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ABSTRACT The installation of ultra-fast charging stations (UFCSs) is essential to push the adoption
of electric vehicles (EVs). Given the high amount of power required by this charging technology, the
integration of renewable energy sources (RESs) and energy storage systems (ESSs) in the design of the
station represents a valuable option to decrease its impact on the grid and the environment. Therefore, this
paper proposes a multi-objective optimization problem for the optimal sizing of photovoltaic (PV) system
and battery ESS (BESS) in a UFCS of EVs. The proposed multi-objective function aims to minimize,
on one side, the annualized cost of the station, and on the other side, the produced pollutant emissions.
The decision variables are the number of PV panels and the capacity of the ESS to be installed. The
optimization problem is reduced to a single-objective problem by applying the linear scalarization method.
Then the equivalent single-objective function is optimized through a genetic algorithm (GA). The proposed
optimization framework is applied to a study case and the results prove that PV and ESS could lead to a
significant reduction of both the annualized cost and the pollutant emissions. Finally, a sensitivity analysis
is also presented to validate the effectiveness of the proposed solution.

INDEX TERMS Extreme fast charging, integrated charging station, bi-objective optimization, electric
vehicles, fast-charging load demand.

NOMENCLATURE
ACRONYMS
EV Electric Vehicle.
UFC Ultra-Fast Charging.
UFCS Ultra-Fast Charging Station.
ICE Internal Combustion Engine.
PV Photovoltaic.
RES Renewable Energy Sources.
ESS Energy Storage System.
BESS Battery Energy Storage System.
COE Cost of Electricity.
NPV Net Present Value.
LCC Life Cycle Cost.
LPSP Loss of Power Supply Probability.
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MILP Mixed-Integer Linear Programming.
MOPSO Multi-Objective Particle Swarm

Optimization.
GA Genetic Algorithm.
LCOE Levelized Cost of Electricity.
CFOE Carbon Footprint of Electricity.
NWCMO Normalized Weighted Constrained

Multi-Objective.
SoC State of Charge.
V2G Vehicle-to-Grid.
MV Medium Voltage.
DC Direct Current.
AC Alternating Current.
DOD Depth-Of-Discharge.
CRF Capital Recovery Factor.
CO2 Carbon dioxide.
SO2 Sulphur dioxide.
NOx Nitrogen oxides.
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PARAMETERS
a Weibull pdf scale factor.
b Weibull pdf shape factor.
t Instant of time.
P∗PV Output power of a single solar panel.
PPV Output power of the PV system.
Prst Ideal output power a solar panel.
G Irradiance.
Gst Irradiance in standard condition.
δ Derating factor of solar panel.
α Temperature coefficient.
Tc Cell temperature.
Tst Cell temperature at standard conditions.
EBESS Battery energy.
σ Battery self-discharge rate.
Pgrid Power provided by the grid.
CRF Capital Recovery Factor.
EBESS Energy from/to the battery.

PchBESS Battery charging power.

ηchBESS Battery charging efficiency.

PdisBESS Battery discharging power.

ηdisBESS Battery discharging efficiency.

Pdismax Battery maximum discharging power.

Pchmax Battery maximum charging power.

EminBESS Battery minimum allowed energy level.

EmaxBESS Battery maximum allowed energy level.

λ1, λ2 Binary variables defining the direction of the
energy in the battery.

ACk Annual cost of the k-th component.

AICk Annualized capital cost of component k-th.

AO&M k Annual operation and maintenance cost.
ARCk Annual replacement cost.
RV k Residual value.
Nk Number of k-th component.
Cgrid Cost of the energy purchased from the grid.
i Interest rate.
y System lifetime.
Pgrid (t) Power absorbed from the grid.
Epr Electricity price.
Epoll Pollutant emission.
eCO2 CO2 emission factors.
eSO2 SO2emission factors.
eNOx NOxemission factors.
wi Weight factors.

OPTIMIZATION VARIABLES
NPV Number of PV panels.
NBESS Number of BESS units.

I. INTRODUCTION
In recent decades, environmental concerns are gaining ever
more interest worldwide. In this context, particular attention

has been dedicated to the transport sector and conventional
oil vehicles, because of their high CO2 emissions and conse-
quently footprint [1]. Many researchers, in these last years,
have proved that the introduction of EVs is an effective
way to reduce oil dependence and consequently decrease
pollution [2], [3]. For all these reasons, the penetration of
EVs is expected to grow exponentially over the next few
years. To promote and support this electrification trend the
installation of reliable and well-integrated charging stations
is required.

In Italy, the number of publicly accessible AC charging
points available in the country increased exponentially over
the last five years, passing from 1,679 units in 2015 to
12,150 units in 2020 [4]. Nevertheless, these numbers do not
take into account the extreme fast-charging systems, which
become essential when medium and long-distance travels
are concerned. Ultra-fast or extreme charging (UFC) systems
have typical power rates between 50 kW up to 350 kW [5].
Therefore, compared to slow charging, UFC allows recharg-
ing the EV in times about 25-35minutes. However, its biggest
disadvantage is that of requiring large power demand, and
hence, greatly impact on the national electric grid [6].

To mitigate this aspect, renewable energy sources (RES),
and energy storage systems (ESS) can be incorporated into
the design of UFCS. Indeed, if well-planned, the integration
of wind turbines, PV panels, and ESS in the UFCS not only
can reduce the grid and the environmental impacts but can
also allow a lifespan cost reduction of the entire structure,
knowing that this is one of the most critical aspects which
opposes to the spread of this type of charging system [7].
However, to take advantage of the benefits coming from the
integrated charging station, the design must be well-planned,
as a matter of fact, on one side, too high RES and ESS
capacities will lead to a waste of costs and resources, and on
the other side, instead, a too low capacity which does not meet
the load demand will not avoid the large flow of electricity
from the public grid.

Several studies in the literature have focused on the devel-
opment of charging infrastructure integrated with any sort
of RES and ESS and how to optimally size these additional
resources. The optimization problem of system sizing can
be composed of one or more objective functions to be mini-
mized, and the research can be divided into single-objective
and multi-objective optimization.

In single-objective optimization usually, the objectives are
related to the economic aspects, and the function to minimize
can be represented by the following cost indicators: the cost
of electricity (COE), the net present value (NPV), or the life
cycle cost (LCC). For example, in [8], the authors proposed
a single-objective optimization problem solved through a
mixed-integer linear programming (MILP) algorithm, whose
aim was to minimize the total energy costs of an ultra-fast
charging station integrated by a BESS and PV system. Not
only the size of PV panels and ESS but also the optimal
size of a wind turbine was carried out in [9] for a stand-
alone charging station, and in the objective function, the LCC
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of the system is minimized through a hybrid optimization
algorithm. Different from the above-mentioned literature,
in [10], the optimal integration between the EV charging
station and the RES was carried out based on reliability
analysis. Indeed, the authors aim to enhance the reliability
of the system by minimizing the energy not supplied to the
customers.

If, in addition to the cost and economic indicators, other
aspects would like to be included in the optimization prob-
lem, such as reliability and environmental benefits, then
a multi-objective optimization must be performed. The main
advantage of multi-objective optimizations is that they allow
taking into consideration more criteria, and thus, provide
more reliable and accurate results. However, when there
are two or more objective functions in the problem, the
calculation difficulty and times increase. To solve multi-
objective optimization problems many algorithms have been
used in literature. In [11] the optimal size for a stand-alone
relay telecommunication station integrating PV/wind turbine
and BESS was computed by using the concepts of loss of
power supply probability (LPSP) and the annualized cost
of the system. A GA was used to minimize the functions.
In [12] instead, the optimization aimed to minimize both
the COE and the environmental impact of an EV charg-
ing station with 10 piles and a maximum charging power
for each pile of 40 kW. To solve the problem, a hybrid
optimization algorithm joining the multi-objective particle
swarm optimization (MOPSO) algorithm and technique for
order preference by similarity to ideal solution (TOPSIS)
method was used. A MOPSO algorithm was also applied
in [13] to solve an optimization problem with COE and
LPSP as objective functions. The model was then applied to
a PV/wind/hydropower station with pumped storage and as
load demand, the real absorption of the city of Xiaojin was
used. The authors in [14] employed a hybrid GA-PSO algo-
rithm to determine the optimal capacity of RES generation,
and its optimal scheduling. The optimization function was
composed of four objectives, however, any restriction about
the charging power of EVwas considered but only the overall
energy required in one day. In [15], the final multi-objective
function was composed of four objectives: LPSP, Levelized
Cost of Electricity (LCOE), Carbon Footprint of Electricity
(CFOE), and a socio-political objective. A weighted con-
strained multi-objective optimization algorithm (NWCMO)
was implemented to obtain the optimal size of all the com-
ponents inside the station. Table 1 provides the review of the
most important studies presented above.

It is worth noting that in all the reported literature, only
charging stations with a maximum charging rated power
of 50 kW for each charging point have been considered.
Moreover, the differences existing in the many EVs on the
market are not taken into account. Therefore, to the best
knowledge of the authors, the optimal design of a charging
station integrating RES and ESS has never been extended to
ultra-fast charging technology, which indeed is the purpose
of this paper. Finally, in all the literature, the charging power

TABLE 1. Review of optimal sizing of charging stations.

limit imposed by the vehicle battery itself has never been
taken into account.

This work aims to optimize the configuration of a UFCS by
minimizing its NPV and environmental impact. The compo-
nents considered inside the station are the connection with the
utility grid, a PV, and a BESS. The decision variables of this
study are the PV module number as well as the battery num-
ber. The bi-objective optimization problem is then reduced to
a single-objective one by employing the linear scalarization
method, and finally, the overall objective function is solved
through GA.

The main contributions of this paper are as follows:
1) The power demand of a UFCS is computed taking into

account all the stochastic variables of EVs, such as the
arrival time to the station, the initial State-of-Charge
(SoC), the different charging characteristics of EVs
belonging to different categories (e-cars, heavy-duty
electric vehicles, e-motorbikes).

2) A bi-objective optimization model is used to determine
the optimal size of on-site PV panels and BESS.

3) A case study and a sensitivity analysis are performed to
demonstrate the impacts of various parameters on the
optimal solution.

The rest of this paper is as follows. In Section II, the load
demand of the UFCS is introduced. Then, the overall system
of the station along with the model of each of its components
is displayed in Section III. In Section IV, the objective func-
tions and the optimization method are described. The case
study is presented in Section V, along with the results and the
sensitivity analysis on the UFC station. Finally, conclusions
are given in Section VI.

II. LOAD POWER DEMAND
A necessary step to perform the sizing optimization of
the charging station is to estimate the daily electric power
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required by the EVs which connect to the station. Therefore,
given the importance of a priori knowledge of the daily load
profiles, in literature can be found many studies that try to
assess the effects of EVs charging on the grid. Most of them
focus on residential charging [16]–[18]. For instance, in [16],
the authors compare time-series techniques and machine
learning methods used to forecast the growth in building
power consumption caused by the rising of EV chargers.
According to the results, the machine learning techniques
have the advantage of requiring few initial assumptions, but
they do not always show good predictive results. In this
study, the authors start from the assumption that a sufficient
complete database with historical data was available, which
is not always the case, particularly for such a new technology.
Indeed in [19], the author employs a bottom-up approach to
assess the EVs charging impact on residential consumption
without relying on historical data. Many other studies in liter-
ature focus on the impact of EVs charging in commercial [20]
and office buildings [21]. Instead, little research can be found
on the impact of ultra-fast charging with power rates higher
than 50 kW per charger. In fact, for this particular type of
infrastructure, historical data are not available, and this could
become a critical concern because an improper estimation
of the load profile can easily lead to underestimate or over-
estimate their impact on network planning and operation.
Since historical input data are not available, the charging
station profiles can be mainly computed through two types
of approaches: probabilistic and deterministic. In [22] the
authors estimate the impact of a fast-charging station with
a power output of 250 kW for each charger. They compare
the two above-mentioned approaches and according to the
results the probabilistic one seems to show a more realistic
consumption. However, in the assessment, the authors assume
that all the connected vehicles charge at the maximum power
of 250 kW for the whole duration of the charging process
(from 10% up to 80% of SoC). In [23] a UFC station with
charging ports of 150 kW each is considered and in this
case the authors take into account also the charge acceptance
curves of the vehicles assumed to be charged at the station,
however, they investigate just three models of Nissan Leaf
as EVs fleet. In [24], a probabilistic approach is chosen a
priori and the results present the daily power demand pro-
files of a FCS to changes in different quantities such as the
distances covered by the commuters, the availability of slow
charge at home and the number of chargers in the station.
Finally, in [25] the hourly power demand of an ultra-fast
charging station installed along a highway based on a proba-
bilistic approach is carried out. In this reference, the charg-
ing capabilities of the different electric cars models is not
considered and moreover, only cars are assumed to stop at
the station All the listed studies agree that a probabilistic
approach brings sounder and more realistic results, therefore
this method is used to find the EV arrival time and SoC
in this study. In addition, in the EVs load demand here
simulated, different categories of EVs will be investigated
with their relative charging profiles. The assumptions made

to compute the load demand of the station are discussed
below.

1) As mentioned in the previous section, in this study,
a UFCS is considered. This type of charging system is
necessary to serve EV when medium- or long-distance
travels are concerned. Consequently, the typical instal-
lation of UFCS is along motorways.

2) The UFCS aims to fill the EV batteries as fast as
possible, and hence, the maximum allowable charging
power in this study is not limited by the infrastructure
but from the EVs batteries performances.

3) The number of charging ports in the station, the max-
imum waiting time the drivers are willing to wait, the
EV penetration level, and the EV typologies division
are inputs variables; so that, the optimization proce-
dure in this study can be easily adapted to different
scenarios.

4) The charging power strongly depends on the battery
SoC. Indeed, as the battery approaches SoC around
60-70%, the charging rate starts to drop quickly [26],
and the UFCS becomes quite useless. For this reason,
it is assumed in this work that all the EV will charge
their batteries up to 90%, apart from the heavy-duty
vehicles that, given their large battery capacity, are
assumed to charge up to 100%.

Finally, the flowchart of the process followed to compute the
UFCS load profile is reported in FIG. 1.

A. ELECTRIC VEHICLES ARRIVAL TIME
The arrival time distribution of EVs at a UFCS placed along
a highway can be assumed equivalent to the arrival time
distribution of Internal Combustion Engine (ICE) vehicles
at a petrol service station [25], [27]. Indeed, if the arrival
time distribution of a charging station in an urban context
cannot be assumed equal to that of the petrol station, since
the refueling durations are different, UFCSs along highways
tend to simulate the service as similar as possible of the actual
fueling service area.

Therefore, to simulate the probability density function
of EVs’ arrival times at the station, the actual traffic flow
data provided by the Italian National Road Authority was
used [28]. These data refer to hourly traffic flows of typical
working and weekend days in a service area with a petrol
station installed along a highway in the North of Italy. The
data were divided for weekdays and weekend days and the
corresponding probability functions are reported in FIG. 2.
Two peaks can be recognized, the morning peak
(08.00 am–10.00 am) and the evening peak (16.00–20.00).
This pattern can be easily understood because these are the
times when most commuters and businesspeople depart and
return home to/from their work destination.

B. ELECTRIC VEHICLES ARRIVAL STATE OF CHARGE
The SoC of the EV arriving at the station is modeled by the
Weibull probability density function [29] described by (1),
where a and b are the scale and shape factor, respectively,
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FIGURE 1. Flowchart of the steps to compute EVs demand.

FIGURE 2. Probability distribution of the EV arriving time to the station.

which in this study were set at 2.4 and 2.5.

f (SOC|a, b) =
b
a
·

(
SOC
a

)b−1
· e−(SOC/a)

b
(1)

The distribution is shown in FIG. 3, it has a peak around SOC
equal to 20%, indeed according to [20] and [30] the EVs users
are more likely to charge their EVswhen their SOC is low and
in the range of 15%-25%, instead for lower values EV drivers
would worry about running out of electricity on the middle
of the way. Then, the probability decreases almost equally
on both sides; for SOCs higher than 60%, the probability of
stopping at the station to charge is almost null.

FIGURE 3. Probability distribution of the SoC of EV arriving to the station.

C. ELECTRIC VEHICLES CHARGING PROFILES
The charging time of an EV does not depend only on the
output power of the charger, but it is determined also by
the vehicle charging capability, which in turn depends on
multiple factors, among which the most significant are the
battery temperature and the maximum rate of charge allowed
by the manufacturer (usually about 2C). This latter in turn
strongly depends on the capacity of the battery.

In the considered EV fleet, the following categories are
included: an electric moto, three types of electric cars having
different batteries capacity (small, medium, large), and an
electric heavy-duty vehicle (i.e. e-bus, e-truck). Their charg-
ing profiles, shown in FIG. 4 can be found in [31] and [32].

III. MODEL OF SYSTEM COMPONENTS
In the consideredUFCS, the energy required by the connected
EV can be provided by the utility grid, by the installed
PV panels, and by the BESS. It is assumed that the energy
cannot be sold back to the grid. This hypothesis is justified
from the fact that in this type of charging system the EV
needs to be charged as quickly as possible, and hence they
are not interested in participating in the vehicle-to-grid (V2G)
technology. One of the main disadvantages of this type of
charging station is that it requires a very high initial invest-
ment cost and further increasing the cost to provide V2G
is not the case. Therefore, in this study, if an extra amount
of solar energy is generated only the BESS can be used to
store it.
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FIGURE 4. Charging profiles of the considered EV typologies.

FIGURE 5. Schematic model of the station.

In Fig. 5 the schematic model of the system is presented.
It consists of PV panels, BESS, medium voltage power grid,
ultra-fast chargers, and EV.

1) Given the high power required by the UFCS, the con-
nection to the utility grid cannot take place directly
from the low voltage but it must be connected to the
primary medium voltage (MV) distribution.

2) In this case, the grid only supplies electricity to the
station when the energy generated from the PV system
and stored in the BESS cannot satisfy the EVs demand.
The system purchases electrical energy from the grid
under real-time electricity prices.

3) A DC bus architecture is chosen for the considered
station since it allows easier integration of RES and
ESS.

4) The BESS is connected to the common DC bus through
a bidirectional DC/DC power converter.

5) The PV panels are connected to the common DC bus
through a unidirectional DC/DC power converter.

6) The EVs are the main load of the station. They can only
absorb power from the system.

A. PHOTOVOLTAIC PANELS
A PV system converts the sunlight into DC electricity. There-
fore, photovoltaic system, with their free-emission energy,
is considered one of the best alternatives for replacing tra-
ditional fossil fuel-based power resources soon. Moreover,
it has become an essential component in the construction pro-
cess of smart cities and smart grids, indeed, several projects
around the world have been studying charging electric cars
with installed solar panels in parking lots. Nevertheless, the
output power of a PV system is not controllable but it depends
on many factors; the most relevant ones are meteorologi-
cal conditions, temperature, solar irradiance, and PV panels
area [33], [34].

The PV panel output power in the time instant t is reported
in (2).

P∗PV (t) = Prst ·
G(t)
Gst
· δ · [1− α (Tc(t)− Tst)] (2)

where Prst is the rated power of the PV module; G is
the global solar radiation incident on the module measured
in kW/m2; Gst is the incident radiation at standard test con-
ditions (i.e. 1 kW/m2); δ is the derating factor in (%); α is
the temperature coefficient (◦C), which ranges from 0.004 to
0.006 for silicon cells [35]; Tc(t) is the cell temperature at t of
the PV array (◦C) and Tst is the cell temperature at standard
conditions (25◦C).

Since the optimization aims to determine the number
of PV panels to be installed, the output power produced
by Npv panels is expressed in (3).

PPV (t) = NPVP∗PV (t) (3)

Finally, in this study, the approximation in (4) is considered in
the model of the PV system. For low-temperature conditions,
the effect of temperature can be neglected, and hence α can
be set at zero.

PPV (t) = NPV ·Prst ·
G(t)
Gst
· δ (4)

The efficiency of the DC/DC converters has been neglected
in this study because it is assumed that the power losses have
a low impact on the total energy flow and costs.

B. BATTERY ENERGY STORAGE SYSTEM
Battery energy storage systems are devices that enable energy
from RES, like solar, wind, and hydro to be stored and then
released when customers need it the most. Coupled with a
UFCS, BESS can reduce the operational costs of the charging
infrastructure by supplying the EVs during peak load times.
Moreover, the storage system can also lead to lower system
(transformer and feeder) up-gradation costs by purchasing
energy from the national grid during off-peak intervals [36].
Different technology can be used for battery storage: Lead-
acid, Nickel-cadmium, Nickel-metal hydride, and Li-ion bat-
teries. A complete comparison of these types of batteries can
be found in [37].
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The proposed optimization aims to find the optimal capac-
ity of the BESS to be integrated into the charging station.
The main aim of this component is to perform the balance
between the generation sources and loads. The mathematical
model used for the BESS is shown in (5)-(7) [12].

The charging process is expressed through (5):

EBESS (t) = EBESS (t−1) (1−β)+(PchBESS (t) · η
ch
BESS ·1t)

(5)

The discharging process is shown in (6):

EBESS (t) = EBESS (t−1) (1−β)+(PdisBESS (t) · η
dis
BESS ·1t)

(6)

Therefore, the overall equation for this component becomes:

EBESS (t)=EBESS (t−1) (1−σ)+[PchBESS (t) · η
ch
BESS · λ1 (t)

−PdisBESS (t) · η
dis
BESS · λ2 (t)] ·1t (7)

where EBESS (t) is the energy of the battery at time t;
EBESS (t − 1) is the energy at time t − 1; σ is the battery
self-discharge rate; Pchbess is the charging power at time t;
ηchBESS and η

dis
BESS are the charging and discharging efficiency,

respectively; and 1t is the considered time interval.
The variables λ1 (t) and λ2 (t) define the operation of the

BESS according to the following rules:

λ1 (t) =
{
1→ the battery is charging
0→ the battery is not charging

(8)

λ2 (t) =
{
1→ the battery is discharging
0→ the battery is not discharging

(9)

Since the battery cannot discharge and charge at the same
time the constraint in (10) comes naturally:

λ1 (t)+ λ2 (t) = 1 (10)

The other constraints related to this component are expressed
from (11) to (13).

PdisBESS (t) < Pdismax (11)

PchBESS (t) < Pchmax (12)

EminBESS ≤ EBESS (t) ≤ E
max
BESS (13)

The first two constraints imply the fact that the charging
and discharging power cannot exceed the rated values of
the battery declared by the manufacturer. Instead, the last
restriction specifies that the SoC of the battery cannot outstrip
the minimum and maximum limits.

The minimum limit EminBESS is computed through (14).

EminBESS = (1− DOD)EmaxBESS (14)

where DOD is the battery’s depth-of-discharge, which refers
to how much energy can be taken out of the battery on a
given cycle, and it is expressed as a percentage of the total
capacity. In the simplified model of this component aspects
such as battery degradation [38], [39] and safety constraint
like over-temperature [40] have been neglected for the sake of
simplicity, however their impact can be introduced in future
improvements of this work.

IV. OPTIMIZATION FORMULATION
A. OBJECTIVE FUNCTION
As previously mentioned, a multi-objective optimization is
performed in this study. The objective function to be mini-
mized is hence composed of an economic and an environ-
mental objective. The two functions are joint in the final one
through the weighted sum method.

1) ECONOMIC FUNCTION
The economic optimization of the PV panels and BESS size
is performed concerning the Net Present Cost (NPC) or also
known as Life Cycle Cost (LCC). The NPC includes the
annual cost of each k-th component in the station ACk and the
annual cost of purchasing electric energy from the national
grid Cgrid . In particular, the k components are the PV sources
and the BESS, since the cost of the charging infrastructure
is not considered. Therefore, the formula to compute NPC is
reported in (15):

NPC =
m∑
k=1

ACk · Nk +
Cgrid
CRF

(15)

where Nk is the number of units of the k-th component; and
CRF is the capital recovery factor, whose formula is shown
in (16), which depends on the interest rate i and on the system
lifetime y.

CRF(i, y) =
i · (1+ i)y

(1+ i)y − 1
(16)

The total cost in one yearACk of each component includes the
annualized capital cost AICk , the annual operation and main-
tenance cost AO&M k , the annual replacement cost ARCk and
residual value RV k . A full explanation of how to compute
the annualized costs is reported in [41] and [42]. In this
model, the lifespan of the charging station and the PV panels
is assumed the same and hence the residual value and the
replacement costs of this component are nil. Also, for the bat-
tery, the lifespan is considered equal to that of the PV systems
and the project, however, to achieve this time a replacement
in the middle of the project lifespan is necessary. Therefore,
the ESS residual value will be nil too. The final formula to
compute the annual cost of each considered component is
given in (17) and (18).

ACPV = AICPV + AO&MPV (17)

ACBESS = AICBESS + ARCBESS + AO&MBESS (18)

Finally, the annual electricity cost is computed in (19):

Cgrid =
T∑
t=1

(Pgrid (t) · Epr (t)) (19)

where Epr is the electricity price at time t; and Pgrid (t) is
expressed in (21).
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2) ENVIRONMENTAL FUNCTION
The introduction of renewable sources will bring a positive
effect on the global emissions of the station, as a matter
of fact, the EVs batteries will be supplied by pollution-free
energy when the solar one will be available. Consequently,
in the overall statement, pollutant emissions primarily occur
because of the amount of electricity supplied by the national
grid.

The second objective, shown in (20) aims to minimize
the emissions of the main following atmospheric pollutant:
Nitrogen oxides (NOx), Sulphur dioxide (SO2), and Carbon
dioxide (CO2).

Epoll =
T∑
t=1

(
ECO2 (t)+ ESO2 (t)+ ENOX (t)

)
=

{
0 → Pgrid (t) = 0
Pgrid (t)

(
eCO2 + eSO2 + eNOx

)
→ Pgrid (t) 6= 0

(20)

where Epoll is the total pollutant emission; ECO2 (t), ESO2 (t),
and ENOX (t) refer to the CO2, SO2, and NOx emission at
time t , respectively; and finally, eCO2 , eSO2 , and eNOx are the
emission factors of CO2, SO2, and NOx, respectively, which
are set depending on the selected energy mix.

3) CONSTRAINTS
The overall objective function must be minimized satisfying
the following constraints:

1) Equality constraints: the system must meet the energy
balance, which means that the power required in each
instant of time t by the charging load has to be equal
to the sum of the power provided by the PV panels, the
BESS, and the grid. This constraint is given by (21),
where ηch is the efficiency of the charging system of
the EV.

PEV (t)
ηch

− PPV (t)+ PchBESS (t) · η
ch
BESS · λ1 (t)+

−
PdisBESS (t)

ηdisBESS
· λ2 (t) = Pgrid (t) (21)

This equality constraint includes also the limit coming
from the fact that the BESS cannot be discharged and
charged at the same time, which is expressed in (10).
Ultimately, the two decision variables NPV and NBESS
are chosen to be positive integer numbers.

2) Inequality constraints: this type of constraint includes
the limits related to the BESS component which are
reported from (11) to (13) and, in addition, the limit
shown in (22), which states that the station can only
purchase electricity from the gird.

Pgrid (t) ≥ 0 (22)

B. OPTIMIZATION METHOD
The bi-objective optimization model is solved through the
weighted sum method, also known as the linear scalarization

method. As shown in (23), in this method, a weight factor
is assigned to each objective in the problem, and then, the
weighted sum is optimized.

min f (x) = min
n∑
i=1

wi · fi(x) (23)

where f is the overall objective function; and wi are the
weights of the n objectives which must satisfy (24).

n∑
i=1

wi = 1 (24)

In other words, with this approach, the multi-objective prob-
lem is converted into a single-objective optimization prob-
lem, so that the optimal solutions of the single-objective
problem are Pareto optimal solutions to the multi-objective
one. Therefore, considering a bi-objective problem, (23)
becomes:

min f (x) = min [w1 · f1 (x)+ w2 · f2 (x)] (25)

w2 = 1− w1 (26)

where w1 is chosen in the range [0-1]; and w2 is computed
according to (26).

The objective functions considered in the multi-objective
optimization problem, however, are usually measured in
different units, and hence, can have significantly differ-
ent orders of magnitude. This can be a problem for
depicting the Pareto optimal set since the aggregated
function can be dominated by one or more objectives
within it. To overcome this issue, a function transforma-
tion can be applied to normalize the different objective
functions [43].

Different functions transformations have been studied in
literature and a complete review can be found in [44].
Among these, the upper-lower-bound approach is the most
effective and robust method, and thus, it is chosen for this
study.

According to this method, the transformed function is
defined as:

f transfi =
fi − f 0i

f maxi − f 0i
(27)

where f 0i is the minimum feasible value of the i-th objec-
tive function, obtained by minimizing fi(x) without taking
into account the other objectives. Instead, f maxi is defined
in (28).

f maxi = max
k 6=0

fi(xk ) (28)

where xk is the point that minimizes the k-th objective.
To put it simply, f maxi is the maximum value of fi(x)

obtained for solutions that minimize all the other fk (x) func-
tions with k 6= i. In the studied bi-objective optimization,
f max1 is obtained by minimizing f2(x) by setting w2 = 1 and
w1 = 0. Once obtained the x value which minimizes f2, this
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is substituted in f1, and f max1 is obtained. The same procedure
is applied to find f max2 .
The function transformation expressed in (27) is applied

to the bi-objective function in (25) and the ultimate single-
objective function to be optimized is expressed in (29):

ffinal (x) = w1 ·
f1(x)− f 01
f max1 − f 01

+ w2 ·
f2(x)− f 02
f max2 − f 02

(29)

where x indicate the set of decision variable, which in this
case are the number of PV panels (NPV ) and batteries (NBESS )
to be installed; f1 is the NPC of the station expressed in (15);
and f2 expresses the pollutant emissions Epoll computed
in (20).

One of the most used heuristic methods to solve single-
objective optimization problems characterized by many
stochastic variables is the GA [45], [46]. The fundamental
law of GA is to seek optimal solutions using an analogy with
the theory of evolution [47]. The basic GA steps are shown
in FIG. 6. The MATLAB software, precisely its optimization
toolbox in which GA is already embedded, is used to run the
proposed optimization.

FIGURE 6. GA flowchart.

V. RESULTS AND DISCUSSION
A. CASE STUDY
In this section, all the input parameters used for the installa-
tion case along the Italian highway are defined.

1) LOAD DEMAND
In the proposed UFCS, 6 charging ports are considered. The
rated power of each pile is assumed to be 200 kW. Therefore,
by comparing this value with the charging profiles in FIG. 4.
it can be noticed that the limit charging power is imposed by
the Battery Management System (BMS) of the EV battery
and not by the infrastructure.

The EVs penetration level is established at 30%, a value
which is expected to be reached in 2030 in Europe [48]. With
such a penetration level, at the considered station, 100 EVs
are expected to arrive on a weekday and 95 on a weekend
day. The EVs arriving at the station are divided according to
the category percentages reported in FIG. 7 [49]. The share
of different categories has been carefully selected attempting
to reflect reality and to present a foreseeable future scenario.
It has been differentiated not only on the type of vehicle but
also on the day.

As can be seen from FIG. 7, most of the fleet (90%-95%)
is composed of electric cars car since this is the vehicle that
has the highest penetration share on the market in Italy [50].
For the electric motorbikes, we have considered a share of 2%
because even if some models of e-motorbike (just referring to
those having power higher than 11kW, otherwise they cannot
enter Italian highways) have been recently introduced on
the market, however, their penetration level is still low [51].
Finally, regarding the low share of electric trucks, it is

FIGURE 7. Fleet division by EVs categories.
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FIGURE 8. Estimated number of EVs connected to the station.

FIGURE 9. Estimated EVs daily demand.

reasonable to suppose that battery-electric mobility will not
strongly affect this category. Indeed, hydrogen can be a more
suitable solution for heavy road transport [52], [53]. On the
weekend the share of this category is further decreasing
because of the presence of a Sunday traffic ban for heavy-
duty trucks [54].

Finally, the number of EVs connected to the station
throughout the day is presented in FIG. 8 and the maximum
waiting time the EV drivers are willing to wait has been set
at 15 minutes.

By inserting all the above-discussed values as input and
following the procedure described in Section II, the EVs
demand is computed and reported in FIG. 9. However, since
in the analysis a one-hour time interval length is chosen, the
EVs demand is approximated as in FIG. 10.

2) PHOTOVOLTAIC PANELS AND BATTERY ENERGY
STORAGE SYSTEM
The information related to solar radiation is collected from
local meteorological data. The considered average daily

FIGURE 10. Estimated EVs daily demand with 1t of 1 hour.

FIGURE 11. Average daily global irradiance.

global irradiance in a year G(t) of the PV panel is shown in
FIG. 11. All the input parameters required in the models of
the ESS, and the PV panel are defined in Table 2 and Table 3,
respectively.

3) ELECTRICITY PRICE AND GRID EMISSIONS
The electricity exchange with the utility grid is based on
interval electricity tariffs, which are reported in Table 4. The
interest rate is set at 6%.

To compute the environmental impact of the station, the
following emission factors, computed according to the Italian
Energy mix [55], are used: 250, 0.198, and 0.058 g/kWh for
eCO2 , eSO2 , and eNOx , respectively.
Finally, the lower and upper limits for the number of PV

panels are set at 1 and 200, respectively; and for the BESS
to 1 and 50.
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TABLE 2. Parameters of the BESS.

TABLE 3. Parameters of the PV panel.

TABLE 4. Energy prices.

TABLE 5. Costs and emissions in different cases.

B. RESULTS
1) SCENARIO A: THE BATTERY CAN BE RECHARGED BY THE
GRID
In the analyzed scenario, the energy management sys-
tem of the station can be summarized with the following
steps:

1) If the production of solar energy exceeds or matches
the EV demand, then the EV batteries will be supplied
only from the PV panels, and the extra-solar energy,

if present, will be stored in the BESS, if possible, and
otherwise will be wasted.

2) In the case that the load demand is higher than the
power produced by the PV panels and the grid energy
price at that moment is in the F3 tariff, the extra
amount of required power is supplied by the grid.
In this scenario also the BESS is charged by the
grid.

3) Finally, if the solar energy is not enough but the energy
price is in F1 or F2, then the extra amount of power
will be supplied by the ESS and by the utility grid when
necessary.

To demonstrate the advantages coming from the installation
of the PV panels and ESS, Table 5 illustrates the life-cycle
costs and the emissions of the UFCS with and without the
installation of these components. It is displayed that consider-
able cost and emissions savings can be reached by integrating
the PV and ESS in the station design. For instance, with these
components, the minimum achievable NPC of the charging
station, reached with the installation of about 540 kW of
PV panels and about 1.25 MWh of energy storage capacity,
could be reduced by 55%with respect to the case without any
additional components. Similarly, the pollutant emissions of
the overall station in one year of operation can be halved to
2.25 105 kg per year.
The weight factors cannot be chosen a priori since they

reflect the preferences of the possible different station owners
in the decision-making process. For instance, if the NPC
objective has a higher weight, it means that the owner is more
interested in obtaining economic benefits from the system.
On the contrary, if the emission objective has a higher weight
factor it implies that the investor is more in pursuit of envi-
ronmental benefits.

The system configuration and objective function values
under the influence of different weight factors are illustrated
in FIG. 12 a) and b), respectively. It can be seen that the num-
ber of batteries increases while the number of PV decreases,
with the increase of the weight of the economic objective
(objective 1). The weight factors variation directly leads to
a change in the value of the objective functions. As displayed
in FIG. 12 b), as w1 rises gradually, the value of NPC drops,
while the emissions become larger. However, for values of
w1 up to 0.3, there is no change because the number of
PV panels coming from the optimization is equal to the set
upper limit of 200 units as well as the number of batteries is
at the minimum of 1 unit.

Supposing that the weight of each objective function is 0.5,
the output power, per hour on a weekday, of the PV system
and the grid as well as the power required from the load and
the ESS SoC are illustrated in FIG. 13. It can be seen that
the BESS discharges completely between 18-22 h, and with
a small depth between 8-11 h, when the electricity prices
are in the highest range. However, in the middle of the day,
even if the electricity prices are high, the ESS has recharged
at 100% thanks to the extra solar energy produced by the
PV panels.
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FIGURE 12. Variation for different weight factors of a) decision variables,
b) objective function values.

2) SCENARIO B: THE BATTERY IS NOT RECHARGED
BY THE GRID
In this scenario, the energy management system is the same
as the previous one, except for the fact that the BESS is not
recharged during the F3 tariff. Therefore, this implies the fact
that the BESS is never charged by the grid, but it can be filled
only with surplus solar energy coming from the installed
PV system. According to results obtained (with the weight
factors set at 0.5), the best configuration, in this case, would
require the installation of 74 battery units of 50-kWh and the
presence of 197 6-kW solar panels. As expected, the number
of required PV units increases near the maximum upper limit
of 200 units since in this scenario the solar energymust satisfy
both the EVs and the battery needs.

FIG. 14 a) and b) show the SOC of the BESS sys-
tem throughout a weekday and a weekend day for both
Scenario A and B, respectively. As can be seen, in Scenario B
since the battery cannot be recharged during the lowest elec-
tricity rate intervals with the energy bought from the national

FIGURE 13. PV, load and grid power, and SoC of ESS per hour in one
weekday.

electric grid, it ends its operation at 23 h fully discharged
since it provides energy to the EVs during the peak demand
interval which goes from 17-23 h and it starts its charging
process with the surplus solar energy in the early morning
at 7 h. Instead in Scenario A, the battery contributes both in
the peak load intervals with a not deep discharge between 9 h
up to 12 h andwith a complete discharge in the afternoon peak
from 17 h to 19 h. Then it is completely recharged with the
energy purchased from the grid with the lowest tariff starting
from 23 h.

Nevertheless, the NPC of the station in Scenario B
results to be about 1.64 M¿which means 10.5% more
than Scenario A. The produced emissions of CO2 result
2.6 108 g/year and hence higher by about 7% than Scenario A.
Therefore, we can conclude that purchasing energy from the
grid during the lowest peak electricity prices to charge the
BESS is more convenient both in environmental and eco-
nomic terms.

C. SENSITIVITY ANALYSIS
In order to verify the effectiveness of the problem and to
identify which are the factors that influence the most the
optimal design, in this section a sensitivity analysis is carried
out.

1) BATTERY PRICES
The prices of lithium-ion batteries enormously vary depend-
ing on the technology. However the cost of all the technolo-
gies is declining every year, and a reduction of up to 60% of
the actual cost can be expected in 2030 [56]. In FIG. 15, the
trends of the amount of PV panels and batteries to be installed
in the station are reported for battery prices varying in the
range of 200-1000 ¿/kWh. The weight factors are both set
at 0.5.

As can be seen, the battery cost does not strongly affect the
number of batteries for a price variation up to 800 ¿/kWh.
However, in the range 800-900 ¿/kWh, a sudden and

VOLUME 10, 2022 14219



C. Leone et al.: Multi-Objective Optimization of PV and ESSs for UFCSs

FIGURE 14. SoC of the BESS throughout the day in: (a) Scenario A and
(b) Scenario B.

significant decrease occurs, and the optimal number of bat-
teries passes from 21 to 8 units.

2) ELECTRIC VEHICLES CHARACTERISTICS AND
PENETRATION LEVEL
The battery is the most challenging component inside the
EV because of its high cost and reduced driving range. The
rapid fall of prices and the continuous and quick technological
improvements of this component will positively affect the
EV market [57]. Indeed, lower battery prices will automat-
ically result in larger battery capacities and an increase in
the sells due to lower EV prices. Therefore, considering this
plausible future scenario, the decision variables are reported
in Table 6 for different load scenarios. Only electric cars are
assumed to be charged in the station.

As expected, if the e-cars penetration level increases the
optimal design expects more ESS capacity and PV modules
to be installed. Precisely if the penetration level triplicates, the

FIGURE 15. Decision variables for battery price variations.

TABLE 6. Decision variables for different load demands.

number of ESS units almost triplicates too, and the amount of
PV panels reaches the maximum limit of 200 units.

3) ELECTRICITY PRICES
The influence of the electricity prices on the optimal con-
figuration is here analyzed. The four simulated scenarios are
depicted in Table 7. The time division of Table 4 is still valid.
Moreover, as it can be seen, the difference among the prices
is kept unchanged, which means that the prices of F2 are 50%
higher than those of F3, and the prices in F1 are 50% higher
than those in F2.

The results are shown in FIG. 16. In scenarios from 2 to 4,
an increase in the prices of the electricity purchased from the
grid corresponds to an increase in the number of PV panels
to be installed as well as to a slight decrease in the number of
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TABLE 7. Electricity prices scenarios.

FIGURE 16. Decision variables for electricity price variations.

FIGURE 17. PV, EV load, grid power, and SoC of BESS per hour in one
weekday.

batteries. Instead, scenario 1 represents a particular situation
in which the number of installed batteries is much lower than
in scenario 2 (8 units against 22) and the number of PV panels
slightly higher (130 vs 128). In this scenario, the flow of
energy of the different components on a weekday is shown
in FIG. 17. Since the number of batteries is lower in the
time interval between 8-10 h, the overall ESS is completely
discharged. Then it is recharged at 100%of SoCwith the solar
energy coming from the panels. The optimal configuration
found in scenario 1 allows, as the other scenarios, to not
purchase electricity from the grid in the interval 7-17 h.

FIGURE 18. NPC for electricity price variations.

FIGURE 19. Average daily global irradiance throughout the year.

FIGURE 20. Decision variables for irradiance variations.

The trend of the NPC for the electricity prices variation,
reported in FIG. 18, is very clear and as expected it linearly
increases as the prices of electricity rise. An almost doubling
of the electricity prices corresponds to a 60% increase in the
NPC of the station.

4) SOLAR IRRADIANCE
Solar irradiance is a measure of how much solar power the
photovoltaic system is producing in the installed location.
As shown in FIG. 19, this irradiance varies throughout the
year depending on the seasons. It also varies throughout the
day, depending on the position of the sun in the sky, and
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the weather. To consider the randomness of solar energy
generation the average daily solar irradiance in the 12 months
has been considered as input to the optimization algorithm.
In FIG. 20 the results of the decision variables are depicted
for all 12 months of the year.

VI. CONCLUSION
In this study, the optimal size of a PV/battery ultra-fast charg-
ing station was analyzed. First, the electric vehicles power
demand of such a type of station was simulated dynamically
through a probabilistic approach that took into considera-
tions not only the random behavior of electric vehicles but
also their stochastic characteristics. Then, the mathematical
model of each component was developed to evaluate the opti-
mal number of PV modules and batteries. The optimization
problem employed a bi-objective function which included
the net present cost of the station and its environmental
impact. The multi-objective function was then reduced to a
single-objective problem through the weighted sum method
and finally, it was solved with genetic algorithm implemented
inMATLAB. The proposedmodel was applied to a case study
of a charging station to be installed along the Italian highway.
The analysis revealed that the integration of RES and ESS in
the station can bring both economic and environmental bene-
fits. Depending on the weight factor given to the two aspects
the annualized cost and the emissions can be decreased to a
maximum of 55% and 50%, respectively. Finally, a sensitivity
analysis is performed and from the results, it can be seen
that the most influential factor on the station configuration is
the electric vehicles penetration level, and hence, the vehicle
demand profile, which depends not only on the penetration
level but also on the electric vehicles battery capacities and
categories. Indeed, if the penetration level of electric vehicles
doubles and 60% of these have large battery capacities then
the number of required PV panels increases of about 80% and
the necessary BESS capacity doubles too.

In this work, the weighted sum method and genetic algo-
rithm were used to solve the bi-objective function. How-
ever, many optimization techniques and algorithms can be
applied in multi-objective optimization problems. There-
fore, in future works, other solving methods such as Multi-
Objective Particle Swarm Optimization and Mixed Integer
Linear Programming will be tested to then perform a com-
parative analysis on the accuracy of the results of the study
and the computation time. Moreover, since in this study a
counter of the charging/discharging cycles of the battery as
well as. . . has not been taken into account its model, future
works can focus on the introduction of battery degradation
and replacement cost in the overall analysis.
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