficient, the optimal fitness calculated by the
SGA can be used as the test standard for the other algorithms.
Next, the four algorithms are employed to optimize the
combat network. When the network fitness reaches 95% of
OCSGA

op , the iteration number Nop is recorded. Since the best
algorithm can achieve the optimal value in fewer iterations,
the genetic algorithm with the smallest Nop has the best
convergence ability in optimizing the combat network.

C. RESULTS AND DISCUSSION
Fig. 12 shows the convergence speeds of the four algorithms.
Due to the inherent stochastic property of genetic algorithms,
their performance cannot be illustrated by one run. For each
parameter combination, the algorithms execute 100 runs, the
results of which are depicted by a box plot. The lower and
upper ends of the boxes signify the first and third quartiles,
respectively, of the number of iterations, and the median is
shown as a line in the center of the box.

Fig. 12 shows that OCOGA outperforms the other three
genetic algorithms with only one exception: when α is 2 and
the number of links is large, the convergence rate of KCTGA
is slightly better than that of OCOGA (Fig. 12(a-c),M = 38).
However, for this combination of parameters, the number
of information links is approximately triple the number of

combat entities, which is not common in real combat forces
due to the limited communication resources [3], [6], [7].
Moreover, the repair strategy of OCOGA provides it with the
ability to address a large-scale combat network with hundreds
of nodes and links, whereas KCTGA does not have this
ability [2]. Therefore, it can be claimed that our algorithm,
OCOGA, has better convergence efficiency than the other
three algorithms and thus enables us to obtain a better solution
in HCN optimization, resulting in a more reliable analysis for
high-capability combat networks.

VII. CONCLUSION
In recent years, researchers have published many studies
on combat networks to provide insights into improving the
survivability of combat systems and enhancing the efficiency
of operational processes. However, the properties of high-
capability HCNs are still poorly understood, thus limiting our
ability to construct a better combat network. To fill this gap,
an integrated methodology named GAHCA is proposed in
this paper.

Based on the GAHCA, many critical characteristics of
high-capability HCNs have been found, providing mean-
ingful guidance for HCN construction and optimization.
For example, high-capability combat networks are mainly
composed of two kinds of communities: core structures
and peripheral structures. Core structures generate most of
the capability in an HCN, quantitatively demonstrating the
importance of the military criterion of ‘‘concentration of
superior forces’’. Peripheral structures ensure the full con-
nectivity of the combat network. Second, blindly increasing
the number of combat entities or information links may
not enhance the operational capability of the HCN and,
worse yet, may instead decrease the network capability. This
is a counterintuitive but significant characteristic for high-
capability HCNs. We must find the optimal allocation point
of the various resources on the battlefield, guaranteeing the
coordinated distribution of weapons and equipment.

To ensure the credibility and reliability of characteristic
analysis, we propose a novel genetic algorithm named
OCOGA to search for high-capability combat networks. The
OCOGA takes into consideration the generation mechanism
of operational capability and then improves the convergence
efficiency. A comparison with two state-of-the-art and one
classical genetic algorithm demonstrates the reliability of the
OCOGA.

However, much work remains to be done to improve the
reliability and effectiveness of high-capability combat net-
work analysis. For example, developing a novel community
detection algorithm that can address the heterogeneity of
HCNs may improve the accuracy of topological structure
analysis. Moreover, this paper only discusses some charac-
teristics of high-capability HCNs, and more work should be
done in the future to deepen our knowledge of the properties
of combat networks.
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