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ABSTRACT In this work, we present the design and implementation of an ultra-low latency Deep Reinforce-
ment Learning (DRL) FPGA based accelerator for addressing hard real-time Mixed Integer Programming
problems. The accelerator exhibits ultra-low latency performance for both training and inference operations,
enabled by training-inference parallelism, pipelined training, on-chip weights and replay memory, multi-
level replication-based parallelism and DRL algorithmic modifications such as distribution of training over
time. The design principles can be extended to support hardware acceleration for other relevant DRL algo-
rithms (embedding the experience replay technique) with hard real time constraints.We evaluate the accuracy
of the accelerator in a task offloading and resource allocation problem stemming from a Mobile Edge
Computing (MEC/5G) scenario. The design has been implemented on a Xilinx Zynq Ultrascale+ MPSoC
ZCU104 evaluation kit using High Level Synthesis. The accelerator achieves near optimal performance and
exhibits a 10-fold decrease in training-inference execution latency when compared to a high-end CPU-based
implementation.

INDEX TERMS Accelerator, deep reinforcement learning, edge computing, FPGA, high level synthesis,
mixed integer programming, 5G.

I. INTRODUCTION
Reinforcement Learning (RL) has been adopted as a solu-
tion mechanism for various problems in edge computing,
including Mobile Edge Computing (MEC) scenarios (sup-
ported by the expansion of 5G networking technologies)
ranging from task offloading and resource allocation to rout-
ing, caching placement and energy harvesting. The main use
cases for RL in edge computing can be divided in two large
categories, namely NP-hard problems (e.g. Mixed Integer
Programming-MIP) and problems with inherent Informa-
tion Uncertainty/Asymmetry about the underlying network
parameters and computational resources. For the former case,
Deep RL (DRL) algorithms have shown superior perfor-
mance in comparison with state-of-the-art conventional tech-
niques, such as Linear Relaxation [1], resulting in both faster
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convergence and solutions of higher quality. In the latter case,
RL algorithms such as Bandit Learning have been success-
fully employed [2], [3] to solve the exploration-exploitation
dilemma, resulting in action selection policies with near-
optimal performance. As demanding -Industrial mostly- IoT
prompts towards the next generation of edge computing, hard
real time constraints should be met by the algorithms orches-
trating the computational resource allocation; a latency bot-
tleneck in the control operations might result in malfunction
of the overall computational network. Therefore, the need for
hardware acceleration of DRL algorithms arises, whenever
real-time is a necessity.

In contrast to conventional Neural Network (NN) accel-
erators which are inference oriented (the training proce-
dure of most Deep Learning algorithms is implemented
offline), DRL accelerators should be training oriented in
online mode (offline training is infeasible, since the training
samples are generated online during the algorithm execution).
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For example, where the Experience Replay Technique [4] is
used, samples of past actions and rewards are stored in the
Replay Memory. At fixed time intervals, a batch of samples
is randomly selected from the Replay Memory and is used
for NN training. This results in a significant bottleneck; the
training should be completed and the NN weights should be
updated before the next inference step starts. Given the higher
complexity imposed on training (both back propagation (BP)
and forward propagation (FP) are employed) compared to
the inference (which employs only FP) and in conjunction
with the fact that each training step uses a batch of samples,
it is obvious that training accounts for most of the execution
time. Additionally, the increased training latency is a signif-
icant challenge for applications that impose high inference
throughput constraints; the input samples which arrive right
before training starts must wait for its completion before
the corresponding actions are selected via the Inference
procedure (Fig. 1).

FIGURE 1. Latency bottleneck induced by DRL training (INF stands for
inference).

The deployment of fast hardware and software simulators
and cyber-twins of the environment in which the DRL agents
act and train on, strengthens the need for real time DRL
acceleration. The environment simulators allow for the uti-
lization of generated inputs and provide action feedback at
a much higher rate than the physical instance of the envi-
ronment. This leads to the availability of a large volume of
training samples which require acceleration of both training
and inference in order to be successfully utilized by the DRL
algorithm. Simulators not only increase the availability of
training samples and therefore the quality of the final action
selection policy, but also reduce the risk of exposing the
physical environment to inference actions produced at the
early stages of training. Those actions obviously tend to be
more sub-optimal in comparison with the ones produced at
later stages.

Fig. 2 illustrates the concept of using generated samples for
training the NN, where the inference and training procedures
using generated inputs and feedback correspond to the cyber
training loop. Assuming that during the algorithm’s execution
the environment configuration changes, the past training is
invalidated. Moreover, the environment provides the acceler-
ator with real inputs at a rate which is much smaller than the
generated input creation rate. With the usage of a simulator-
evaluator configuration the NN is re-trained through eval-
uating the selected actions on the simulated environment.
When the next real input occurs, the NN has already under-
gone some training and therefore provides the environment
with actions that are less sub-optimal in comparison to a

FIGURE 2. Cyber training loop and interaction with the physical
environment.

scenario without a cyber training loop. In order to meet the
requirements of the cyber-training loop, both the environment
simulator-evaluator and the DRL accelerator should operate
with the minimum latency possible.

For solving NP-hard control problems, the literature sug-
gests a small number of layers (typically 1 or 2 hidden
layers) which are usually fully connected [5], [6]. Although
convolutional layers are occasionally suggested, in this work
we focus on fully-connected layers since our typical scenario
is that the input features do not exhibit space correlations.
Additionally, typical batch sizes are 64-128 samples and there
are frequent training steps between the inference ones. The
aforementioned configurations are unsuitable for accelera-
tion onto GPUs for three main reasons [7]:
• Batch sizes of that kind lead to underutilization of the
GPU resources.

• Limited off-chip data bandwidth.
• For frequent weight updates the kernel launch over-
head associated with typical GPU programming models
accounts for a high percentage of the overall execution
time, which significantly increases for smaller NNs.

For those reasons, FPGA based implementations are gradu-
ally gaining popularity in DRL applications [7]–[9].

Within this context, in this paper we present the design of
an FPGA basedAccelerator for DRLwith on-chip weight and
replay memory and application specific resource utilization.

For the Accelerator design we employ Xilinx’s Vivado
High Level Synthesis (Vivado HLS) framework. HLS was
selected instead of VHDL coding for two main reasons:

1) VHDL coding for architectures of such complexity is a
difficult and lengthy task which lacks flexibility.

2) The HLS directives abstraction favors the reusability
of the code for the design of other architectures which
accelerate similar DRL algorithms with minimal effort.

The main contribution of this paper is:
• The design and implementation of an ultra-low latency
DRL accelerator that can be employed for the solution
of MIP problems with hard real time constraints. It is
the first time, to our knowledge, that a DRL acceler-
ator targeting real-time online training and inference
is presented in the literature. The key points of the
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design include a distribution of training over time and a
pipelined TrainingModule. The evaluation of our design
(using the Zynq UltraScale+ MPSoC ZCU104 Evalua-
tion Kit) shows that for a generic use-case a decrease in
the training-inference execution latency by a factor of
10-200 is achieved when compared to CPU implemen-
tations with state-of-the-art embedded processors.

Additional contributions of this paper include:
• The adaptation of the algorithm under acceleration and
its combination with the Lagrange Multipliers opti-
mization method for the solution of a real-time Task
Offloading and Resource Allocation edge computing
problem.

• A methodology for extending the proposed architecture
to support other on-line DRL algorithms which use the
Experience Replay Technique, under the assumption of
joint NN and training configurations as described earlier
in this section. The scalability of the design allows for
the acceleration of DRL algorithms using larger NNs,
in terms of number of fully connected layers, number of
neurons per layer and batch size-training interval ratio.

• The provision of practical HLS guidelines for deploy-
ment in other similar design scenarios.

II. EXISTING WORK IN DRL ALGORITHMS FOR EDGE
COMPUTING AND HARDWARE ACCELERATION
A wide range of DRL algorithms have been employed
for solving NP-hard problems in edge computing and task
offloading orchestration. The authors of [5] propose the
DROO algorithm which is the main inspiration for the devel-
oped and accelerated algorithm in this paper. The DROO
algorithm near-optimally adapts task offloading decisions
and wireless resource allocations to the time-varying wire-
less channel conditions in a wireless MEC scenario, while
decreasing the computation time by more than an order of
magnitude in comparison with existing optimization meth-
ods. Deep Q-learning (DQL) [10] with Experience Replay
has also been adopted as a solution mechanism for the prob-
lems of interest. In [11] the authors are employing a DQL
based method to jointly make computation offloading and
bandwidth allocation decisions in a MEC scenario in order
to minimize the overall offloading cost in terms of energy,
computation, and delay. Although the problem formulation
results in a mixed integer nonlinear programming optimiza-
tion problem, the DQL based method achieves near-optimal
performance. DQL has been also employed by the authors
of [6] and [12] in MEC scenarios, while in [13] is used
for Vehicle Edge Computing and Networks. Policy Gradient
Methods [14] have been also employed for the problems
of interest. As an example, consider [15] where the authors
tackle the issue of Quality of Experience (QoE) in edge-
enabled Internet of Things (IoT). Recently, Meta-DRL meth-
ods are starting to gain popularity due to the adaptive nature
of these algorithms. For application of Meta-DRL schemes
in edge computing and task offloading the reader can refer
to [16], [17].

Hardware Accelerators for DRL have been considerably
less addressed in the literature compared to inference-focused
ones. In [18], the authors propose a many-core accelerator
design with a customized Network-on-Chip which achieves
a significant energy-efficiency boost in comparison with
GPU-based implementations. In [19] and [20] ASIC designs
based on Transposable PE Arrays and Experience Compres-
sion are presented. The target is again energy-efficiency,
in contrast to the target of this paper, which is latency mini-
mization. Accelerators based on FPGAs are presented in [7],
[8] and [9]. In [8], the authors present a CPU-FPGA hetero-
geneous architecture, which however only targets the accel-
eration of the Inference operation. In [7], an accelerator for
the Asynchronous Advantage Actor-Critic DRL algorithm
which achieves 27.9% better performance than that of a state-
of the-art GPU-based implementation and 62% better energy
efficiency in 6 games of the Atari 2600 benchmark collection
is presented. In [9], the authors propose an Accelerator for the
Actor-Critic algorithm based on Quantization-Aware Train-
ing and Adaptive Parallelism. Although [7] and [9] focus on
both training and inference, the complex structure of the NN
they are targeting does not allow real time operation since
the computational complexity is not consistent with the strict
latency constraints of the problems of interest.

III. BACKGROUND
A. THE ALGORITHM UNDER ACCELERATION
The designed Accelerator is based on the idea of the DROO
algorithm, presented by Huang et al. in [5]. The DROO
algorithm was selected due to its relatively lower complexity
when compared to approaches such asDQL.Wewill first give
a brief overview of the algorithm and how it can be employed
for solving MIP problems. Although the DROO algorithm
is adjusted to the problem formulation of [5] and includes a
one-dimensional bi-section search for the solution of a convex
sub-problem, we only employ the part of the algorithm which
refers to the solution of MIP problems, since this is the target
of our work.

We assume a problem formulation according to which at
each timestep a vector r is given as input to the algorithm.
We furthermore assume that the algorithm should choose an
action represented by a vector x of binary values in order
to minimize a cost function Q. The optimal selection of
the vector’s elements x∗ (equivalently the optimal policy if
the vector’s values represent actions selection, which is the
common case in the DRL framework) is given by:

x∗(r) = argmin{x}Q (r, x) (1)

If we denote the dimension of vector x as N , then there
are 2N possible values for the vector (equivalently possible
actions) and therefore a brute force method for solving (1) is
impractical even for small to medium values of N .

In the paper describing the DROO algorithm [5],
the authors propose a DRL mechanism according to which
the NN learns from the past action selections and limits the
number of vector values to be tested to N+ 1 at each timestep,
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which assuming that the computation cost function Q is not
computationally heavy, can be implemented with very low
latency. This is not the case in [5], since the computation of
the function Q accounts for most of the execution time (this
is due to the complexity of the solution of the second sub-
problem that Huang et al. include in their problem formula-
tion). Our proposed accelerator instead, targets applications
where the main computational bottleneck is not stemming
from the Q function but rather from the NN-related proce-
dures (inference and training). In Fig. 3 we illustrate the main
idea of the DRL mechanism.

FIGURE 3. The idea of the DRL mechanism.

The input r is fed into the NN, which through the inference
process provides an output vector x̂, containing real values in
the interval [0,1], which represents the ‘‘soft’’ or ‘‘relaxed’’
action. The ‘‘relaxed’’ action is then quantized using an Order
Preserving method [5] and K binary actions are obtained.
Although according to [5] K can be set from 1 to N + 1 and
can also be adjusted dynamically during the algorithm’s exe-
cution, in applications where the main computational burden
is the NN and not the action evaluation (the computation of
the value of the cost function for each one of the K binary
actions) we can set K to be constantly equal to N + 1.
Next, theK binary actions are evaluated and the actionwith

the minimum or maximum value of function Q is selected
depending on whether the MIP problem is a minimization or
a maximization problem respectively. Both the input r and the
selected action x are stored in the Replay Memory to be used
in the future for training. When the Replay Memory has been
filled with training samples, the newer samples replace the
older ones. The presence of the evaluator acts as a simulation
of the physical environment, which ranks the quality of the
actions proposed by the NN, providing feedback about the
most rewarding option. Every δ timesteps (t%δ = 0 ) a batch
of training samples (r, x) is randomly selected from the replay
memory and feeds the training procedure. The training is
conducted with x being used as the ground truth output labels
which correspond to input r. As the algorithm progresses and
the NN is trained, it learns to propose constantly better binary
actions, based on the input experience from the past and
the feedback from the evaluator. The generalization offered

by the NN, results in near-optimal performance regardless
of whether an input has been observed in the past or not.
Since the environment configuration is dynamic and may
change during the algorithm’s execution (something which
is reflected as a change in the cost function Q) the algorithm
must be able to quickly adapt to potential changes through
retraining with a new cost function. Therefore, both training
and inference are bound to be implemented online with the
minimum latency possible.

B. NEURAL NETWORK COMPUTATIONS
The core part of the algorithm under acceleration are the NN
computations, which are divided into 3 categories, namely
FP, BP and Network’s Gradients Computation (GC). FP is
performed both in inference and training, while BP and GC
are performed only in training.

During the FP process, the outputs of the neurons of the
previous layer are used, in combination with the network’s
weights, to calculate the output of the neurons of the next
layer. We denote the vector containing the output of the neu-
rons of layer i as Ai and the matrix containing the network’s
weights used for the calculation of the outputs of layer i asWi.
If the vector Zi is defined by the following equation:

Zi = Wi · Ai−1 + bi (2)

where bi denotes the bias term of layer i, then we have:

Ai = g (Zi) (3)

where g is the layer’s activation function, which is applied
elementwise on vector Zi.

FIGURE 4. The training computations flow.

During BP, the gradients of the network’s selected loss
function with respect to the vectors Zi are calculated and
are stored in the vectors denoted as dZi. The calculations
start from the last layer and continue towards the first (in
order to compute dZi, the value of dZi+1 is required). Finally,
the values of the vectors dZi are used for the calculation
of the matrices dWi (GC computations), which are then used
by the selected learning algorithm to update the current values
of Wi. Fig. 4 illustrates the training computations flow.

IV. EFFICIENCY DRIVEN ALGORITHMIC MODIFICATIONS
In order to design an efficient hardware Accelerator, we apply
modifications to the DRL training process, the effect of
which in the algorithm’s accuracy is generally application
dependent. In section VI. we present this effect through our
benchmark problem set-up. All the modifications are tested
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directly in the C/C++ code used by the HLS tool and the
algorithm’s performance is compared against the optimal one,
which is calculated using the brute force method for all the
possible values of the action vector x. In the remaining of this
section, we will describe the applied modifications, as well
as justify the reasons for which they lead to a more efficient
hardware implementation.

A. LEARNING ALGORITHM AND DISTRIBUTION OF
TRAINING OVER TIME
The designed Accelerator is suitable for algorithms employ-
ing Batch Gradient Descent (BGD) [21] as the learning algo-
rithm, according to which the gradient values for a batch of
training samples are accumulated. The learning update rule is
given by:

θ ← θ − a ·
dθbatch
batchsize

(4)

where dθbatch denotes the sum of the gradient values for all
the samples in the batch, θ is the parameter to be updated (the
network’s weights) and a is the learning rate. Using a learning
algorithm such as Stochastic Gradient Descent [21], with
parameter updating after each individual sample’s gradient
evaluation is not a suitable option for hardware acceleration
due to the large amount of Memory reads and writes. Other
batch-oriented algorithms such as batch ADAM [21], [22]
or batch RMSPROP [21] could also be used, with a minor
increase in hardware complexity, but since in our benchmark
problem BGD showed very good performance we decided to
use it as the learning algorithm in our accelerator.

To face the issue of the latency bottleneck introduced by
training as described in section I. and displayed in Fig. 1,
instead of performing one training step with a batch size of B
after δ inference steps (where δ denotes the training interval)
we continuously perform a combined inference and training
step, using a batch size of B/δ and accumulate the gradient
values (Fig. 5).

FIGURE 5. Distribution of training over time.

Every δ timesteps we perform a weight update using the
accumulated values of the gradients and reset the accumu-
lators. This way the workload is split between each timestep
and an architecture with constant inference throughput can be
designed. As described in the architecture description section

(sub-section V.), the training and inference are performed in
parallel. This does not result in an increase in the inference
latency since the FPGA resources are allocated in a way
that the latencies of inference and training computations per
timestep are balanced.

B. HARDWARE DRIVEN MODIFICATIONS
In order to ensure that our hardware design is efficient we
compress the Neural Network using fixed point arithmetic
for all the inference and training computations. To decide
on the fixed-point representation of each variable, we select
the representation with the minimum number of bits that
does not lead to significant accuracy degradation. This choice
depends on the application and therefore an accuracy evalu-
ation should be conducted. When it comes to the activation
function, although the hidden layers of the accelerated NN
configuration employ the Rectified Linear Unit (ReLU), the
hardware implementation of which is trivial, the Sigmoid
function has been selected for the output layer. This is due to
the fact that the outputs of the NN, which represent relaxed
actions are bound to belong in the interval [0,1]. A direct
hardware implementation of the Sigmoid function would not
be efficient due to the exponential term. Instead, we are
using LUTs. Additionally, the Experience Replay Technique
suggests that a randomly selected batch of training samples
should be chosen at each training step. To implement the
random choice of ReplayMemory indices we are using 16-bit
Fibonacci Linear Feedback Shift Registers (LFSR) [23]. Sim-
ulation shows that using the Fibonacci LFSRs as the pseudo-
random number generators does not lead in any performance
degradation in comparison with conventional software gener-
ators such as the C/C++ rand() function.

V. ACCELERATOR ARCHITECTURE
Before proceeding with presenting the architecture in detail
we will first summarize the design principles of our Accel-
erator. Those principles together with the software/hardware
modifications described in section IV. result in the significant
performance increase both in terms of latency as well as
energy efficiency.
• Task Level Parallelism of Inference and Training
The inference and training processes are parallelized
and their latencies are balanced. Thus, ultra-low overall
latency can be achieved and hard real time constraints
can be met.

• On chip-memory for the storage of Weights and
Replay Memory
One of the main burdens in CPU and GPU based imple-
mentations is the off-chip data traffic bottleneck. By uti-
lizing properly the FPGA memory resources (BRAMS
and distributed LUT-RAMS) to accommodate all the
memory requirements this bottleneck is removed.

• Input-Stage Level Pipeline in Training
Although the inference process solely involves FP com-
putations, the Training process involves FP, BP and GC
ones. Consequently, the relative complexity of training
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is higher than inference and thus if training and inference
are to be conducted in parallel, we must significantly
reduce the training latency. To deal with this issue,
we propose an input-stage level pipeline scheme by
splitting the FP, BP and GC computations into separate
pipeline stages. By employing this pipeline scheme there
is no need for balancing the total inference and training
latencies. Instead, we should balance the total inference
latency with the training’s Initiation Interval (the latency
of one Training Stage). Since training can be consid-
ered as throughput-dependent this pipeline scheme does
not affect the algorithm’s accuracy (for the simulation
results please refer to section VI.).

• Multiple Levels of Replication based parallelism
-Sample Level: Since at every timestep a batch of size
B/δ is used for training, to speed up the process the
accelerator is performing the computations for all these
samples in parallel. This further decreases the training
Initiation Interval and allows for balancing the training-
inference latency (since the inference computations are
always performed on a single input sample). High B/δ
ratios can be supported but with an increase in the Infer-
ence latency due to the Training overhead introduced
when the FPGA resources are not sufficient for the
parallel computation of all the samples in the batch.
-Neuron Output Calculation Level: There are no depen-
dencies between the outputs’ calculations for Neurons
belonging in the same layer. Thus, we can split the
Neurons of a given layer in groups and assign them to
different processing elements (PEs), operating in paral-
lel. This type of parallel processing can be employed in
all the types of computations (FP, BP and GC).
-Tree adders and Parallel Multipliers in Inner Product
Calculations: All the computation blocks involve inner
products in their calculations. To speed up the inner
product calculations we are employing tree adders and
parallel multipliers and we are partially unrolling the
corresponding loops.

• Loop Level Pipeline
All the inner loops, both computational and memory
copy loops, are pipelined, leading to faster execution.

A. HIGH-LEVEL OVERVIEW, INTERACTION WITH CPU AND
SCHEDULING
Our Accelerator is responsible of all the NN related com-
putations. Thus, the current input, which is denoted as
r(t) is passed to the accelerator and the inference pro-
cess is conducted so that the relaxed action vector x̂(t) is
calculated.

The quantization and action evaluation-selection process
are performed in the CPU and the action x(t) is selected. This
does not introduce any significant latency bottleneck since we
are targeting applications where the relative complexity of the
NN related computations is higher than the action evaluation.
The CPU-Accelerator interaction is displayed in Fig. 6.

FIGURE 6. CPU-accelerator interaction (Mode 1).

Apart from the current input r(t), the selected action in the
previous timestep x(t − 1) is also passed to the Accelerator
so it can be stored in the on-chip Replay Memory along with
the previous input r(t − 1) and be used later for training. The
training process is performed every timestep as described in
section IV. A. and is transparent to the CPU. All the weights
are stored on-chip and therefore there are no off-chip data
traffic related bottlenecks. This of course comes under the
assumption that the NN configuration complexity allows for
the on-chip storage of the weights. As mentioned in section I.,
this assumption is valid for most of the NN used for DRL
based solution mechanisms for NP-hard problems in edge
computing.

There are two modes that determine the Accelerator’s
functionality. Mode 0 refers to the required initialization
after reset. The Weights’ initial values and the contents of
the Sigmoid LUTs are passed and stored in the Accelerator.
No effort was devoted for accelerating Mode 0, since it is
only executed once after reset. Mode 1 refers to the nominal
functionality as described in the previous paragraphs of this
section.

In cases where the input generation rate from the envi-
ronment is lower than the inference throughput that can be
provided by the system, the CPU can act as an environment
simulator and action evaluator, providing the FPGA Acceler-
ator with both generated inputs r and feedback regarding the
best action choices (via the vector x). This way the algorithm
can benefit from the Cyber Training Loop, as described in
section I. In our use case the CPU did not need to employ
any sophisticated algorithm for the input generation. Instead,
providing the Accelerator with random inputs, which resulted
in the availability of a larger volume of training samples for
the Cyber Training Loop, was enough for the quick adaptation
of the algorithm to the changing environment configurations.
Since the action evaluation is conducted in the CPU, there
is no need for reconfiguring the Accelerator every time the
environment changes. The impact of the change is reflected
on the different way that actions are evaluated (different cost
functionQ) and consequently in the selected actions x, which
are used to train the NN. After a change in the environment
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the newer training samples in the Replay Memory contain
the required information for the Accelerator to re-adapt to the
new configuration.

FIGURE 7. Architecture overview.

In Fig. 7 the core blocks of the architecture are presented.
There are two core modules, namely the Inference and Train-
ing Modules which operate in parallel. Since both operations
are using the same weights, to avoid memory conflicts there
are two weight memories one for inference and one for
training. Additionally, since the training module is split into
pipeline stages which operate simultaneously and both the
FP and BP training computations access the same weights,
the training weights memory consists of two replicas. There
are two additional memories, the first of which accumulates
the gradients dWi as described in sub-section IV.A. The role
of the Updated Weights Memory (which also contains two
replicas) will become clearer in sub-section B. All memory
blocks, including the Replay Memory are implemented using
on-chip Dual Port Block RAMs (BRAMs). Although the
total memory requirements are increased by a factor of 3 in
comparison with a serial CPU based implementation (serial
execution of inference and training with no pipeline stages
in training) which would use a single weight memory and a
memory for accumulating the gradient values, the number of
weights in the typical NN configurations for the applications
of interest does not impose high memory requirements. Thus,
all the weightmemory blocks in our designed architecture can
be effectively implemented and partitioned without utilizing
a large percentage of the FPGA memory resources.

When designing using High Level Synthesis, the tool will
not treat functions that access the same memory locations
as concurrent and therefore will not synthesize hardware
modules operating in parallel. Thus, the usage of distinct
memories which are appropriately partitioned is obligatory
for the synthesis of parallel logic from HLS.

In Fig. 8, the time scheduling of the basic operations that
define an operational cycle of our Accelerator is presented.
Please note that under the term operational cycle we refer to
all the operations of the Accelerator from the moment the
CPU provides a new input, until all the inference, training

and Replay Memory related procedures for this timestep are
completed. Operations that are vertically stacked are exe-
cuted in parallel. The operations that appear in light color
are performed in the same way in every operational cycle.
The functionality of the operations appearing in dark color
is determined by a Finite State Machine (FSM), namely the
Bubble Shift Register (BSR), which is presented in sub-
section B. and controls the training pipeline and the weight
updates. As an example, consider the UPD_W_INF oper-
ation. Since weights updates are performed once every δ
timesteps (and consequently once every δ operational cycles),
this operation is either performed or omitted. On the other
hand, although the training operation is performed in every
timestep, the functionality of the different stages is deter-
mined by the BSR.

FIGURE 8. Time scheduling of operations.

B. INPUT-STAGE LEVEL PIPELINE IN TRAINING
Before proceeding with the presentation of the architecture
of the training module, we will describe the NN configuration
used for our use case. The NN consists of one input layer, two
hidden layers and one output layer, all of which are fully con-
nected and consist of 20,80,64 and 20 neurons respectively.
Thus, there are 3 FP, 3 BP and 3 GC computation tasks. Batch
size B is set to 64 and training interval δ is set to 9. Those
values were selected after proper experimentation due to the
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FIGURE 9. The training module.

fact that they combined low computational complexity with-
out accuracy degradation in our use-case. The accelerator is
designed to use 8 samples for training per timestep. Training
with larger B/δ ratios can also be achieved by using larger
FPGAs, so that the available resources allow for training with
more samples per timestep or by inserting pure training oper-
ational cycles between the mixed inference-training ones,
resulting in a decrease in the inference throughput. Training
sample gradients are accumulated during the first 8 timesteps
and at the final timestep of the training cycle, the training
module performs a weight update and resets the Gradient
Accumulators.

The architecture of the training module is illustrated in
Fig. 9. There are 7 stages that involve both NN computations
andweight update-copymodules and 2 helper stages that only
involve weight update-copy modules. All the stages are oper-
ating in parallel. Each stage consists of two modes of opera-
tion, namely the normal operation which is associated with
NN computations and is represented by the light-coloured
blocks and the ‘‘bubble’’ operation which is associated with
weight updates and copies and is represented by the dark-
coloured blocks.

Helper Stages 1 and 2 do not include light-coloured mod-
ules and therefore they only operate in bubble mode (in
normal mode they do not perform any operation), while
Stage 4 does not include dark-colouredmodules and therefore
only operates in normal mode.

Only one stage can operate in bubble mode during a given
operational cycle of the Accelerator, determined by the BSR,
which is a 9-bit register containing a single 1 in the position
which corresponds to the stage currently in bubble mode.

When the current operational cycle is over, a right circular
shift by one position is performed on the BSR and thus in the
next operational cycle the next stage will operate in bubble
mode. This is illustrated in Fig. 10. If the chosen training
interval δ is higher than 9, then the BSR would have δ-bits
and the 9 LSBs would determine the modes of the Stages (if
all of the 9 LSBs are 0 then all the stages of the stage-pipeline
will operate in normal mode). Even though the designed
architecture allows for δ values larger than 9, it does not
support δ values smaller than 9 (not common in the DRL
algorithms employing the Experience Replay Technique).

FIGURE 10. BSR operation.

The fact that only one stage can operate in bubble mode at a
given timestep removes memory conflicts between the stages
since the same memory is never accessed by more than one
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module simultaneously and thus the synthesis tool is able to
design hardware operating in parallel for all the stages. The
memory accesses are illustrated as arrows depicted in red to
and from the BRAMs. Please note that each memory block
of Fig. 7 consists of different distinct BRAMS (e.g. the dis-
tinct BRAMSW1f ,W2f ,W3f all belong to the FP Weights
Memory block).

The normal mode of operation is responsible for the calcu-
lation of the gradients dWi that correspond to the input batch.
It consists of all the FP, BP and GC computations and the
required pipeline registers. The role of the pipeline registers
is justified by the fact that computations in later stages need
as inputs vectors calculated in earlier stages. Please note that
although the memory elements responsible for the propaga-
tion of the outputs of earlier stages which are needed as inputs
in later stages are depicted and referred to as ‘‘pipeline reg-
isters’’, in fact are not implemented using registers. Instead,
we are using distributed LUT RAMS, an option which is
more efficient since it significantly reduces the number of
multiplexers (MUX) that the synthesis tool generates.

The bubble mode of operation is responsible for all the
weight updates (UPD modules) and the Batch Gradient
Descent updates (BGD modules). Since no more than 1 stage
can operate in bubble state at a given timestep, the weight
updates are not performed simultaneously. A design accord-
ing to which all the weight updates were performed simulta-
neously would introduce two main problems:
• The worst-case stage latency would increase signifi-
cantly. On one hand, the updates of the FP and BP
Weight Memories corresponding to the same layer
would require simultaneous accesses in the same Gradi-
ents Memory (e.g. the updates of W2f and W2b would
both require access of dW2) and thus could not be par-
allelized. Most importantly, the different partition types
used in the FP, BP and Gradients Memories impose lim-
itations on the amount of parallel memory reads/writes
that can be supported per clock cycle. To avoid over-
loading a stage with the latency introduced by accessing
memory A to update memory B (e.g. updating W3b by
using dW3) when the partition types of the memories
A and B differ, we split the update workload between
different stages, taking advantage of both normal and
helper stages. If all weight updates were to be performed
at the same time, the idea of splitting this latency burden
between different stages would be unapplicable.

• We assume that at an arbitrary timestep t all the weights
are simultaneously updated. Since the pipeline is con-
stantly fed with training samples and calculates the
corresponding NN’s gradient values, the calculations of
the samples that were in the first three pipeline stages
(FP stages) prior to the weights update that are now
stored in the pipeline registers were conducted using the
old weight values. However, in the following timesteps
when those calculations propagate to the BP and GC
stages the corresponding calculations will be con-
ducted using the updated weight values. Therefore, the

training procedure would violate the Backpropagation
Algorithm semantics. In order to resolve this inconsis-
tency a full pipeline flush would be required after every
update and thus the Accelerator’s performance would be
significantly degraded.

The implemented progressive weight update method using
the bubble mode of operation and the BSR tackles both these
problems, with the cost of utilizing more memory resources
(the Updated Weights Memory 1 and 2 blocks). The main
idea of the update mechanism is the usage of the Updated
Weights Memories as temporary storage for the updated
weight values. The BGD modules perform the batch gradi-
ent descent update and store the updated weight values in
the Updated Weights Memory 1 BRAMs (W1u,W2u,W3u)
when the Stages 6 and 7 operate in bubble mode. When
the bubble ‘‘leaves’’ Stages 6 or 7 the Gradient Accumu-
lators dW1, dW2, dW3 reset and begin to accumulate the
gradient values of the next batch of samples. The updated
weight values will pass to the FP Weights Memory Block
and BP Weights Memory Block when the bubble reaches
the corresponding stages which include the UPDf and UPDb
modules. This introduces a delay between the calculation of
the updated values and the update of the weights which we
will refer to as the Training Lag. The Training Lag can be
understood as follows:
The Weights which are used for the calculation of the

gradients of batch i have been updated with the gradients of
all previous batches except for batch i− 1.

FIGURE 11. The training pipeline.

Fig. 11 illustrates the Training Pipeline and the Training
Lag. A bubble-like image indicates that the stage operates in
bubble mode. The input-stage level pipeline in the training
module is a key-element of the designed architecture since
it decreases the Accelerator’s latency by approximately a
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factor of 7 (under the assumption that the stage latencies
are balanced), without introducing any weight-update related
bottlenecks and therefore enabling a constant high inference
throughput. Although this comes under the cost of the Train-
ing Lag, simulation shows that the Training Lag does not
degrade the algorithm’s accuracy (Section VI.).

At this point we will present some HLS guidelines in order
to achieve the required functionality of the input-stage level
pipeline (all the stages to be operating in parallel). As men-
tioned earlier in this section, the synthesis tool will be able to
synthesize parallel operating hardware provided that there are
no accesses to the same memory element by more than one
stage during a given operational cycle. With the term ‘‘mem-
ory element’’ we are not only referring to the weight and
gradient BRAMs but also to the pipeline registers. As Fig. 9
illustrates, the FP1 module in Stage 1 writes register A1,
while the FP2 module in Stage 2 reads register A1. There-
fore, the synthesis tool will detect dependencies between
the 2 stages and will synthesize serial operating hardware.
To tackle this issue the pipeline registers are implemented
as pairs, as displayed in Fig. 12. Please note that since the
UPD_PIP_R operation is done in parallel with the essential
UPD_W_INF and WR_RM_R operations (Fig. 8) after the
TRAIN-UPD_W_TRAIN operations complete, it does not
introduce any extra latency.

FIGURE 12. Pipeline register pair.

C. REPLICATION BASED PARALLELISM
The delay of the training module at a given operational cycle
is determined by the Stage with the highest latency. Since not
all Stage computations have the same complexity (e.g. the
FP2 module calculates the outputs of the 64 neurons of the
second hidden layer using the outputs of the 80 neurons
of the first hidden layer, while the FP3 module calculates
the outputs of the 20 neurons of the output layer using the
values of the 64 neurons of the second hidden layer), stages
with higher complexity require more parallelism in order
for their latencies to be balanced with those of stages with
lower complexity. Therefore, the FPGA resources should be
carefully allocated between the different stages in order to
achieve:
• Balanced Stage Latencies: The acceleration of stages
with low latencies does not yield any gain, since the

delay is determined by the maximum Stage Latency, but
rather only increases the FPGA resource utilization.

• Low Maximum Stage Latency
When it comes to the Inference Module which only consists
of FP sub-modules, we should note that it does not comprise
the Input-Stage Level Pipeline that is included in the Training
Module. This is a rather rational decision since the Acceler-
ator is expected to be able to provide the output x̂(t), cor-
responding to the input r(t) in a single timestep-operational
cycle, in order to be consistent with the ultra-low latency
constraints of the applications of interest. Thus, there is no
requirement of balanced delay between the 3 FP sub-modules
in the Inference Module since the Inference delay is deter-
mined by the sum of the 3 FP delays. However, since the
Training and Inference Modules are operating in parallel,
the inference delay should not be higher than the Stage
Latency of the Training Module, otherwise that would lead
to a design bottleneck. Thus, since 3 sub-modules contribute
to the Inference delay, while only a single sub-module con-
tributes to the Training Stage Latency, the FP computation
blocks in the Inference Module should have increased levels
of parallelism when compared to the Training computation
blocks. Please note that to achieve increased parallelism,
increased partitioning of the memory blocks associated with
the corresponding sub-modules is needed. Thus, the delay
of the UPD_W_INF operation is also decreased, since the
increased memory partition allows for more parallel memory
reads and writes. Although the typical delay of the UPD sub-
modules in the Training Modules, which are responsible for
the memory copies, is comparable to that of a computational
sub-module (FP, BP, GC), the increased partition of the Infer-
ence Weights Memory Block leads to much faster execution.
In fact, the Inference weight update is accelerated to such
an extent that it can be scheduled after the completion of
the parallel operation of the Training and Inference modules,
without introducing significant overhead to the Accelerator’s
operational cycle.

In order to decrease, balance and adjust the latencies of
the sub-modules we employ two methods, namely Replica-
tion in the Neuron Output Calculation Level and employ-
ment of Tree Adders and Parallel Multipliers in Inner Loop
Calculations.

The notion of Replication in the Neuron Output Calcu-
lation Level is presented in Fig. 13. We split the Neurons
of a given layer in groups and assign the groups to differ-
ent PEs, operating in parallel. Although this notion is more
straight-forward for the FP blocks, which indeed calculate the
outputs of Neurons, the outer loops of the other kinds of sub-
modules can also be split and assigned to identical parallel
operating PEs.

The way that the Replication in the Neuron Output Calcu-
lation Level is employed in all three types of sub-modules
is described in detail in Fig. 14. Please note that for sim-
plicity we have only illustrated the split of the computa-
tions in two PEs, while the number of replicated PEs differs
for each sub-module of the Training and Inference modules
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FIGURE 13. The notion of Replication in the Neuron Output Calculation
Level.

(e.g. sub-modules in the Training Module with larger compu-
tational complexity require more parallelism in order for the
Stage Latencies to be balanced and therefore require more
replicated PEs).

Additionally, the same figure illustrates the required steps
for the parallel operation of the PEs, namely:
• Partitioning of the Memory Elements
• Replication of the inputs that are fully accessed by all
the PEs.

Please note that we are using the term rows to refer to the
first dimension and the term columns to refer to the second
dimension of 2-dimensional memory elements.

As mentioned previously in this sub-section, the sec-
ond method of achieving replication-based parallelism is to
employ Tree Adders and Parallel Multipliers in Inner Loop
Calculations. This, in combinationwith loop-level pipeline in
the inner loops, increases significantly the performance of the
designed Accelerator. Both those concepts are presented in
Fig. 15. Please note that the C/C++ code in Fig. 14 displays
calculation for a single sample, while the calculations in
the Training Module are executed on a minibatch of 8 sam-
ples in parallel. The level of parallelism used in Fig. 15 is
not indicative of the actual design, but is selected for sim-
plicity reasons (in fact, in our design the FP2 sub-module
employs more tree adders and parallel multipliers due to
its high computational complexity when compared to other
sub-modules).

Regarding the memory accesses, in order for the loop
iterations to be executed in the minimum number of cycles,
the module should be able to read the memory positions
W2 [i] [j] ,W2 [i] [j+ 1] ,W2 [i] [j+ 2] andW2 [i] [j+ 3] in
the same cycle. That is inapplicable if the weight memories
are only partitioned in the first dimension. Thus, we further
partition the weight memories in the second dimension using
the cyclic partition option. Fig. 15 further explains the notion
of the cyclic partition with the partitioning factor selected to
be equal to 4.

Cyclic partitioning is obviously, also required in arrays
A1 [0] . . .A1 [7], which store the outputs of the layer 1 Neu-
rons for each one of the 8 samples. Regarding the BP

FIGURE 14. Replication in the Neuron Output Calculation Level in detail.

sub-modules, it is evident that the cyclic partition should be
applied on the first dimension of the corresponding weight
memories. The vertical columns in Fig. 15 determine the
pipeline stages. In practical design the pipeline includes one
extra stage related to the increment of the loop iteration index
(since the FP2_inner_loop is not unrolled completely) and
the calculation of the corresponding memory addresses, but
it has been left out of the figure for simplicity. It is worth
mentioning that the loop-level pipeline is not only employed
in the computational inner loops but also to the memory copy
loops.

D. EXTENSIBILITY TO OTHER DRL ALGORITHMS
The general principles of the designed architecture can be
applied to a wide range of DRL algorithms using the Expe-
rience Replay Technique, assuming consistency with the
typical NN configurations described in section I. The key
differences are expected to be:
• The way that the training samples are generated,
which in our design is not included in the Accelera-
tor’s responsibilities, since they are given as input to
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FIGURE 15. Tree adders, parallel multipliers and loop-level pipeline.

the Accelerator. If we consider Deep Q-Learning as an
example the training samples consist of state-actions and
q-values.

• The NN loss function and the gradient calculation.
In scenarios with different loss functions/gradient calcu-
lations the BP and GC modules can be re-designed to fit
to the problem of interest but the design principles of our
Accelerator (e.g. Input-Stage Level Pipeline in Training,
Replication for Parallelism etc.) are still applicable.

Modifications in the Accelerator’s design may also be per-
formed to be conformant with different DRL algorithms.
As an example, the reader can consider the addition of an
extra Inference Module, so as to achieve modelling of the
Target NN in a Double Deep Q-Learning framework [24].

VI. USE CASE AND ACCURACY EVALUATION
In this section we present the problem formulation of our
use-case and propose a solution based on the accelerated
DRL algorithm. We compare the algorithm’s performance
against the optimal performance, achieved using the brute-
force search and evaluate the effect of the algorithmic mod-
ifications of section IV. and the Training Lag described in
section V. on the algorithm’s performance.

A. PROBLEM FORMULATION AND SOLUTION
MECHANISM
We assume a Mobile Edge Computing (MEC) scenario
(Fig. 16) according to which a set of N Users can offload
their computational tasks to an Edge Server (ES). At each
timestep the Users may choose to undertake the computations
of their tasks utilizing their own computational resources

FIGURE 16. Mobile edge computing-task offloading scenario.

(local execution) or offload them to the ES. The users can
transmit their tasks to the ES wirelessly, e.g. by utilizing 5G
technology. For simplicity we assume that the transmission
rate through the channel between User i and the Edge Node
is described by a variable ri and that it is independent of the
other channels’ states. In our problem we assume that ri is a
random variable, with changing values over time, in order to
capture the dynamic nature of the wireless channel.

We assume that at each timestep all the Users generate a
task characterized by the following parameters:
• s: input size of tasks which affects the transmission
delay.

• c: required computational cycles for the execution of the
tasks which affects the execution delay.

• qi: priority weight of User’s i tasks. The minimization
of the delay of tasks with higher priority is of greater
importance when compared to tasks with lower priority.

If a User chooses to compute their task locally at a given
timestep t then the task delay is given by:

dL(i)(t) =
c
fi

(5)

where fi denotes the local computing frequency available to
User i.
If a User chooses to offload their task to the ES at a given

timestep t then the task delay is given by:

dES(i)(t) =
s

ri(t)
+

c
ki(t) · fs

(6)

where fs denotes the ES computing frequency, under which a
task would be executed if all the ES resources were allocated
to this task. After multiple Users have offloaded their tasks
to the ES at the same timestep the ES resources shall be
allocated between the Users and ki(t) ∈ [0, 1] denotes the
fraction of the total ES resources that are allocated to User i
at timestep t .

At every timestep an offloading decision xi(t) is made for
every User according to (7).

xi(t) =

{
0 if user i computes their task locally
1 if user i offloads their task to the ES

(7)
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Thus, the vector x(t) contains the offloading actions at
timestep t .
The goal in this problem formulation is the construction

of a task offloading and resource allocation policy (equiv-
alently the specification of the vectors x(t) and k(t)) which
minimizes the weighted sum of the experienced task delays.
The equivalent minimization problem is presented in (8).

minx(t),k(t)

{
N∑
i=1

qi ·
[
xi(t) · dES(i)(t)+(1− xi(t)) · dL(i)(t)

]}

subject to : xi(t) ∈ {{0} , {1}} , ki(t) ≥ 0,
N∑
i=1

ki(t) ≤ 1

(8)

It is easy to notice that the formulated minimization problem
is NP-hard.

In order to solve the NP-hard minimization problem we
adopt a similar method as in [5], [25] and split the original
problem in two sub-problems.

If the xi(t)values were fixed, then the resulting optimiza-
tion problem:

mink(t)

{
N∑
i=1

qi ·
[
xi(t) · dES(i)(t)+ (1− xi(t)) · dL(i)(t)

]}

subject to : ki(t) ≥ 0,
N∑
i=1

ki(t) ≤ 1 (9)

could be reformulated as:

mink(t)

{∑
iεO

qi ·
[

s
ri(t)
+

c
ki(t) · fs

]}
subject to : ki(t) ≥ 0,

∑
iεO

ki(t) ≤ 1 (10)

where O denotes the set of the offloading Users’ indices.
Obviously, the values of ki(t) for users that compute their
tasks locally are set to 0.

Sub-problem (10) is a convex sub-problem and we can
obtain a closed-form solution after employing the Lagrange
Multipliers method as follows:

mink(t),λ {D(k(t), λ)} → mink(t),λ

{∑
iεO

qi ·
[

s
ri(t)

+
c

ki(t) · fs

]
− λ

(∑
iεO

ki(t)− 1

)}
∂(D)
∂λ
= 0→

∑
iεO

ki(t)− 1

= 0→
∑
iεO

ki(t) = 1 (11)

∂(D)
∂(kj(t))

= 0→ kj(t) =
√
c · qj
fs · λ

(12)

(11)
−−→

∑
iεO

√
c·qi
fs · λ

= 1→

√
fs · λ
c
=

∑
iεO

√
qi (13)

(12)
(13)
−−→kj(t) =

√qj∑
iεO

√
qi

(14)

Therefore, the sub-problem (10) has a closed-form solution.
Please note that in the problem formulation of the paper
describing the DROO algorithm, the convex sub-problem that
the authors propose does not have a closed-form solution and
is solved using an iterative method.

We have proposed an optimal way of finding the values
of k(t), assuming the values of x(t) are fixed. In order to
determine the values of x(t), we are employing the acceler-
ated DRL method (the sub-problem of finding the optimal
values for x(t)is non-convex). Thus, the input r(t) is fed
into the NN and through the Inference process, the ‘‘soft’’
offloading action x̂(t) is obtained. Next, x̂(t) is quantized
using the Order Preserving Method and K candidate actions
are obtained. The optimal values for k(t) corresponding to
each candidate action are determined using (14). Finally, the
candidate actions are evaluated (the weighted sum of the
experienced task delays is calculated) and the best action from
the candidates is selected. Both r(t) and x(t) are stored in
the Replay Memory to be used for training. The described
solution mechanism and the notion of the 2 sub-problems is
illustrated in Fig. 17 (the convex sub-problem is depicted in
light gray).

FIGURE 17. Solution mechanism based on the 2 sub-problems.

B. ACCURACY OF THE SOLUTION MECHANISM
Tables 1, 2, 3 define the values of the parameters of the
problem and the algorithm that were used in the simulation.
Please note that r(t) is firstly normalized before being given
as input to the NN. Additionally, since the algorithm shall
be able to adapt and retrain under changing environments,
in contrast with common practice we do not initialize the
weights to small values. Instead, we use initial values that
belong in the whole dynamic range as defined in Table 3
(the weights initial values belong in the interval [−1,1]). This
initialization models a scenario according to which the NN
has adapted to a certain configuration before timestep 0 and a
sudden change in the environment occurs. Simulation shows
that the accelerated algorithm can efficiently adapt to this
change. Please note that all the parameters of Table 2 are
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normalized with respect to abstract base values to retain
generality.

TABLE 1. Algorithm parameters.

TABLE 2. Problem parameters.

TABLE 3. Fixed point representation of the NN.

We first compare the performance of the employed
DRL-based algorithm against the following offloading
schemes:
• Optimal: We compute the optimal k(t) vectors corre-
sponding to each of the 220 possible offloading actions
using (14) and compute the resulting weighted sum of
the experienced task delays. The x(t), k(t) pair with

the minimum delay is selected as the offloading and
resource allocation action.

• Random: We select K = 21 random offloading action
candidates x(t), compute the optimal k(t) vectors and
compute the resulting weighted sum of the experienced
task delays. The best x(t), k(t) pair is selected as the
offloading and resource allocation action. The reason
we use K candidate actions is for fairness, since the
accelerated algorithm also evaluates K candidate actions
(which are obviously not generated randomly).

• User-Based: Each User decides on their offloading
action after comparing the local execution delay of their
task with the offloading one, without considering the
other Users’ decisions. However, in order to calculate
the offloading execution delay of their task the Users
should have a priori knowledge of the ES resources that
will be allocated to them. A greedier scheme according
to which eachUser assumes that all the ES resources will
be devoted for the execution of their task (equivalently
each User decides on their offloading action assuming
no other User will offload their task to the ES) resulted
in worse performance in comparison with the random
scheme and thus is not presented. Instead, a more con-
servative approach (User-Based Scheme) according to
which each User assumes that all the other Users will
also offload to the ES and calculates the expected ES
resources under this assumption resulted in better perfor-
mance and is presented for comparison with the acceler-
ated DRL-based algorithm.

The comparison of the average delay of the different offload-
ing and resource allocation schemes is presented in Fig. 18.
The accuracy of the proposed mechanism is directly corre-
lated with the delay minimization since optimal offloading
actions result in minimal delay. Please note that since the
problem parameters of Table 2. are normalized with respect
to abstract values, the resulting delay does not have units.
As illustrated in the figure, the accelerated algorithm achieves
near-optimal performance after 10000 timesteps. However,
the performance is already satisfactory after 5000 timesteps.
Please note that the y-axis corresponds to the moving average
of the delay in the last 1000 timesteps. Fig. 19 displays the
effect that the algorithmicmodifications of section IV. and the
Training Lag described in section V. have on the algorithm’s
performance.

According to Fig. 18 the training has been completed after
timestep 10000 and no important performance increase is
observed after that point. Thus, the y-axis of Fig. 19 (which
is used as a training accuracy indicator) corresponds to the
average delay from timestep 10000 until timestep 17500. The
FLP bar depicts the accuracy of the floating-point version of
the algorithm without any of the discussed modifications for
efficient hardware implementation.

Simulation suggests that the distribution of training over
time and the calculation of the Sigmoid function using LUTs
do not affect the algorithm’s accuracy. A slight accuracy
decrease is observed due to the Training Lag, which is
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FIGURE 18. Comparison of offloading and resource allocation schemes.

FIGURE 19. Effect of algorithmic modifications to the accuracy as
illustrated by the resulting delay.

however insignificant for our use-case. When using our
Accelerator for other problem formulations, consideration
should be given to the accuracy-acceleration tradeoff due to
the Pipelined TrainingModule. If a potential significant accu-
racy drop due to the Training Lag is observed, a pipeline flush
between subsequent batches should be considered. Finally,
an expected additional slight decrease in the accuracy is
observed due to the usage of fixed-point arithmetic in the final
hardware implementation. Overall, the algorithmic modifica-
tions have little effect to the accuracy and the Accelerator’s
performance remains near-optimal.

VII. IMPLEMENTATION AND LATENCY-ENERGY
EVALUATION
The hardware implementation and performance evaluation
was conducted using the Zynq Ultrascale+MPSoC ZCU104
Evaluation Kit, which features the XCZU7EV-2FFVC1156
MPSoC, a quad-core ARMCortex-A53 processor and a dual-
core Cortex-R5 processor. The designed Accelerator (on the
availableMPSoC FPGA) was used as a coprocessing element
for the Cortex-A53 CPU. The performance of the designed

Accelerator is compared against implementations based on
a high-end Cortex-A53 ARM core and an AMD Ryzen 5
4600H processor. In the CPU-based implementations, the
CPU is responsible for both the NN related computations and
the quantization and action evaluation-selection processes.
In the Accelerator based implementation, the NN related
computations are conducted on the FPGAwhile the quantiza-
tion and action evaluation-selection processes are performed
on the CPU (Cortex-A53).

The AXI4-Stream protocol is employed for the data trans-
fers in mode 1 between the CPU and the Accelerator,
which are controlled by an AXI-Direct Memory Access
(AXI-DMA). Sincewe did not impose any latency constraints
in the initialization mode (mode 0) during which theWeight’s
initial values and the contents of the Sigmoid LUTs are passed
and stored in the Accelerator it was not necessary to employ
the AXI4-Stream protocol for mode 0.

Table 4 displays the utilization of the FPGA’s resources.
Please note that the relatively high utilization of the BRAMs,
in comparison with the other resources is due to the parti-
tioning of the Weights’ Memories. In scenarios with a larger
number of weights (larger NN), but with the same partitioning
factors the utilization is not expected to change (although
for the parallelization of the memory accesses we are using
distinct BRAMs, most of the space in each individual BRAM
is not utilized). Therefore, our design can be also extended to
support larger NNs. However, to increase the level of paral-
lelism in larger NNs both the BRAM and the DSP utilization
are expected to increase. Thus, the main factor determining
scalability is not the size of the NN (assuming it is compatible
with the typical configurations in the applications of interest),
but rather the level of replication-based parallelism. Please
note that the parallel computation of the gradients of more
samples at every timestep is also possible without increasing
the BRAM utilization (no further partitioning of the weight
memories is needed to achieve sample-level parallelism).

It is worth noting that although the delay estimates of the
HLS tool were accurate, some resource utilization estimates
were much higher than the real utilization figures, as pro-
vided by the Vivado tool after the place and route process.
Specifically, the LUT and FF estimates exceeded the practical
utilization by approximately a factor of 3. TheDSP utilization
estimate, on the other hand, was accurate.

TABLE 4. Part resource utilization.

Regarding the CPU based implementations, the high-
performance C/C++ code was compiled using the GCC
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compiler with the -Ofast optimization option enabled, tar-
geting the architecture of the employed CPU. We present
the results of the single-threaded execution using floating
point arithmetic. The main reason for choosing the single-
threaded execution lies in the fact that the thread creation
and synchronization overhead introduced by a multi-threaded
execution resulted in a larger latency due to the small size of
the NN.

Table 5 compares the latency per timestep of the 3 imple-
mentations. Each timestep includes the NN related compu-
tations and the quantization and action evaluation-selection
processes. The NN computations consist of an inference pro-
cedure (FP) with one sample and a training procedure (FP,
BP and GC) with 8 samples per timestep (since the size of
the batch sampled at each timestep is set to be 8).

TABLE 5. Latency per timestep.

As Table 5 illustrates, the designed Accelerator decreases
the NN computations latency by a factor of 200 when
compared to an ARM Cortex-A53 implementation and
by a factor of 10 when compared to an AMD Ryzen 5
4600H implementation. Although the quantization and action
evaluation-selection processes account for a tiny fraction
of the total execution time in the CPU-based implemen-
tations, the acceleration achieved by our design decreases
the NN computations latency to such a degree that the
non-accelerated quantization and action evaluation-selection
processes (which are executed on the Cortex-A53) account
for ∼50% of the total execution time. Therefore, the total
latency per timestep is decreased by a factor of 67 when
compared to the ARM Cortex-A53 CPU-based implemen-
tation and by a factor of ∼4 when compared to the AMD
Ryzen 5 4600H CPU-based implementation. In order to
decrease the overhead introduced by the quantization and
action evaluation-selection processes practical implementa-
tions could employ a CPU with higher floating point math
capabilities in comparison to the ARM Cortex-A53 with
which the ZU7EVdevice is equipped in the ZynqUltrascale+
MPSoCZCU104 EvaluationKit. Another option is the design

of an application specific IP for the hardware acceleration of
the aforementioned processes. Asmentioned in section I., this
option can also be employed in cases where the environment
simulator-evaluator has higher computational requirements,
but this falls beyond the scope of this paper.

Table 6 compares the energy efficiency of the Cortex-A53
CPU-based implementation against the Cortex-A53 with the
Accelerator as a co-processing element implementation. As it
is shown, the energy dissipation in our design is decreased by
a factor of 11.

TABLE 6. Energy dissipation per timestep.

It should be mentioned here that no comparison with
FPGA implementation was conducted since as analyzed in
Section II. (Existing Work) very few such (FPGA-based)
accelerators exist in the literature and the ones combining
both inference and training [7], [9] exhibit a very complex
NN structure, the computational complexity of which does
not allow for real-time operation that our accelerator readily
achieves.

VIII. CONCLUSION
We have shown that it is feasible to develop a hardware
DRL Accelerator to address MIP problems at the Edge
in real-time, targeting concurrently both the inference and
training operations. The features of the Accelerator include
training-inference parallelism, pipelined Training, on-chip
Weights and Replay Memory, multi-level replication-based
parallelism and DRL algorithmic modifications such as dis-
tribution of training over time. The performance of the Accel-
erator was demonstrated upon a real-time Edge Computing
use-case (task offloading and resource allocation) achieving
near-optimal accuracy and ultra-low latency. Comparisons
against implementations based on a high-end ARM core
(Cortex-A53) and a high-end desktop (AMDRyzen 5 4600H)
indicate a decrease in the training-inference execution latency
by a factor of 200 and 10 respectively. The proposed accel-
erator design methodology can be extended to address more
DRL algorithms (employing the Experience Replay Tech-
nique) with hard real-time constraints. Towards this purpose
we additionally provide HLS guidelines for the implementa-
tion of the specified functionality.
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