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ABSTRACT As an extension of the High Efficiency Video Coding (HEVC) standard, the 3D-HEVC needs
to encode multiple texture videos and depth maps components. In the 3D-HEVC inter-coding test model,
a large variety of Coding Unit (CU) sizes are adopted to select the one with the lowest Rate-Distortion (RD)
cost as the best CU size. This technique provides the highest achievable coding efficiency, but it brings
a huge computational complexity which limits 3D-HEVC from practical applications. In this paper, early
termination of CU encoding is proposed to reduce the complexity caused by the CU size splitting process.
The proposed algorithm is based on CU homogeneity and a boosting neural network clustering algorithm.
The algorithm contained three main steps. The first step is for the extraction of various features from the
original encoder. Then, the selection of the features, which had a high correlation with CU partition using
a machine learning algorithm. In the second step, a boosting neural network model is used for training the
selected features to derive the threshold values for our proposed algorithm. In the final step, an efficient early
termination of CU splitting is released for texture videos and depth maps based on the extracted thresholds
from the training model. The experimental results show that the proposed algorithm reduces a significant
encoding time, while the loss in coding efficiency is negligible.

INDEX TERMS 3D-HEVC, feature selection, machine learning, inter prediction, boosting neural network.

I. INTRODUCTION
With the fast recent development of 3D multimedia and dis-
playing technologies, the three-Dimensional (3D) video sys-
tems have evolved due to their real-world visual experience
that goes beyond two-Dimensional (2D) videos [1]. In the
Multi-View plus Depth (MVD) systems, which consists of
multiple texture video and associated depth maps, a small
number of captured texture video and its corresponding depth
map are coded and the resulting bitstream packets are multi-
plexed into a 3D video bitstream [2], [3].

3D-HEVC is an extension of the HEVC standard [4], [5],
which was developed by the Joint Collaborative Team on
3D Video (JCT-3V). 3D-HEVC introduces many techniques
and feature tools to further improve coding efficiency. When
considering the inter-coding process, 3D-HEVC adopts a
hierarchical coding structure which is one of the most pow-
erful tools to improve the coding efficiency of the 3D-HEVC
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encoder [6], [7]. However, this hierarchical coding structure
is based on the quad-tree structure of the Coding Unit (CU).
As shown in Figure 1, the largest CU is called Coding Tree
Unit (CTU) and each CTU is divided into four CUs. Besides,
the CU is split recursively into four equally CU sizes. These
CU sizes are varying from 64× 64 to 8× 8, corresponding to
depth levels 0 to 3, respectively [8]. The 3D-HEVC encoder
evaluates all CU sizes using the Lagrange multiplier to catch
the one with the least Rate Distortion (RD) cost as the best
CU split [9]. The RD-cost function is presented as follows:

RD− cost=SSEluma + ωchroma×SSEchroma+λ× B (1)

where SSEluma and SSEchroma are the average difference
between the current CU and the matching CUs in the luma
component and chroma component, respectively, ωchroma is
the chroma weighing factor, λ is the Lagrange multiplier, B is
bit cost to be considered for 3D-HEVC mode decision. This
flexible coding structure of 3D-HEVC contributes signifi-
cant improvement in coding gain. However, it brings a dra-
matic increase in encoding complexity because the encoding

13870 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3443-7756
https://orcid.org/0000-0003-4511-5381


S. Bakkouri, A. Elyousfi: Early Termination of CU Partition Based on Boosting Neural Network for 3D-HEVC Inter-Coding

FIGURE 1. CU split process in 3D-HEVC inter-coding.

process of 3D-HEVC needs to explore every single CU from
64 × 64 to 8 × 8 size where the best CU partition must be
decided for all possible CU sizes. Therefore, it is required
to develop an early termination of CU encoding algorithm
to reduce the computational complexity of the 3D-HEVC
encoder.

Several fast inter coding approaches have been proposed
to reduce the complexity of 3D-HEVC encoder [10]–[15].
In our previous work [10], we proposed a fast CU size deci-
sion algorithm based on a machine learning algorithm. Thus,
The structure tensor is adopted as an extracted feature to build
a binary classificationmodel. This algorithm is used to extract
the adaptive splitting values for depth maps and texture CUs.
An early termination of CU size and fast merge decision
algorithms are proposed in [11] for 3D-HEVC inter-coding.
The inter-view correlation is used as a priori information to
select the optimal prediction unit (PU) and CU sizes. A fast
inter prediction algorithm is proposed in [12] using depth
map segmentation. The proposed work is based on the CTU
classification into uniform and complex CTUs by dividing
the depth map into three parts (foreground, middle-ground,
and background) for an early termination of depth map CU
encoding. In [13], the authors proposed a fast inter mode
decision algorithm to reduce the complexity of the 3D-HEVC
coding. The proposed algorithm is based on two mean steps,
firstly, an early skip mode decision is built based on the
texture correlation of adjacent dependent and base views.
Then, the symmetric and asymmetric motion partition modes
are checked by selectively skipping according to the texture

feature of the coding CU. In [14], a fast inter and intra
mode decision algorithm is proposed based on the correlation
between the depth and the texture videos, and edge classifica-
tion. While the texture videos and their associated depth map
represent the same scene at the same time instant, the CU
sizes and prediction modes rarely used in the corresponding
texture video are skipped from the associated depth map
views to reduce the 3D-HEVC coding complexity. In [15], the
authors proposed a low complexity mode decision algorithm
for inter and intra prediction using the depth map changes
characteristics to skip the unnecessary depth modes for both
inter and intra prediction.

Although, all the existing are efficient to reduce the com-
putational complexity of 3D-HEVC inter-coding. Therefore,
there is still some room left for further complexity reduction.
In our previous work [10], we proposed a fast CU size deci-
sion algorithm using tensor features as homogeneity deter-
mination and a machine learning binary classification model.
In this paper, we propose an amelioration of the previous
work based on an early termination of the CU encoding
algorithm by investigating various features in training sets
to reduce the complexity of texture videos and depth maps.
The CU size decision algorithm is modeled as a data clas-
sification problem which is applied to predict whether the
current CU split or not to the smaller sizes. The classification
is efficiently solved using the AdaBoosting Neural Network
(AB-NN) algorithm. The AB-NN algorithm is used in this
investigation due to the high accuracy for this kind of prob-
lem, given that it can derive the adaptive thresholds for texture
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and depth maps CUs. The experimental results demonstrate
that the proposed algorithm can significantly reduce the com-
putational complexity of 3D-HEVC with negligible coding
performance degradation compared to the original encoder.

The remainder of the paper is organized as follows.
Section II provides the statistical analysis of CU partitions
in 3D-HEVC encoder. Section III introduces the boosting
neural network algorithm. The 3D-HEVC features analysis is
presented in Section IV. The proposed algorithm is described
in Section V. Performance evaluations of the proposed algo-
rithm are shown in Section VI, and the conclusion of this
work is provided in Section VII.

II. MOTIVATION AND STATISTICAL ANALYSIS
3D-HEVC adopts a hierarchical coding structure, which is
one of the most powerful tools to improve the coding effi-
ciency of the 3D-HEVC encoder [6], [7]. In the joint model of
3D-HEVC, a complex RD optimization process is performed
for all the possible CU sizes to find onewith theminimumRD
cost and determine the best coding size for a CU. Thus, the
small CU sizes are likely to be chosen for coding the complex
region and small CU sizes are more suitable for coding the
homogenous region. However, the depth maps are mainly
characterized by a large homogeneous region, where they
have a higher probability to be coded using larger CU sizes.
Therefore, a proposed algorithm based on the CU homogene-
ity could skip the RDCost time-consuming process computed
on the CU split process, and then reduce significantly the
computational complexity of the 3D-HEVC coding process.

In order to well understand the correlation between the
CU complexity and the CU size decision in the 3D-HEVC
encoder, we encoded eight experimental videos sequences
using the HTM-16.3, Random Access (RA) configura-
tions [16]. The experimental videos are recommended by
Common Test Conditions (CTC) [17] using four Quantiza-
tion Parameters(QPs). The experiments covered the 3D video
sequences: ‘‘Balloons’’, ‘‘Kendo’’ and ‘‘Newspaper’’ with a
resolution of 1024 × 768, and ‘‘GT_Fly’’, ‘‘Poznan_Hall2’’,
‘‘Poznan_Street’’, ‘‘Undo_Dancer’’ and ‘‘Shark’’ with a reso-
lution of 1920× 1088. The four pairs of quantization param-
eters (QP-pairs) are used to encode texture and depth maps
(QP-texture, QP-depth), which are (25, 34), (30, 39), (35, 42)
and (40, 45). Table 1 and Table 2 show the distribution of CU
sizes for texture videos and depth maps, respectively, accord-
ing to the four QP-pairs. For texture views, it can be seen
from Table 1 that The probability of a CU to be coded with
large sizes is very high compared to the small CU sizes for all
sequences and all QP-pairs, it is more than 85% on average.
While the total percentage of CUs with small CU sizes is less
than 15% on average. Furthermore, the probability of choos-
ing the size 64 × 64 is depended on the complexity of the
sequence. For ‘‘Shark’’ which is characterized by complex
regions, the proportion of 64 × 64 is approximately 64% for
small QP, and for ‘‘Poznan_Hall2’’ which is characterized
by homogenous regions, the proportion of 64 × 64 is more
than 84% in small QP. For the depth maps, the probability of

choosing CU size 64× 64 is more than 82% for all sequences
and 96.16% on average. This occurs because the depth map is
characterized by sharp edges and large homogeneous regions
differing from typical texture video contents. Therefore, the
probability of choosing small sizes is less than 5%on average.
It can also be seen that the variety of quantization parameters
QP affects the CU size distribution for both texture videos and
depth maps. Thus, the QP describes the compression rate by
impacting the image quality. High QPs generate more homo-
geneous areas in the coded image that are efficiently encoded
using larger CU sizes. However, with low QPs, the predicted
images tend to preserve several details, requiring smaller CU
sizes to manage the encoding efficiency. Therefore, if we can
decide the CU size and skip the CU splitting process, the
coding time will be saved and the computational complexity
of the 3D-HEVC encoder can be reduced.

III. BOOSTING NEURAL NETWORK ALGORITHM
A boosting is an approach for developing the performance
of learning algorithms. The boosting algorithm is one of
the most powerful learning techniques introduced during
the past decade. The motivation for the boosting algorithm
is to produce a scheme that combines many ‘‘weak’’ clas-
sifiers [18] such as decision trees and neural networks to
achieve a powerful classifier. The most promising boost-
ing algorithm is ‘‘Adaptive Boosting’’, namely, AdaBoost,
which is introduced by Freund and Schapire [19]. AdaBoost
has been applied with large success to manifold benchmark
machine learning problems using mainly decision trees as
base classifiers [10], [20]. Besides, there is recent evidence
that AdaBoost may very well overfit if we combine several
hundred thousand classifiers. It also seems that the perfor-
mance of AdaBoost degrades a lot in the presence of sig-
nificant amounts of noise [21], [22]. However, to make the
AdaBoost model more efficient, many works have already
proposed AdaBoost with the neural network algorithm as a
weak learner instead of the decision tree in the traditional
AdaBoost models [23]–[25]. In [23], the authors reported
that the Adaboosting neural network is significantly better
than boosted decision trees in terms of accuracy. Although
the neural network is reported to be outperformed by some
statistical methods in most cases, attempts to improve it have
never been stopped [26], [27].

A neural network (or an Artificial Neural Network) [28]
is a learning processing model that is inspired by the way of
biological nervous systems, such as the brain to treat infor-
mation. The key element of this model is the novel structure
of the information processing system. It is constituted of a
large number of highly interconnected processing elements
namely, neurons, working in harmony to solve specific prob-
lems. The most popular type of neural network is composed
of three layers of units: input layers, hidden layers, and output
layers as shown in Figure 2. The input layer is connected to
hidden layer, which is also linked to the output layer. The
input layer activity is the raw information that is introduced
into the network. The activity of each hidden unit is given

13872 VOLUME 10, 2022



S. Bakkouri, A. Elyousfi: Early Termination of CU Partition Based on Boosting Neural Network for 3D-HEVC Inter-Coding

TABLE 1. CU size distribution of texture for 3D-HEVC (RA configuration).

by the activities of the input units and the weights (Wij)
over the connections between the input and the hidden units.
Therefore, the transfer and the activation functions translate
the input signals to output signals. The threshold value of our
model is extracted from the activation function, in which the
output is set at one of two levels, according to the fact that the
total input is greater than or less than some threshold value.
The performance of the output units is affected by the activity
of the hidden units and the weights between the hidden and
output units.

In this paper, we consider the neural network to be the
base classifier of Adaboost model, namely, AdaBoosting
Neural Network(AB-NN). We are given a training data set
S = {(xi, yi), . . . , (xN , yN )}, which xi the input features

and yi = {−1,1} corresponding to the output. In the
AB-NN model, each sample in S is assigned an equal weight
of 1/N, which means that each sample has the same oppor-
tunity to be selected at the first step. Generating T neural
network classifiers for the AdaBoost model need T rounds
of training neural network with T different training sam-
ple groups St (t = 1, 2, . . . ,T). In round t, the function
to determine the weight of sample i is denoted by Dt (i).
In each round after the construction of the classifier AB-NN
which provides a function ht to map x to {−1,1}, the value
of Dt (i) is adjusted in terms of how they are classified
by the classifier AB-NN and the training sample group
St+1 is then generated in terms of Dt on S with sample
replacement.
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TABLE 2. CU size distribution of depth maps for 3D-HEVC (RA configuration).

The algorithm maintains a weight distribution Dt (i) over
the data points. The weights are updated in each iteration. The
goal of the base learner is to minimize the weighted error as
follows:

εt =
1
2

N∑
i=1

Dt (i) [1− θt (xi))× yi] (2)

where θt (xi) is a node in the output layer which indicate the
threshold value that a CU can split or no into next depth levels.
in this end, the output function h(x) can be defined as follows:

ht (x) =

{
+1 if xi ≤ θt (xi);
−1 otherwise

(3)

The final decision function for AB-NN algorithm is
defined in Eq. 4, which βt is obtained by Eq. 5.

HT (x) =
T∑
t=1

(
log(

1
βt

)
)
ht (x) (4)

βt =
εt

1− εt
(5)

The details and the pseudo-code of the AB-NN model is
described in Algorithm 1. Since, 0 <εt <0.5, so 0<βt <1, the
weights of the correctly classified samples with idea output
is reduced by βt , and weights of those misclassified samples
will have no change.
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FIGURE 2. Artificial neural network architecture.

IV. 3D-HEVC CODING FEATURES ANALYSIS
A. FIRST AND SECOND ORDER STATISTICS FEATURES
EXTRACTION
The precision of the CU size decision in a classification task is
highly dependent on the feature space used to train the model.
In most of the machine learning algorithms adopted in CU
size decision of 3D-video coding, the features extracted from
a CU are always statistic criteria, such as variance, structure
tensor and gradient [7], [10], [29], [30]. In this paper, we are
training two types of features measure. the first order and the
second order features. The first order features which based
on central moments [31], the texture measures are statistics
calculated from an individual pixel and do not consider pixel
neighbor relationships. In the second order or Gray Level
Co-occurrence Matrix (GLCM) features, we consider the
relationship between neighbors [32], [33].

1) FIRST ORDER FEATURES
First order features are based on statistical characteristics
calculated from each CU. For a pixel I(i, j) in a luminance
domain, the Mean m1 and Central Moments µk for each CU
are computed as follows:

m1 =
1

N × N

N−1∑
i=0

N−1∑
j=0

I (i, j) (6)

µk =

N−1∑
i=0

N−1∑
j=0

(I (i, j)− m1)k (7)

where k = 2, 3 and 4, and N corresponds to the number of
pixels for each CU size.

In this study, we are using the most frequently moments,
which are the variance σ 2, the skewness and the kurtosis
based on the central moments µ2, µ3, and µ4 respectively.
These features are called the normalized k-central moment
and they are calculated as follows:

σ 2
=

1
N × N

N−1∑
i=0

N−1∑
j=0

µ2 (8)

Algorithm 1 Pseudo-Code of AB-NN Algorithm
Input: S, a set of samples for training with size N

T, the number of rounds to construct the AB-NN model
Settings for training the base neural network classifier

Output: The classifier HT (x)
Init D1(i)= 1/N, i = 1, . . . ,N

Require: Set max iterations T
for t ← 1 to T do
Train neural network with respect to weight function
Dt (i)
Get weak hypothesis ht
Compute the weighted error εt using Eq.(2)
if εt > 0.5 then

Set Dt (i)= 1/N, i = 1, . . . ,N
end if
while εt ≤ 0.5 do

if εt = 0.5 then
Set T=t
break

else
Compute the coefficient βt using Eq.(5)
Update the weight function Dt (i):

Dt+1(i) = Dt+1(i) × β
1
2 [1+θt×yi]
t

Normalize the weight function Dt+1(i):
Dt+1(i) =

Dt+1(i)∑N
i=1 Dt+1(i)

end if
end while

end for
Calculate the classifier
HT (x) =

∑T
t=1

(
log( 1

βt
)
)
ht (x)

Skewness =
1

N × N

N−1∑
i=0

N−1∑
j=0

µ3

σ 3 (9)

Kurtosis =
1

N × N

N−1∑
i=0

N−1∑
j=0

µ4

σ 4 (10)

2) SECOND ORDER FEATURES
The features generated from the first order provide informa-
tion related to the gray-level distribution of the region. How-
ever, they are not given any information about the relative
positions of the various gray levels within the region. These
features will not be able to measure whether all low-value
gray levels are positioned together, or they are interchanged
with the high-value gray levels, especially depth maps CUs.
For an analyzed image, the texture information is specified
by the matrix of joint probability with two pixels separated
by a distance of d along direction θ with gray levels i and j.
We suppose the current CU is a matrix (donated as R) withNx
columns and Ny rows, G is the corresponding GLCM. Each
pixel has eight nearest-neighbors connected to it, horizontal
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0◦, vertical 90◦, right 45◦ and left-diagonal 135◦ directions,
and their four contrary directions, as illustrated in Figure 3.
It can be seen from the Figure 3 that Pixels 2 and 6 are 0◦ near-
est pixels to pixel X, pixels 1 and 5 are 45◦ nearest neighbors,
pixels 4 and 8 are 90◦ nearest neighbors, and pixels 3 and 7 are
135◦ nearest neighbors to pixel X. In this work, we calculate
the GLCM for each pixel in the direction 0◦ only.

FIGURE 3. Eight nearest-neighbourhood scheme for obtaining
co-occurrence matrix.

The value of matrix G in row i, column j can be calculated
as follows:

G(i, j, d, θ) = #{[(k, l), (m, n)] ∈ D

|R(k, l) = i,R(m, n) = j, d, θ} (11)

where # represents the number of elements in the set,
(k, l) and (m, n) are the coordinates in the pixel matrix R,
and D = (Nx × Ny) × (Nx × Ny).
The GLCM for the direction 0◦ is calculated as follows:

G(i, j, d, 0◦)

= #{[(k, l), (m, n)] ∈ D

|R(k, l) = i,R(m, n) = j, |l − n| = d, k − m = 0}

(12)

where R(m, n) and R(k, l) are the gray values in the
matrix R. Finally, the GLCM matrix G can be repre-
sented as Eq.13, shown at the bottom of the page, where
W is the gray level. To reduce the computational over-
head, the GLCM matrix is calculated for θ = 0◦ and

d = 1 and also the W is set to 8. Although, the luminance
value range of the current CU is from 0 to 255, so each pixel
need to be divided by 32.

In this study, four GLCMs features; Homogeneity, Con-
trast, Entropy and Angular Second Moment(ASM), were
implemented. The mathematical description of these features
are given in [32] and they are calculated as follows:

Homogeneity =
N−1∑
i=0

N−1∑
j=0

G(i, j)
1+ (i− j)2

(14)

Contrast =
N−1∑
i=0

N−1∑
j=0

(i− j)2G(i, j) (15)

Entropy =
N−1∑
i=0

N−1∑
j=0

−G(i, j) ln(G(i, j)) (16)

ASM =
N−1∑
i=0

N−1∑
j=0

G2(i, j) (17)

where G(i, j) is the GLCM matrix when d = 1 and θ = 0◦.
Homogeneity is a measure that takes high values for low-
contrast images, Contrast is ameasure of local level variations
which takes high values for image of high contrast, Entropy
is a measure of randomness and takes low values for smooth
images and ASM is a feature that measures the smoothness of
the image. The less smooth the region is, the more uniformly
distributed G(i, j) and the lower will be the value of ASM. All
these features together provide high discriminative power to
describe the complexity of a region.

B. 3D-HEVC FEATURES SELECTION
In this work, we are interested in reducing the encoding
complexity of inter-prediction frames. To train our model,
we encode five training video sequences with different res-
olutions (Non-CTC sequences). These video sequences are
‘‘Akko&Kayo’’ and ‘‘Rena’’ with a resolution of 640× 448.
‘‘Pantomime’’, ‘‘Dog’’ and ‘‘Champagne_tower’’ with a res-
olution of 1220× 960. The training dataset is collected from
the first 100 frames of each sequence. We extract the first
and second features for each CU and the splitting decision
information. The splitting decision takes ‘‘0’’ when the CU
is coded with the current size while taking the value ‘‘1’’
if the CU splits to the smaller sizes. We extracted these
features for texture and depth maps separately for the four
QP-pairs: (25, 34), (30, 39), (35, 42) and (40, 45), in which
the RA configuration was considered. Although, the training

G =


G(0, 0, 1, 0◦) G(0, 1, 1, 0◦) · · · G(0,W − 1, 1, 0◦)
G(1, 0, 1, 0◦) G(1, 1, 1, 0◦) · · · G(1,W − 1, 1, 0◦)

...
...

. . .
...

G(W − 1, 0, 1, 0◦) G(W − 1, 1, 1, 0◦) · · · G(W − 1,W − 1, 1, 0◦)

 (13)
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TABLE 3. Information gain for first and second features.

FIGURE 4. Average of IG for first and GLCM features.

dataset is composed of seven features and the splitting flag
information.

To assess how each feature contributes to the CU partition-
ing decision, the Information Gain (IG) [34], [35] is used
for this investigation. Among all evaluated features, some
of them were selected, considering the correlation of each
feature with the CU split decision. The algorithm applied,
which is based on the Information Gain (IG), defines the most
relevant features for dealing with the split decision. IG refers
to the difference between the entropy of all data set and the
entropy of the subset of the evaluated attribute. The Waikato
Environment for Knowledge Analysis (WEKA) [36], version
3.8.5, was used to calculate the IG for the selected features.
WEKA generated three datasets for texture and three datasets
for depth maps. Each dataset is corresponding to a CU size,
64 × 64, 32 × 32 and 16 × 16, and it is composed of the
seven training features and the splitting information flag.
Considering the IG of the analyzed attributes associated with
the CU split decision. Table 3 shows the IG of all features
for CU sizes 64 × 64, 32 × 32 and 16 × 16. Figure 4 shows
the average of IG for the tree CU sizes for texture and depth
maps. It can be seen from Table 3 and Figure 4, that in texture
CUs, the Homogeneity is ranked the first and the Contrast the

second. Unless, in depth map CUs, the Contrast is ranked the
first and the Homogeneity the second. To this end, the two
GLCM features, Homogeneity and Contrast are selected for
the AB-NN model.

V. THE EARLY TERMINATION OF CU ENCODING
ALGORITHM
In this work, we proposed an early termination of CU encod-
ing for texture videos and depth maps, in which this proposed
approach can reduce the complexity of 3D-HEVC inter-
coding. Our proposed method is based on the selected GLCM
features in Section IV, and the AB-NN for training model
which is done off-line. Thus, the training model is composed
of three datasets for texture and three datasets for depth
maps. Each dataset is corresponding to CU sizes 64 × 64,
32 × 32 and 16 × 16, and it is composed of the selected
features Homogeneity and Contrast calculated by Eqs.(14)
and (15), respectively, and the splitting decision information.
The AB-NN algorithm is used to extract the threshold vector
θj for each dataset corresponding the selected features as
described in Algorithm (1).

Figure 5 shows the methodology for design and evaluation
flow of our proposed algorithm. The first step is the extraction
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of features from the 3D-HEVC encoder using the training
sequences. In the next step, the extracted features are filtering
usingWEKA and IG to select the ones with a high correlation
with the CU partition. The selected features are using to build
a training model using the AB-NN model and extract the
threshold values for our proposed algorithm. Finally, the eval-
uation flows step is for performing our proposed algorithm
using the extracted thresholds and compared the results with
HTM 16.3 [16].

To simplify the use of the selected features for our proposed
algorithm, we calculated in Eq.18,ωCU , the distance between
the selected features.

ωCU =

√
H2
CU + C

2
CU (18)

where HCU is the Homogeneity of each CU computed using
Eq. 14, and HCU is the Contrast of a CU calculated using
Eq. 15. Therefore, the threshold value of the proposed algo-
rithm is calculated in the sameway using the extracted thresh-
olds by AB-NN. The early termination of CU splitting (Tenc)
is described as follows:

Tenc =

{
Unsplit if ωCU ≤ ThVS
Split Otherwise

(19)

where ThVS is the threshold value, in which S parameter takes
the values 0, 1, and 2 according to CU sizes, 64×64, 32×32,
and 16 × 16, respectively. The parameter V takes T for
texture CUs and D for depth map CUs. The value of the
threshold ThVS , which is extracted from the AB-NN model
explained in Section III, changes depending on the current
view (texture or depth map), CU size, and the Quantization
Parameters (QPs). If ωCU smaller than ThVS , then, the current
CU can be terminated early and codedwith current size. Other
than that, if ωCU is larger than the selected ThVS , the current
CU splits to the smaller sizes. The proposed overall algorithm
is given in Algorithm 2.

It can be seen from Algorithm 2 that the isDepth flag is
used for checking the texture and depth map CUs, and Th0,
Th1, and Th2 are the threshold values for CU sizes, 64× 64,
32×32, and 16×16, respectively. Firstly, the GLCM filter is
applied for each pixel, then, the checking process for texture
and depth map CUs is started, in which, each incoming depth
map CU, Th0, Th1, and Th2 take the depth map thresholds
ThD0 , Th

D
1 , and Th

D
2 , respectively. And for each texture CU,

Th0, Th1, and Th2 take the texture thresholds ThT0 , Th
T
1 , and

ThT2 , respectively. Then, the splitting process is started and
the ωCU is calculated using Eq.(18) depending on the CU
sizes. ω0, ω1, and ω2 are the ωCU according to CU sizes,
64× 64, 32× 32, and 16× 16, respectively. Finally, an early
termination of CU size is established to judge whether if the
current CU must be or not be split into smaller sizes.

VI. EXPERIMENTAL RESULTS
To verify the efficiency of the early termination of the
CU encoding algorithm, the proposed algorithm has been
implemented on the recent 3D-HEVC reference software

Algorithm 2 Early Termination of CU Encoding Algorithm
Input: texture and depthmapCTU
Compute GLCM filter for each pixel
if IsDepth then
Th0← ThD0 ;
Th1← ThD1 ;
Th2← ThD2 ;

else
Th0← ThT0 ;
Th1← ThT1 ;
Th2← ThT2 ;

end if
CalculateHomogeneity0 andContrast0 for CU size 64×64

Calculate the distance ω0 using Eq. 18
if (ω0 < Th0) then
No split process

else
Split CU to the quadtree 32× 32
for ( i← 0; i < 4; i← i+ 1 ) do
Calculate Homogeneity1 and Contrast1 for CU size
32× 32
Calculate ω1 using Eq. 18
if (ω1(i) < Th1) then
No split process
Split CU to the quadtree 16× 16
for ( i← 0; i < 4; i← i+ 1 ) do
Calculate Homogeneity2 and Contrast2 for CU
size 16× 16
Calculate ω2 using Eq. 18
if (ω2(i) < Th2) then
No split process

else
Split CU to the quadtree 8× 8

end if
end for

end if
end for

end if

TABLE 4. Test sequences information.

HTM-16.3 [16]. The coding experiments were defined
under the Common Test Conditions (CTC) [17] required
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FIGURE 5. Methodology for design and evaluation of the proposed algorithm.

TABLE 5. Experimental results of the proposed algorithm compared with the original 3D-HEVC.

by JCT-3V using eight video test sequences presented as
follows: ‘‘Kendo’’, ‘‘Balloons’’ and ‘‘Newspaper’’ with a res-
olution of 1024 × 768. ‘‘GT_Fly’’, ‘‘Poznan_Hall2’’, ‘‘Poz-
nan_Street’’, ‘‘Undo_Dancer’’ and ‘‘Shark’’ with a resolution
of 1920 × 1088. The 3-view case in CTC was used. In this
case, for each sequence, 3 texture cameras and 3 associated
depth maps were encoded using the random access config-
uration. Table 5 recapitulates the details of the CTC test
sequences. The test platform is an Intel(R) Xeon(R)CPU E3-
1225 v5 @ 3.30 GHz with 8 GB RAM and a Microsoft VS
C++ 2015 compiler.

Table 5 presents the experimental results of the early
termination of the CU encoding algorithm for the texture
and depth maps in the 3D-HEVC encoder. We evaluate our
proposed algorithm in respect to the Bjontegaard delta-rate

(BD-BR, BD-PSNR) [37], [38] considering the quality of the
synthesized views using the (VSRS) algorithm provided by
JCT-3V [39]. TS represents the Time Savings of the entire
encoder (texture and depth maps) defined as follows:

TS(%) =
ETOriginal − ETProposed

ETOriginal
× 100(%) (20)

where ETOriginal represents the encoding time of the original
HTM-16.3 encoder, and ETProposed is the encoding time of
the proposed algorithm.

It can be seen from Table 5 that the proposed algorithm
can saves a considerable encoding time for texture and
depth maps, and it can provide a similar performance for all
test sequences compared to the original 3D-HEVC encoder.
The proposed algorithm decreases the encoding time from
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TABLE 6. Experimental results of the proposed algorithm compared with related works in 3D-HEVC.

TABLE 7. Performance comparison of the proposed algorithm with
3D-HEVC related works.

38.29% to 41.48 % and 40.22 % on average for HTM-16.3.
Meanwhile, the average decrease of BD-PSNR is 0.01 dB
for depth maps and 0.02 dB for texture videos. Moreover,
the average BD-BR increase is 0.31% for texture videos and
0.22% for depth maps. The results indicated in Table 5 show
that the proposed algorithm based on the AB-NN and GLCM
features can avoid unnecessary CU size in 3D-HEVC inter-
coding with negligible loss of coding efficiency.

Figure 6 illustrates more detailed experiment results of the
proposed algorithm compared to the original 3D-HEVC for
four typical sequences: Balloons (1024 × 768), Newspaper
(1024 × 768), GT_Fly (1920 × 1088), and Poznan_Hall2
(1920 × 1088) for texture and synthesized views. It can be
seen from Figure 6 that the proposed algorithm achieves
better RD performance for the four test sequences.

Table 6 compares the proposed algorithm with the views
synthesis performance in related works [10]–[15] that also
focus on RA configuration. It can be seen from Table 6
that the proposed algorithm can greatly reduce the encoding
complexity compared to the inter-coding related works.

When comparing the proposed algorithm with our past
work [10], which is focused on a CU size decision on

3D-HEVC inter-coding, it can be seen that our previous work
can reduce the encoding time up to 37.13% on average, which
is less than the 40.25% in our proposed work, and a 0.34%
increase of synthesis BD-BR for HTM-16.2.

Concerning the work proposed in [11], the BD-BR is negli-
gible. Meanwhile, our proposed algorithm performs a better
gain in encoding speed. Therefore, it achieves only 24.10%
on average relative to HTM-16.2. Thus, our method can save
more overall encoding time with the BD-BR that slightly
increases in the synthesized views.

By comparing with the work in [12], our proposed algo-
rithm reduces greatly the complexity of the 3D-HEVC
encoder. It can be seen that the authors do not present
the results of all test sequences, and their work achieves
only a 16.42% time savings on average in correlation with
HTM-15.1, with a 0.33% synthesis BD-BR increase.

In [13], the proposed algorithm reduces only 18.71% on
average of the encoding time in correlation with HTM-16.0,
indicating that our proposed work is better in terms of perfor-
mance, and BD-BR increase is approximately the same.

In comparison with the approach in [14], the proposed
algorithm achieves the same encoding efficiency with 0.22%
BD-BR increase in the synthesized views. Thus, the algo-
rithm presented in [14] achieves a 19.90% reduction in encod-
ing time relative to HTM-16.0 which is less than half of our
results.

Compared with the work in [15], the proposed work
achieves a 23.40% time savings on average and it has been
implemented in the HTM-8.0 version, whereas the method
proposed in the present work was implemented on an HTM-
16.3 version, which fully implements the final 3D-HEVC
standard. Furthermore, in our proposed algorithm, the coding
efficiency loss is better, where the average of BD-BR increase
in [15] is approximately 0.58%.

Figure 7 shows the time saving comparison of the proposed
algorithm compared to the related works in texture videos,
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FIGURE 6. Experimental results of RD curve of the Balloons, Newspaper, GT_Fly and Poznan_Hall2 sequences under different QP combinations for texture
video and depth map (25, 34), (30, 39), (35, 42) and (40, 45), RA configuration.
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FIGURE 7. Time saving comparison of the proposed algorithm with related works in texture (a), depth maps (b) and both (c), separately, for Balloons and
Poznan_Street sequences.

depth maps, and both, separately for two typical sequences:
Balloons (1024 × 768) and Poznan_Street (1920 × 1088).
It can be seen from Figure 7 that the proposed algorithm
achieves better time saving for the two test sequences com-
pared to the related works in texture views, depth maps views
and the both components.

Table 7 presents the comparison of our proposed approach
and the related works. The performance of our proposed
algorithm in terms of time-saving and coding efficiency is
exceptionally high as both texture video and depth maps
components are fully employed and an efficient machine
learning model is used in this work for early termination of
CU encoding in 3D-HEVC.

VII. CONCLUSION
In this paper, we proposed an early termination of the CU
encoding algorithm for reducing the complexity of 3D-HEVC
texture and depth map inter-coding. The proposed approach
is based on first and GLCM features and a boosting neural
network for the training model. After extracting the features
from the original encoder, we apply the IG model to select
the ones with high correlation with the CU partition. The
selected features are used in the AB-NN training model to
find the suitable thresholds for texture and depth maps. The
proposed algorithm can avoid unnecessary CU sizes in the

3D-HEVC encoder. Experimental results show that the pro-
posed approach achieves considerable encoding time savings
for 3D-HEVC inter-coding while maintaining negligible cod-
ing performance degradation.
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