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ABSTRACT Machine learning algorithms have been shown to be highly effective in solving optimization
problems in a wide range of applications. Such algorithms typically use gradient descent with
backpropagation and the chain rule. Hence, the backpropagation fails if intermediate gradients are zero for
some functions in the computational graph, because it causes the gradients to collapse when multiplying
with zero. Vector quantization is one of those challenging functions for machine learning algorithms, since
it is a piece-wise constant function and its gradient is zero almost everywhere. A typical solution is to apply
the straight through estimator which simply copies the gradients over the vector quantization function in the
backpropagation. Other solutions are based on smooth or stochastic approximation. This study proposes
a vector quantization technique called NSVQ, which approximates the vector quantization behavior by
substituting a multiplicative noise so that it can be used for machine learning problems. Specifically, the
vector quantization error is replaced by product of the original error and a normalized noise vector, the
samples of which are drawn from a zero-mean, unit-variance normal distribution. We test our proposed
NSVQ in three scenarios with various types of applications. Based on the experiments, the proposed NSVQ
achieves more accuracy and faster convergence in comparison to the straight through estimator, exponential
moving averages, and the MiniBatchKmeans approaches.

INDEX TERMS Backpropagation, gradient collapse, gradient propagation, noise substitution, vector
quantization.

I. INTRODUCTION
Machine learning is one of the most significant and potent
technological advancements in recent years [1], [2]. It allows
analyzing a massive volume of data and automatically
captures intricate and obscure patterns within the data
[1], [2]. Machine learning algorithms, especially those based
on neural networks, have been shown to be highly efficient
and successful in a wide range of real-world applications
such as speech enhancement [3], speech recognition [4], [5],
natural language processing [6], [7], and computer vision
[8]–[11]. With this great potential entailed by these appli-
cations, we can expect that machine learning can be used to
improve efficiency also in a wide range of future applications.

The learning processes in machine learning algorithms are
typically based on propagating gradients in a backward direc-
tion. Hence, a mandatory prerequisite for these algorithms
is that the mathematical relation between input parameters
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and objective function (the computational graph) should
be smooth and differentiable. In other words, learning is
not feasible if there are functions with zero (or undefined)
gradient in the computational graph, since this would
cause the gradients to collapse when multiplying them
with zero (or None) based on the chain rule gradient
calculation.

Vector quantization (VQ) is a data compression technique
which models the probability density function of data by
some representative vectors called codebooks [12]. Since VQ
renders an abstract high-level discrete representation of the
data distribution, it is widely used in a wide range of machine
learning-based applications such as image compression [13],
image generation [14], speech and audio coding [15]–[18],
voice conversion [19], [20], music generation [21], and text-
to-speech synthesis [22]–[24]. Despite this broad applicabil-
ity, VQ is a challenging nonsmooth function for machine
learning optimization, since its gradient is zero almost
everywhere. In such cases, a standard solution for this
challenge is to apply some assumptions or to approximate
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the behavior of the quantization function in the backprop-
agation. Solutions can be categorized, for example, by:
1) straight through estimator, 2) smooth approximation, and
3) stochastic approximation.

The straight through estimator (STE) [25] is a
well-recognized approach which avoids the gradient collapse
problem by simply copying the gradients over parts
of the computational graph which cause this problem
[13]–[17], [26]–[28]. However, it has been shown that STE
does not consider the influence of quantization and leads to
a mismatch between the gradient and true behavior of the
quantization at low bitrates [29]. In addition, for the methods
which use STE, it is essential to add an additional loss
term to the global loss function to make the VQ codebooks
to be updated [13], [14], [17], [27], [28]. Therefore, the
weighting coefficient for the additional loss term is a new
hyper-parameter, which is required to be tuned manually.

Another solution is smooth approximation, which aims
to approximate smooth quantization behavior. Such soft
quantizers perform soft clustering by adopting the softmax
or softmin functions [18], [30]–[32]. In these methods each
input is assigned to all quantization levels (codebooks)
with a probability, which depends on the distance of
the input to the quantization level. Soft quantizers incur
additional computational load which is not reasonable in
transmission applications. Further, soft quantizers are less
accurate and biased on the encoder side, since they apply
soft-quantization in training and hard-quantization in the
main application [18], [30]–[33]. In addition, the overall
performance for most soft quantizers is highly sensitive
and dependent on the tuning of hyper-parameters such
as annealing speed and temperature in [30] and [33],
respectively. In a similar approach [29], the quantization
function is approximated with a series of hyperbolic tangent
functions which are joined together to model the stair-
shape of the quantization operation. The hyper-parameters
of this method have to be well-tuned, otherwise it might not
work appropriately [29]. Another approach circumvents the
gradient collapse by replacing the derivative of the rounding
operation with a smooth approximation [34] in the backward
pass.

A different solution is recognized as stochastic approx-
imation that performs quantization stochastically or inserts
noise (by adding or multiplying) to the parameters (neurons
or weights) which are going to be quantized [25], [35]–
[39]. For instance in [36], a uniform scalar quantization is
applied on all elements of feature vectors in the bottleneck
of an autoencoder to allow approximation of the quantization
effect by adding noise with a uniform distribution. There are
also some other distinct methods which are not related to
one of the aforementioned categories such as [40], which
estimates quantization gradients in the backward step by
optimizing an auxiliary neural network calledmeta-quantizer.
The performance of this method is also sensitive to the choice
of hyper-parameters, especially the architecture of the meta-
quantizer [40].

Most of the solutions mentioned above are related to
scalar quantization, in which the error distribution can be
approximated accurately by replacing it with uniformly
distributed noise, scaled to match the quantization step size.
However, the error distribution for vector quantization does
not have a simple form nor does it follow a determined
structure. Therefore, the quantization error estimation would
be much more complicated in this case.

In this paper, we introduce a novel vector quantization
method called noise substitution in vector quantization
(NSVQ), in which the vector quantization error is simulated
with the product of the original quantization error magnitude
with a normalized noise vector, the components of which are
drawn from a zero-mean, unit-variance normal distribution.
This normalized multiplicative noise does not change the
mean or variance of the simulated error and leads it to gain
the shape of the original error distribution. By replacing
the original vector quantizer with this additive simulated
error in this way, not only the proposed NSVQ can pass
the gradients in backpropagation and avoid gradient collapse
problem, but it also can estimate more accurate gradients
for codebooks rather than just simply copying the gradients
over VQ module like STE. We also apply weighting to the
input vectors so that the importance of the dimensions can be
optimized. To validate the efficiency of our proposed NSVQ,
we apply it to three different scenarios: 1) to model the
spectral envelopes in a speech codec [18], 2) to model the
discrete latent representation of a vector quantized variational
autoencoder (VQ-VAE) [13], and 3) to model a selection of
well-known difficult toy examples.

Our experiments show that, in the training of the vector
quantizers, the proposed NSVQ renders higher accuracy and
faster convergence than STE, exponential moving averages
(EMA) ,1 and MiniBatchKmeans (the built-in function in
the scikit-learn library). Also, in contrast to STE and EMA,
our proposed NSVQ behaves consistently with the increase
in quantization bitrate. Moreover, NSVQ locates the final
optimized codebooks more homogeneously inside the data
distribution than MiniBatchKmeans, and contrary to STE,
it is not sensitive to the initialization of the codebooks,
if we initialize the location of codebooks outside of the
data distribution. Furthermore, in contrast to soft quantizers
and STE, the proposed NSVQ does not incur any additional
hyper-parameters tuning, since it does not need any additional
loss term to be added to the global loss function. Finally,
our proposed NSVQ performs more deterministic than STE
and EMA with smaller variance in the experimental results.
We believe that the properties of better accuracy, consistency
in behavior, and homogeneity in codebooks locations stem
from the fact that the simulated error in NSVQ is able
to gain the shape of the original VQ error distribution
properly. In addition, the properties of fast convergence
and insensitivity to codebooks initialization stem from the
codebook replacement function discussed in III-C.

1See the appendix in [13].
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II. RELATED WORK
To reduce the quantization bias in the backpropagation
of machine learning-based optimizations, the gradient col-
lapse problem has been studied in a moderate number
of approaches. In an effort to resolve the challenge of
propagating gradients in deep learningmodels with stochastic
neurons and hard nonlinearities, four different solutions
were investigated in [25]. The first solution is called Noisy
Rectifier, in which a deterministic function is applied to the
activations of the network, which have already been added by
a zero-mean noise. In the second solution, Stochastic Times
Smooth, stochastic neurons are generated by multiplying a
binomial noise as a stochastic term with a smooth function of
activation values. The third solution is introduced to estimate
gradients for stochastic binary neurons by reformulating hard
nonlinear function as a stochastic function, the probability of
which is a continuous function of parameters to be learned.
This approach is referred as a specific case of the reinforce
algorithm [35]. The last solution is recognized as straight
through estimator (STE), which has been shown to be a
simple and effective method. The key concept of STE is to
set the output gradients of a gradient-problematic function
equal to the exact input gradients to that function, i.e. to copy
gradients over part of the computational graph which causes
the gradient collapse.

The STE solution is applied in some approaches when
performing vector quantization (VQ) to the latent repre-
sentation of autoencoders. A vector quantized variational
autoencoder (VQ-VAE) [13] applies vector quantization to
the bottleneck of an autoencoder and generates a discrete
latent representation capturing abstract high-level features
of the input data. This method yields high quality of the
reconstructed data at the decoder side for various types of
data such as speech, image and video. The VQ-VAE adopts
STE [25] to avoid the gradient collapse of vector quantization
whereby it copies gradients from the decoder input to the
encoder output. The same trick is also employed in [15],
which is a low bitrate speech codec based on VQ-VAE [13].
To make VQ-VAE [13] more suitable for speech coding
tasks, some architectural modifications are suggested in [15]
whereby it preserves the speaker identity and prosody of
the utterance. SoundStream [16] is an end-to-end optimized
low-to-medium bitrate audio codec, which operates in real-
time. In SoundStream, the input signal passes through a
fully convolutional encoder which maps it to a sequence
of embeddings (an efficient representation of input signal).
Subsequently, the embeddings are quantized using multistage
vector quantization and afterwards decoded by a fully con-
volutional decoder. This approach [16] also employs STE to
support gradient propagation in backpropagation for end-to-
end training. A different approach [26] trains a quantized neu-
ral network, in which activations and weights are quantized
with low precision. Two kinds of deterministic and stochastic
binarization functions train a binarized neural network, in that
both of them cannot propagate gradients in the backward
path because of the gradient collapse obstacle. To resolve this

problem, a slightly modified version of STE [25] is applied,
which ignores gradients of the parameters when the corre-
sponding activations or weights are large, and preserves them
otherwise.

The gradient collapse is also addressed by soft clustering
which performs a smooth approximation of quantization.
An end-to-end optimization of an autoencoder is adopted
in [30] which performs image and model compression
in a unified way by minimizing a global loss function.
The typical model architecture for image compression is
an autoencoder, in which the feature representation in the
bottleneck should be quantized and entropy coded into a
bit stream. To map the bottleneck features to the codebook
centers, the encoder uses a softmax function to make this
operation smooth enough for differentiation. A parameter
controls the ‘‘hardness’’ of the assignments, which is set by
an initial value and later increased towards infinity to change
the assignments gradually from soft to hard. This approach
entails a considerable computational load and penalizes the
quantization precision while performing soft assignments.
Furthermore, tuning the speed of the annealing process
(increasing the controlling parameter) is a highly sensitive
task, since slow annealing leads to large weights for the
network and fast annealing stops the learning process because
of the vanishing gradients phenomenon. Another method [31]
recasts the K-means clustering algorithm as a neural network
optimization, which is called K-meansNet. To this end, the
K-means clustering objective is reformulated in a way that
it is dependent on a neural network weights. By optimizing
these weights using regular machine learning optimizers
such as stochastic gradient descent (SGD), the clustering
operation can be performed and optimized. To assign data
points to clusters, the softmax function is employed in the
formulation of K-meansNet, which gives a probability to
each cluster based on the distance of input data point to
the cluster centers. In a similar way, vector quantization
can be used to model the spectral envelopes in a speech
codec [18] based on [41] by applying a softmin function.
A scalar value is multiplied with the exponents of the softmin
function in the numerator and denominator, which acts as a
controlling parameter adjusting the ‘‘hardness’’ of the vector
quantization operation. Similarly to other soft quantizers, the
controlling parameter in [18] should also be chosen with
specific considerations to make this speech codec works
properly.

Quantization behavior is simulated with a smooth approxi-
mation in some other approaches as well. To perform network
quantization, a smooth quantization function is applied
in [29], which approximates the stair-shape of the standard
quantization function by linking a series of hyperbolic
tangent functions. These functions are gradually updated and
capture the shape of standard quantization function during the
training process. In another approach, an autoencoder is used
for image compression [34], in which there are two gradient-
problematic functions: one is the quantization performed by
rounding network weights to the nearest integer, and the
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other is discretizing the representation of bottleneck features.
To solve the gradient collapse challenge for the first function,
the derivative of rounding operation is approximated by a
smooth function in the backpropagation process. To solve
the problem for the latter function, an approximation of
the function is suggested by integrating a differentiable
probability density function and bounding its intervals to
limit the upper bound of the number of bits for the entropy
coder.

As another solution for the gradient collapse challenge,
some methods apply a stochastic approximation. For exam-
ple, an autoencoder [38] acts as a variable bitrate image
compressor, which contains a module to binarize the
bottleneck representation. To solve the gradient collapse
problem for the discrete binarization function, in the forward
propagation, a binarization function is defined whereby
binarization is applied by adding randomized quantization
noise to the features. In the backward step, the derivative is
taken from the expectation of the binarization function [42],
since this expected value equals the original feature value.
BinaryConnect [39] is a binarized deep neural network,
in which the forward and backward propagation steps are
performed using binarized weights by applying a stochastic
binarization function, but the original full-precision weights
are preserved for the parameter update step at each learning
iteration. The approach most similar to our proposed
NSVQ is presented in [36], which reformulates the global
loss function and makes it render nonzero gradients by
replacing a uniform noise with the quantization error [35].
This method [36] investigates scalar quantization, whereas
our proposed method considers the vector quantization
case.

A distinct method [40] reduces the storage space and
computational cost of neural network models by quantizing
their weights. To this end, an auxiliary neural network is
defined as a meta-quantizer whereby the gradient collapse
obstacle is obviated and the entire network quantization
can be performed in an end-to-end manner. The meta-
quantizer network is incorporated in the middle of the chain
rule to calculate the gradients of the network weights with
respect to the total loss function. It generates loss-aware
gradients, which bring amore accurate update for the network
parameters in the quantization training phase. Three different
architectures are suggested for the meta-quantizer based
on fully connected layers and LSTM. The meta-quantizer
network is removed for the inference phase.

III. PROPOSED METHOD
A. VECTOR QUANTIZATION
Vector quantization (VQ) is a technique to model the
distribution of data with a compressed representation with
a fixed number of bits. It performs efficiently for various
data distributions, even without sufficient knowledge of the
distribution in advance [43]. The VQ methodology defines
a set of codebooks and scatters them throughout the data

distribution such that the compressed distribution of the
data is represented by the codebooks. In other words,
each codebook is considered a representative of some data
samples. After applying VQ, these data samples are shown
by the codebook which is the closest one under a distance
measure. Suppose x ∈ RD×1 is a vector from the data
distribution and ck ∈ RD×1 refers to the kth codebook vector
0 ≤ k < N = 2B, where B is the number of bits for VQ. For
each input data sample x, the index of the closest codebook
vector is

kmin = argmin
k

d(x, ck ), (1)

where d(., .) indicates the metric for the distance calculation,
like Euclidean distance. The input data sample is then
quantized to the nearest codebook vector such that x̂ = ckmin .
The principal target of VQ is to find the codebooks which
minimize the expected distance of all data samples to the
codebooks. In mathematical terms, the objective function for
VQ is thus

E[argmin
k

d(xi, ck )] ≈
1
M

M−1∑
i=0

argmin
k

d(xi, ck ), (2)

where E[.] is the expectation operation which is here
approximated overM data samples xi.

B. PROPOSED NSVQ
The main purpose of this study is to enable the use
of vector quantization (VQ) in machine learning-based
optimizations and to propagate gradients through the VQ
model while taking its statistical effect into account. The
main problem with VQ is that it is piece-wise constant and
its gradient is zero. On the other hand, when using standard
backpropagation optimization, gradients are evaluated with
the chain rule, so that if any intermediate gradient is zero, then
their product will be zero, disabling the optimization process.

A similar problem has already been solved with uniform
scalar quantization. Specifically, suppose x is quantized to
x̂ = Q[x], such that the gradient of the quantization is zero
∂
∂xQ[x] ≡ 0, and the backpropagation collapses. However,
the effect of quantization can be simulated with additive
noise [36], [37]. Observe that the quantization error e =
x̂ − x can be assumed to be uniformly distributed (when
quantization accuracy is high). Then x̂ = x + e and we
can replace e with any noise source which has the same
distribution, without changing the overall accuracy. In other
words, we can replace e with uniformly distributed noise,
scaled to match the quantization step size. Then the gradient
is ∂

∂x (x + e) ≡ 1 and the backpropagation can be applied
without any obstacles.

For VQ we can therefore design a similar simulation of
quantization, where the quantization error is replaced by
noise of a similar magnitude. However, in difference to scalar
quantization, here we must make sure that the codebook of
the VQ model can be optimized simultaneously. In VQ, the
distribution of the error signal e = x̂ − x does not have a
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simple form, but we can simulate it with a zero-mean normal
distribution N (0, σ 2). Then, we still need to determine the
standard deviation.

For the case that x is scalar, we can approximate σ 2
≈ e2 =

|x̂−x|2, where x̂ is the chosen codebook entry. The simulated
quantizer can then be defined as

x̂ ′ := x + εe = x + ε · (x̂ − x)

= x(1− ε)+ ε argmin
ck
|x − ck |2. (3)

where ε is a normally distributed, unit-variance and zero-
mean random variable, and cks are the codebook entries.

To characterize the simulated quantizer, note that the error
is

e′ := x̂ ′−x = εe = ε (x̂ − x)

= −εx + ε argmin
ck
|x − ck |2. (4)

It is thus the product of ε and e. The variance of ε is
unity, and therefore the simulated quantizer has exactly
the same variance as the corresponding vector quantizer
E[e′2] = E[e2].
We must further verify that we have access to all the

gradients we need. For that purpose, let us define a generic
loss function which takes the simulated quantization as input
l(x̂ ′). This loss function must then admit nonzero gradients
with respect to both the input x and the chosen codebook
vector ck such that2

∂

∂x
l(x̂ ′) = l ′(x̂ ′)

∂

∂x
x ′

= l ′(x̂ ′)
∂

∂x

[
x(1− ε)+ ε argmin

ck
|x − ck |2

]
= l ′(x̂ ′)

[
1− ε + ε

∂

∂x
argmin

ck
|x − ck |2

]
= l ′(x̂ ′) [1− ε] (5)

and
∂

∂ck
l(x̂ ′) = l ′(x̂ ′)

∂

∂ck
x ′

= l ′(x̂ ′)
∂

∂ck

[
x(1− ε)+ ε argmin

ck
|x − ck |2

]
= l ′(x̂ ′)ε

∂

∂ck
argmin

ck
|x − ck |2

= l ′(x̂ ′)ε
∂

∂ck
ck

= l ′(x̂ ′)ε. (6)

In other words, in both cases we acquire a simple form for
the gradient. Although these gradients can be zero sometimes,
they are not always zero. To be specific, note that the gradient
with respect to ck can be nonzero only for that codebook with
index k , which is the optimal entry for the input x.

2Note that the argmin expression can be replaced by the optimal ck ,
so that the derivatives are ∂

∂x argminck |x − ck |2 =
∂
∂x ck ≡ 0 and

∂
∂ck

argminck |x − ck |
2
=

∂
∂ck

ck ≡ 1.

To consider a similar simulation for the VQ case, suppose
that the input vector is N -dimensional x ∈ RN×1. The
quantized value is then typically defined by the minimum
Euclidean norm x̂ := argminck ‖x − ck‖

2. However, we can
also include weighting onto the norm such that some
dimensions of x become more important than the others. So,
the weighting can be implemented as

x̂ := argmin
ck
‖w� (x − ck )‖2 , (7)

where w ∈ RN×1 is the weighting vector and � represents
the component-wise (Hadamard) product.

To integrate the weighted VQ in a machine learning
optimization framework, we then have to design a simulated
quantizer with similar functionality. For a VQ without
weighting, we can assume that the error is uncorrelated and
has equal variance over all dimensions, that is, its distribution
is N (0, σ 2I ). With weighted VQ, we essentially weight the
error such that the diagonal covariance elements are w−2k σ 2,
where wk is the kth element of w. The simulated quantizer for
the weighted VQ can then be written as

x̂ ′ := x + σv� w−1, (8)

where σ =
√

1
N ‖w� (x − ck )‖2 is the error magnitude (viz.

standard deviation) of the weighted error and v is a vector
the components of which are drawn from a zero-mean, unit-
variance normal distribution.

The noise signal v in (8) is defined to follow the normal
distribution with zero-mean and unit variance. Observe that
this was a choice made without closer inspection. The
intention is to model the quantization error, so v should
follow the same distribution as the quantization error. The
quantization error in turn has a complex structure which
is difficult to specify accurately, but we can make some
characterizations. In particular, if the codebook is dense in
the space and the true distribution is locally uniform, then
the optimal codebook would organize itself in a lattice-like
structure. In the interior of the lattice, errors would then
always be bounded. At the outside border (the surface) of
the data, the errors, however, depend on a more accurate
description of the data. In any case, we can therefore conclude
that a bounded distribution of the error can be useful.
If the Voronoi-cells were perfectly (hyper)spherical, then the
error distribution would be (at high quantization accuracy)
uniformly distributed inside the corresponding hypersphere.

Another issue in (8) is that the noise vector v is multiplied
by the error magnitude σ , which itself can be treated as
a random scalar. The simulated error term is therefore the
product of two random entities, and thus the product will be a
product distribution. So, the variance of product distribution
will be the product of the variances, when the terms are zero-
mean. This leads to an even more accurate solution; if we
normalize v such that v′ := v√

1
N ‖v‖

2
, then v′ will only be a

random angle, but always have normalized length. In other
words, it has constant variance, such that the product variance
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is equal to the variance of the original signal. We can thus
define an improved VQ-simulator as

x̂ ′ := x +

√
‖w� (x − ck )‖2

‖v‖2
v� w−1

= x +
‖w� (x − ck )‖

‖v‖
v� w−1. (9)

Here the term
√
‖w� (x − ck )‖2 is a scalar which scales

v to match the weighted energy of the original error. The
vector v

‖v‖ is a random direction and when multiplied by
the inverse weighted w−1, it gains the shape of the original
error distribution. Without weighting, this would then simply
correspond to a random rotation of the original error signal.
However, with weighting, we move on the surface of an
ellipsoid of the same size as the original error signal.

C. CODEBOOK REPLACEMENT
A significant challenge in training codebooks for VQ is
codebook collapse [44], in which some of the codebook
entries are no longer activated in the quantization process.
This occurs mainly when optimizing the codebooks using
machine learning optimization and when the data distribution
has low correlation or high entropy. There exist several
works to address this issue by applying a kind of codebook
replacement [12], [16], [45], in which the main objective is
to replace the codebook entries which do not contribute or
make less contribution to the VQ model than more active
entries.

In this work, we also resolve the codebook collapse
problem using a codebook replacement technique, in which
during a specified number of training batches, the codebook
entries which are used less than a threshold percentage are
discarded and replaced with new values. To elaborate, they
are replaced with a randomly selected set of more active
codebooks (which are used above the threshold percentage)
added by a small-magnitude normal noise. The parameters
for our codebook replacement are chosen based on the total
number of training epochs and the number of batches within
each epoch. In other words, the value for these parameters
differs for different applications. However, the generic
methodology is that we apply the codebook replacement
function more frequently in the early stages of the training
procedure and as the training goes ahead, we apply it less
frequently. Further, the codebook replacement function is
stopped in final stages of training process, in order not to
introduce new codebooks which are almost the same as the
current active ones.

IV. EXPERIMENTS
To assess and compare the performance of our proposed
noise substitution in vector quantization (NSVQ) with other
methods, we establish three different scenarios: 1) speech
coding, 2) image compression with VQ-VAE and 3) classic
toy examples. In the first scenario, we apply the proposed
NSVQ for a speech coding application introduced in [18],

FIGURE 1. Performance of the proposed NSVQ and STE in terms of
(a) PESQ, (b) pSNR, and (c) STOI metrics for 12 bit VQ at overall bitrates of
8, 9.6, 13.2, 16.4, 24.4 and 32 kbit/s in the speech coding scenario; dotted
and dashed lines refer to the mean values of the STE and proposed NSVQ,
respectively, and the corresponding filled areas refer to their 95%
quantiles.

in which the spectral envelopes are modeled by a VQ
optimized in an end-to-end machine learning framework.
The speech codec is trained and tested using 100 h of
clean English speech from the LibriSpeech corpus [46] over
5 epochs of training. The experiments are conducted at
different bitrates for VQ using the Adam optimizer with
a learning rate of 10−3. Finally, we compare the proposed
NSVQ and straight through estimator (STE) technique in
the same speech coding approach [18] with the same hyper-
parameters.

In the second scenario, we use our proposed NSVQ
to vector quantize the latent representation of VQ-VAE
proposed in [13] for an image compression task. The VQ-
VAE acts as a generative model, which renders a latent
representation containing abstract high-level representation
for various types of data. First the input data passes
through the encoder network and afterwards it is vector
quantized. Then, these vector quantized variables are decoded
by the decoder network. The architecture of the encoder
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FIGURE 2. (a) Smoothed training error (MSE) and (b) smoothed average codebook usage (perplexity) of STE, EMA, and the proposed NSVQ with and
without codebook replacement for 11 bit VQ after 15 k training updates and over 20 individual experiments in the image compression scenario (w/o CBR
refers to the proposed NSVQ without codebook replacement); Solid lines refer to the mean values of the methods, and the corresponding filled areas
refer to their 95% quantiles.

and the decoder is based on ResNet, the same way as
proposed in the original paper [13], where the encoder
comprises two convolutional layers followed by two residual
blocks. Similarly to the encoder, the decoder comprises two
identical residual blocks followed by two deconvolutional
layers.

The VQ-VAE presented in [13] adopts STE to backprop-
agate gradients for VQ and defines uniform distribution as
prior and keeps it constant during the training phase. We train
this VQ-VAE using CIFAR10 dataset and set most hyper-
parameters the same as what is mentioned in the original
paper [13]. The coefficient for commitment loss is β = 0.25,
the dimensionality of each latent codebook vector is D =
64, and we use the Adam optimizer with a learning rate
of 10−3. The main configuration difference to the original
paper was the batch size, which is selected as 32 to allow
faster convergence [47] for the VQ-VAE. We compare the
performance of our proposed NSVQ and STE technique by
training the VQ-VAE with different bitrates K (number of
codebook vectors for latent representation) and a different
number of training updates. In addition to the STE, we also
compare the proposed NSVQ with a different method, which
adopts exponential moving averages (EMA) to update the
VQ codebooks instead of employing an auxiliary loss for
the backpropagation. The EMA update is inherited from
the K-means algorithm (see the appendix of [13] for more
details). We implement the EMA with a decay coefficient
of 0.99 (γ = 0.99), equal to that presented in the original
paper [13].

In the third and last scenario, we aim to compress
the distribution of four strange-shaped machine learning

datasets, including blobs, circles, moons, and swiss-roll,
using the codebooks learned by the proposed NSVQ, the
STE technique, and MiniBatchKmeans (the built-in function
in the scikit-learn library). For each data distribution, the
initial codebooks are captured from the corresponding data
samples added by a normal noise with zero mean and unit
variance. We add noise to the initial codebook vectors to
more deeply investigate and assess the efficiency of each
individual method. For a fair comparison, in the case of
each data distribution, the generated data distribution and
the corresponding initialization points for the codebooks
remain the same for each of these three individual methods.
All of the training phases are executed using the Adam
optimizer with a learning rate of 10−3 over 100 epochs
for different bitrates K (number of codebook entries),
where the data dimensionality is set at 2 (D = 2)
for visualization purposes. The generated data distributions
contain 106 samples, and the experiments are performed
with a batch size of 104 samples. For more details on
the implementation of MiniBatchKmeans, we set n_init =
1 to ensure the same initialization with other methods, and
max_no_improvement = None to disable convergence detec-
tion and let MiniBatchKmeans to be optimized for the entire
100 epochs.

We provide our NSVQ implementation code in a public
webpage for reproducibility purposes.3 For all three above-
mentioned scenarios, we employ the PyTorch machine
learning library for optimization and the codebook replace-
ment method described in section III-C for the proposed

3https://gitlab.com/speech-interaction-technology-aalto-university/nsvq
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FIGURE 3. (a) SSIM and (b) Peak SNR values of STE, EMA, and the proposed NSVQ with and without codebook replacement for different VQ bitrates after
15 k training updates and over 20 individual experiments in the image compression scenario (w/o CBR refers to the proposed NSVQ without codebook
replacement); Solid lines refer to the mean values of the methods, and the corresponding filled areas refer to their 95% quantiles.

NSVQ. In the codebook replacement, we chose the threshold
percentage for discarding unused codebooks as 1% for
speech coding, and 10% for image compression and toy
examples scenarios. We chose the values of the discarding
thresholds by trial and error, and selected the values which
give the best results. The choice of discarding threshold
mainly depends on the application and its adopted metrics.
For more details, changing this threshold from 10% to 1%
would make a really slight difference in the final results for
both image compression and toy examples scenarios, whereas
it would lead to a bit greater difference in the performance of
the proposed NSVQ for speech coding scenario. In general,
the choice of discarding threshold is not a crucial matter
with high importance, since the proposed NSVQ would
work properly if we choose the threshold in a reasonable
way.

V. RESULTS AND DISCUSSION
As explained in section IV, we analyzed the performance
of our proposed noise substitution in vector quantiza-
tion (NSVQ) and straight through estimator (STE) for three
different scenarios. In the speech coding scenario, we apply
the perceptual evaluation of speech quality (PESQ) [48],
perceptually weighted signal to noise ratio (pSNR) and short-
time objective intelligibility (STOI) [49] as the objective
metrics to evaluate the quality of the encoded speech signal.
The evaluation is carried out at different overall bitrates of
8, 9.6, 13.2, 16.4, 24.4 and 32 kbit/s, matching the operating
modes of 3GPP EVS codec [50]. The speech codec presented
in [18] employs multistage VQ to allow quantization for
higher ranges of bitrates. According to the implemented
experiments at different VQ bitrates, the proposed NSVQ
and STE performs almost similarly at high bitrates (when

performing multistage VQ). Hence, we provide the results
for 12 bit VQ in Fig. 1, which can be applied only in one
stage of VQ. According to the figure, the proposed NSVQ
performs better than STE in terms of PESQ, while obtaining
higher PESQ values than STE in 86% of the cases. In terms
of pSNR, the proposed NSVQ operates quite clearly better
than STE with higher pSNR values in 84% of the cases.
From another point of view, our proposed NSVQ achieves
on average from 0.43 to 0.79 higher pSNR values in decibels
in comparison to STE, when increasing the bitrate from 8 to
32 kbit/s. Regarding the STOI metric, both methods perform
comparatively to each other, since the mean values and their
95% quantiles are approximately overlapping. For further
details, the proposed NSVQ achieves slightly higher STOI
values than STE in 76% of the cases.

In the second scenario, we compare our proposed NSVQ
with STE and exponential moving averages (EMA) for image
compression application, while performing VQ on the latent
representation of the VQ-VAE [13]. The main objective is to
train VQ codebooks for discretizing the latent representation
of the autoencoder using STE, EMA, and our proposed
NSVQ. In the evaluation phase, we reconstruct the images
from the learnt VQ codebooks using the trained encoder and
decoder.

We train all three approaches for 5, 10 and 15 k training
updates using the CIFAR10 dataset. In the evaluation phase,
the structural similarity index measure (SSIM) and peak
signal to noise ratio (Peak SNR) are employed as objective
metrics to evaluate the quality of the reconstructed images
from VQ codebooks which are obtained from each of the
individual approaches. The experimental results are shown in
Table 1. Note that the mean and standard deviation of SSIM
and Peak SNR metrics provided in this table refer to their
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TABLE 2. Mean and standard deviation of MSE values for vector quantized data over five individual experiments when applying STE, MiniBatchKmeans,
and the proposed NSVQ in the toy examples scenario.

mean and standard deviation calculated over the entire test
set of CIFAR10 and over five individual experiments. With
regard to the mean SSIM and Peak SNR values in Table 1, the
proposed NSVQ (particularly with codebook replacement)
performs better than STE and EMA in most cases, especially
when training the models for a smaller number of training
updates, e.g. 5 and 10 k cases. In other words, our proposed
NSVQ converges faster than the STE and EMAmethods. The
main reason is the codebook replacement function we adopt
in the proposed NSVQ, which acts like a trigger in the early
steps of the training process and provokes the codebooks to be
updated faster.4 This behavior is shown in Fig. 2. According
to this figure, as a consequence of the codebook replacement,
the average number of used codebooks (perplexity) in the
proposed NSVQ suddenly increases in the early stages of
training, which results in a dramatic drop in the training loss
value. Additionally, according to Fig. 3 and Table 1, when
performing VQ with lower bitrates, the proposed NSVQ
performs comparatively to STE and EMA in terms of SSIM
and Peak SNR values, but it shows more distinctive results
when increasing the VQ bitrate. This is another benefit of the
codebook replacement, since it allows the proposed NSVQ
to exploit the potential of having more active codebooks at

4Note that for the proposed NSVQ without codebook replacement, it is
necessary to apply codebook replacement in the very first step of training
only once to allow codebooks to be updated.

higher bitrates, while replacing less used codebooks with the
most significant ones.

To investigate Table 1 and Fig. 3 from another view-
point, the proposed NSVQ (with codebook replacement)
obtains strictly ascending SSIM and Peak SNR values
when increasing the VQ bitrate, which confirms that it
behaves consistently with the increase in bitrate. However,
the STE and EMA methods do not follow the same behavior.
Regarding the results in Table 1 and Fig. 3, although the
proposed NSVQ (without codebook replacement) behaves
more or less consistently with the increase in VQ bitrate,
we cannot expect the same behavior for another set of
experiments. Because for each experiment, the proposed
NSVQ (without codebook replacement) might end up with a
different amount of perplexity according to its high perplexity
variance in Fig. 2. So, the more perplexity it reaches, the
better SSIM and Peak SNR values it achieves. Due to
this variance in the performance of various approaches,
we plotted the loss, perplexity, SSIM, and Peak SNR
values for all approaches in Fig. 2 and Fig. 3 over an
average of 20 individual experiments to investigate the
variance in their performance. Therefore, with regard to
Table 1 and Fig. 3, not only the proposed NSVQ (with
codebook replacement) gains higher mean SSIM and Peak
SNR values than other approaches, but it also shows less
variance in its performance, which statistically confirms its
superiority.
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FIGURE 4. Final codebooks for (a) the proposed NSVQ,
(b) MiniBatchKmeans, and (c) STE in case of 8 bit VQ for the swiss-roll
distribution in the toy examples scenario.

In the third scenario, we quantize the data distributions
of blobs, circles, moons, and swiss-roll using the proposed
NSVQ, STE, and MiniBatchKmeans. To evaluate the per-
formance of the quantization operation, we calculate the
mean and standard deviation of mean squared error (MSE)
metric between original data distribution and its quantized
version over five individual experiments. The related results
are shown in Table 2.5 According to the table, the proposed

5Note that since the data distributions cover different ranges of values in
two dimensional space, the scale of MSE values varies for different data
distributions.

NSVQ performs better than STE and MiniBatchKmeans in
almost all cases regarding the mean of MSE values. With
regard to standard deviation of MSE values, our proposed
NSVQ performs more deterministic than STE, since it has
less variance than STE in all cases. However, when com-
paring with MiniBatchKmeans, the proposed NSVQ obtains
slightly higher variance in some of the experiments. Since
the differences for MSE values are not too high for various
methods, we plotted the final optimized codebooks found by
each of these three methods to attain a better understanding
of their performance. Fig. 4 shows the optimized codebooks
found by each of these methods for the swiss-roll distribution
in the case of 8 bit VQ. We chose 8 bit VQ for visualization,
since at higher bitrates the figure becomes visually too
dense. According to Fig. 4, the proposed NSVQ found the
codebooks in a more uniform and homogeneous way in
comparison to the MiniBatchKmeans method. Furthermore,
the STE method ends up with numerous dead codebooks,6

whereas the proposed NSVQ has only one dead codebook.
Based on our experiments, the proposed NSVQ would not
have any dead codebooks when performing VQ with higher
bitrates than 8 bit. In contrast to the proposed NSVQ, the STE
method would lead to a larger number of dead codebooks
when performing VQ with higher bitrates. In other words,
the STE method is highly sensitive to initialization and
performs poorly when initial codebooks are located out of
the data distribution. The same behavior has been shown in
our experiments for other similar data distributions with low
correlation including circles andmoons datasets. On the other
hand, for the distributions with high correlation such as blobs,
all three methods perform similarly in terms of MSE values
without any dead codebooks.

VI. CONCLUSION
Vector quantization (VQ) is a data compression tech-
nique which is widely used in many machine learning-
based applications, especially in vector quantized variational
autoencoders. However, VQ cannot be used as such during
training of machine learning models, since its gradients are
uniformly zero, which collapses backpropagation. In this
paper, we propose a novel method to simulate the VQ
behavior by noise substitution so that it can be employed in
machine learning optimizations. We evaluate our proposed
noise substitution in vector quantization (NSVQ) in three
different applications with various types of input data.
The experiments demonstrate that the proposed NSVQ
compresses the input data with better accuracy, faster
convergence, smaller variance in performance, and less
sensitivity to the codebooks initialization in comparison to
straight through estimator (STE) and exponential moving
averages (EMA). Furthermore, contrary to STE and EMA
methods, the proposed NSVQ behaves consistently with the
increase in VQ bitrate, which is expected from a genuine VQ.

6Dead codebook refers to the codebook which is selected out of the data
distribution and would not be used for the decoding phase.
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Since scikit-learn library does not support GPU execution, the
proposed NSVQ provides an alternative for the conventional
K-means algorithm with faster execution time and higher
accuracy. The proposed NSVQ provides a non-zero gradient
only for the best codebook entry (which has the minimum
distance to the input vector) in one training batch. As a future
work, we consider defining gradients for the entire codebook
entries or a subset of them to yield a more efficient VQ
which might also converge faster than the current proposed
NSVQ. In addition, as another future work it would be
worthwhile to investigate the behavior of the proposed NSVQ
by adopting other noise distributions instead of normal
distribution.
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