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ABSTRACT Nowadays Convolutional Neural Networks (CNNs) are being employed in a wide range of
industrial technologies for a variety of sectors, such as medical, automotive, aviation, agriculture, space, etc.
This paper reviews the state-of-the-art in both the field of CNNs for image classification and object detection
and Autonomous Driving Systems (ADSs) in a synergetic way. Layer-based details of CNNs along with
parameter and floating-point operation number calculations are outlined. Using an evolutionary approach,
the majority of the outstanding image classification CNNs, published in the open literature, is introduced
with a focus on their accuracy performance, parameter number, model size, and inference speed, highlighting
the progressive developments in convolutional operations. Results of a novel investigation of the convolution
types and operations commonly used in CNNs are presented, including a timing analysis aimed at assessing
their impact on CNNperformance. This extensive experimental study provides new insight into the behaviour
of each convolution type in terms of training time, inference time, and layer level decomposition. Building
blocks for CNN-based object detection are also discussed, such as backbone networks and baseline types,
and then representative state-of-the-art designs are outlined. Experimental results from the literature are
summarised for each of the reviewed models. This is followed by an overview of recent ADSs related works
and current industry activities, aiming to bridge academic research and industry practice on CNNs andADSs.
Design approaches targeted at solving problems of automakers in achieving real-time implementations are
also proposed based on a discussion of design constraints, human vs. machine evaluations and trade-off
analysis of accuracy vs. size. Current technologies, promising directions, and expectations from the literature
on ADSs are introduced including a comprehensive trade-off analysis from a human-machine perspective.

INDEX TERMS Autonomous vehicles, computer vision, convolution, convolutional neural networks,
embedded systems, object detection, image classification.

I. INTRODUCTION
In recent years, Deep Learning (DL) techniques have
been exhaustively utilised in a large variety of fields, and
Convolutional Neural Networks (CNNs) are one of the most
frequently used of them in solving real-time problems of
computer vision tasks, as it enables most accurate acqui-
sitions. The concept behind CNNs drew inspiration from
the structure of biotic visual systems. In the 1960s, it was
theorized that the cats’ visual cortex is based on sensitively
to smaller sub-regions in the brain, called receptive fields [1].
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Two decades later, Fukushima [2] introduced the first CNN
model, based upon [1] and referred to as Neocognitron, which
was simulated and implemented on a computer. This network,
designed by using multi-layer artificial neuron connections
for the transformation of images, is still considered as the
source of inspiration for CNNs. Then, LeCun et al. [3],
[4] created a CNN model, referred to as LeNet-5, which
specifically classifies handwritten digits and can be trained
to recognize patterns from raw pixels through using the back-
propagation algorithm [5].

Despite all the innovative approaches, LeNet-5 [4] was
ineffective in the implementation of complex problems,
such as image classification, requiring large training data
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and powerful processors for computation. Advancements
in hardware accelerators, such as Graphical Processing
Units (GPUs), Field Programmable Gate Arrays (FPGAs),
Application-Specific Integrated Circuits (ASICs), etc., made
these devices a suitable implementation choice for Machine
Learning (ML) techniques [6]. Becoming widespread in the
early 2010s, CNN models along with efficient training meth-
ods were released and implemented on GPUs [7]–[9]. Fol-
lowing that revolution, many CNN algorithms have been
proposed addressing the needs of different areas, with com-
puter vision and natural language processing seen as major
application fields. Computer vision tasks to which CNNs
have mostly been applied are image classification, object
detection, face recognition, scene labelling, action recogni-
tion, human pose estimation, and document analysis. As for
natural language processing tasks, the two main prevalent
fields are speech recognition and text classification. Nowa-
days CNNs are being employed in a wide range of industrial
technologies for a variety of sectors, such as medical, auto-
motive, aviation, agriculture, space etc.

A. CNN DEPLOYMENT IN AUTOMOTIVE
Along with recent technological advancements, consumer
expectations from vehicles have evolved to extending their
digital lifestyles into vehicle cabins and connecting with
outside worlds. Concurrently, growing traffic congestion, rise
in numbers of new drivers, and changing priorities have
directed the focus on safety-based systems as well. As a
result, automakers have started to transition from horsepower
to digital technology as a standard feature, enabling self-
driving capabilities in the production of automobiles, which
will be referred to as Autonomous Driving Systems (ADSs)
in the rest of the paper.

In the near future, the next generation of ADSs promises
an advanced level of self-driving experience. To enable this
advance, the industry needs to combine multiple technologies
into a single system, which has the capability of communi-
cating, collaborating, and eventually performing human func-
tions for almost all driving scenarios. According to Intel [10],
all these capabilities need numerous sensors, such as radar,
lidar, GPS, and advanced camera technologies, capable of
collecting the necessary information of ∼1 GB/second. This
data should be processed in real-time in order to make safe
decisions for the vehicle on the road. Despite the advan-
tages of lidars, such as high precision and 3D mapping,
their extreme cost prevents their commercial deployments in
the industry. For example, existing lidars in the market are
as expensive as $75k [11]. Thereby, some companies like
Tesla [12] and Mobileye [13], [14] have announced that opti-
cal cameras and radars are their preferred choice of sensing
devices in vision-based parts of ADSs. From this point of
view, CNNs as an image-based technique have been effec-
tively and widely utilised by automakers in object detector
modules of automobiles.

Although there has been lots of advancements in object
detection with CNNs for various applications, because of

the stringent real-time limitations on both safe operational
decision-making and latency of data processing, ADSs are
notably challenging and still under experimentation. In fact,
designing an end-to-end ADS remains an unsolved research
topic [15]. Furthermore, the computational pipeline sys-
tem of ADSs includes various modules executing multiple
tasks, and every module needs improvements on their per-
formances [16].

B. PAPER CONTRIBUTIONS
This paper reviews the state-of-the-art on the field of CNNs
for image classification and object detection, and the field
of ADSs in a synergetic way. The main contributions of the
paper are as follows:

The first main contribution of this paper is a detailed
review of the literature on CNNs for both image classifica-
tion and object detection, comparing them regarding their
performance and model size. In recent years, the main-
stream CNN research on image classification was focused
on the design of two types of algorithms: heavyweight
and lightweight algorithms. The former prioritizes accuracy
performance regardless of other factors, whereas the lat-
ter aim to reduce the model size and the computational
load achieving a satisfying accuracy. Therefore, these types
of CNNs are reviewed as separate classes in the order
of their historical evolution. The CNNs on object detec-
tion are also divided into two classes: two-stage detectors
and one-stage detectors, which are discussed in a historical
order too.

The second main contribution of the paper is a novel inves-
tigation of the convolution types and operations commonly
used in CNNs for image classification that distinguish one
model from another. The purpose is to establish the effect
of these on the CNN performance. For that, their training
and inference performances were evaluated using a CPU
as well as two identical hardware accelerators (2xNVIDIA
Pascal P100s GPUs). The evaluation was based on a reference
CNN model, ResNet [17], for a fair assessment. The pursued
strategy was to place and test different types of filters on the
ResNet’s modules. By means of experiments with two well-
known datasets CIFAR-10 and CIFAR-100 [18], a runtime
timing analysis was carried out by decomposing the architec-
tures into basic components.

The third main contribution of this paper is an overview
of recent ADS related works and current industry activities,
in which an attempt is made to bridge academic research and
industry practice on CNNs and ADSs. Design approaches
aimed at solving problems of automakers in achieving real-
time implementations are also proposed based on discussion
of design constraints, human vs. machine evaluations and a
trade-off analysis of accuracy vs. size.

In other words, this paper is an up-to-date application-
based review of CNNs. Unlike other published reviews,
ours involves a full investigation end-to-end. The difference
between our review and the previously published ones is
shown in Table 1, where it can be seen that our paper is the
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TABLE 1. Comparison of existing studies in the scope of survey title.

most comprehensive study in terms of the scope of the work
covered.

The rest of the paper is structured as follows. Section II
introduces the main components of CNNs in terms of their
mathematical and architectural properties as well as fre-
quently used datasets and libraries in the scope of the sur-
vey. Section III provides a review of CNN models for image
classification and examines the different convolution and
operation types in an evolutionary manner using experi-
mentally derived execution time, while Section IV reviews
CNN models for object detection. Most recent ADSs related
works concerned with CNN-based classification and detec-
tion, industry status, and ADSs system architectures are out-
lined in Section V, which also includes a discussion on design
constraints and promising new directions. Finally, Section VI
concludes the paper.

II. OVERVIEW OF CNNs
CNNs are a type of layered Deep Neural Networks (DNNs),
which are composed of artificial neurons. They utilise several
distinctive properties compared to other neural network types,
such as local receptive fields, spatial subsampling, shared
weights, etc. CNNs enable cooperation throughout multiple
sequential stages, which consist of a convolution, padding,
and pooling operation, adding nonlinearities via activation
functions, and Fully Connected Layers (FCLs).

The input and output of each convolutional layer are known
as feature maps. If the input is an image, each feature map
is a 2D array containing colour channels and if a video, the
feature map has to be a 3D array and 1D arrays for audio
inputs. In every output stage along with the network, there
are new features extracted from the pixels of its input, and by

the convolutional operations, more distinguishing features are
detected in the later layers.

A. CNN ARCHITECTURE
As an example of a typical CNN, the entire architecture of
the popular CNN AlexNet [28] is illustrated in Fig. 1, which
includes five convolutional layers with padding operations,
three max-pooling layers, and three FCLs. In Fig. 1, ID,
OD,KD denote the spatial height and width dimension of the
inputs, outputs, and kernels, while IC ,OC ,KC are the channel
numbers of those, respectively. In addition, F is the filter
number, which is equal to the outputs OC , and the kernel
dimension in the padding operation is symbolized by KP.
A notable term that will be used in the layer-based definitions
is tensor, which in the simplest form is a generalization of
matrices to n-dimensional space.
The following sub-sections define all the architectural

components of a CNN, based on the reference architecture
AlexNet in Fig. 1. Weight number calculation and areas of
usage are also discussed.

1) INPUT LAYER
Input layers introduce input data in the network, which nor-
mally represents an image structured as a data array of pixel
values. Before feeding the image into a designed model,
the spatial and channel dimensions of the input have to be
reshaped according to the model or the used deep learning
library specifications.

2) CONVOLUTIONAL LAYER
The core of a CNN is the convolutional layers. Learnable
parameters in these layers form the kernels and the collection
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FIGURE 1. A comprehensive view of the AlexNet [28] architecture.

of the kernels in a layer is called a filter, which is subjected to
a convolution multiplication through the full spatial depth of
the input. A kernel defines the field of view on the convolution
operation, whereas, as a tensor sample, a filter is the total
number of kernels in a layer channel-wise. For instance, a
filter with a size of ‘‘m × n × c’’ includes c kernels with
‘‘m × n’’ kernel dimension.
Via the convolution operation, a feature map is obtained

with a new spatial dimension and channel number based on
the input and filter dimensions. Based on the used kernel’s
parameter values, outputs are extracted with different fea-
tures. In Fig. 1, all the convolutional layers are composed of
standard spatial 2D convolutions. Consider a spatial convolu-
tion, which takes a tensor I ∈ RID×ID×IC as the input, and the
filter of the convolution is the tensor K ∈ RKD×KD×IC×F .
For simplicity, we assume the spatial dimensions of the
input/output to be identical, which means that OD = ID, and
the stride (i.e., the convolution kernel’s step size) is 1. Then,
the spatial 2D convolution outputs a tensor O∈RID×ID×F ,
computed as

Ok,l,n =
∑
i,j,m

Ki,j,m,nIk+î,l+ĵ,m, (1)

where î = i − bID/2c and ĵ = j − bID/2c denote the re-
centred spatial indices; k , l and i, j are the indices over the
spatial dimensions; whereas m, n provide indexation to the
channels and filters.

3) PADDING OPERATION
Padding is the placement of several extra pixel grids to the
input’s spatial plane to handle the output’s spatial dimensions.
In case of a demand for an equal dimension of input and

output tensors, the padding operation could enable it. As seen
in Fig. 1, the output tensor’s spatial dimensions are in the
control of the padding operation. The effect of the padding
operation in the output tensor’s dimension (OD × OD) is
defined by

OD = ID + 2P− KD + 1. (2)

4) STRIDE OPERATION
The stride value indicates that the filter, which is the weight
tensor for the convolution process, slides on the input tensor
in increments of one or more-pixel steps. This is another
parameter that directly affects the output size. The dimension
of the output tensor (OD × OD) is defined by

OD =
ID + 2P− KD

S
+ 1, (3)

where S is the stride step parameter.

5) ACTIVATION FUNCTIONS
CNNs use various activation functions, such as Rectified
Linear Units (ReLU), Sigmoid, TanH, etc., to build the feature
map, obtained through the convolution operation. These func-
tions enable the introduction of nonlinearities to the layers,
which increases learnability. In particular, ReLU has been
frequently preferred in CNNs on the score of enabling several
times faster training in comparison to the other activation
functions.

6) POOLING OPERATION
Pooling layers take small-sized rectangular blocks, defined
by KP, from the output feature map, and form subsamples
from it to produce a single maximum, minimum, or average
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output from every block. After that, a new sampled feature
map is formed, which is then used as an input for the next
convolutional layer. By reducing the parameters of the feature
map, the pooling layers allow to reduce the spatial size as
well as the control of overfitting. As instance, in Fig. 1,
following the convolutional layers and the application of the
activation functions, there are three maximum pooling lay-
ers, represented with light amber layers. Additionally, global
average pooling is another pooling method, used in [29] as
well. It does a pooling to the whole image at a time without
any sliding.

7) FULLY CONNECTED LAYER
The CNN architecture performs feature learning via the oper-
ations introduced above until the last convolutional and pool-
ing layer output is derived. The final CNN stage consists of
FCLs and performs a high-level classification. It is placed
after the last convolution or pooling operation has occurred.
The flattening operation in Fig. 1 provides the transition
from convolutional later to FCL by converting the data to a
1-dimensional array. Essentially, in this stage of the archi-
tecture, a usual neural network process for the operation of
classification takes place.

8) OUTPUT LAYER
This is the final stage, and the predicted result for the input
image is obtained via different cost functions. For instance,
in Fig. 1, Softmax multi-class classifier [30] is deployed.
Thus, a cost is produced for a prediction by comparing the
predicted result and the real data from the training set.

B. FULLY CONVOLUTIONAL NETWORKS
Fully Convolutional Networks (FCNs) are neural networks
that are composed of only convolutional layers without
adding any FCLs. The difference from CNNs is that FCNs
are fully convolutional networks, which do all the learning
with convolution-based filters even for decision making in
the last layer, whereas CNNs include FCLs at the end of
its architecture like Fig. 1. Another difference is that FCNs
learns everything by using global information, whereas FCLs
try to learn and make decisions only based on local spatial
inputs. A few examples of this type of networks are included
in Section III and IV.

C. NUMBER OF CNN PARAMETERS
Definition of the output tensors’ dimension and calculation
of the number of parameters, memory accesses, and FLOPs
in CNNs are crucial for understanding superior aspects of the
different types of convolution filters discussed in the rest of
the paper. This section, therefore, introduces the widely used
method to calculate the number of parameters for frequently
used 2D convolutions, based on the AlexNet architecture [28]
in Fig. 1. The number of parameters, memory accesses, and
FLOPs for different types of convolution kernels are also
defined in Section III. Initially, output dimensions have to
be examined regarding different layer types. Equation (3)

TABLE 2. Layer by layer parameters of AlexNet.

is employable in convolutional and pooling layers with the
difference that KD needs to be replaced by the kernel size
of the pooling operation, KP. As for the FCLs, it is a length
vector and thus, the output size is equal to the number of
neurons in the particular layer.

To calculate the number of CNN parameters, we recognize
that it can be represented by the sum of the number of param-
eters in three different CNN operations: the convolutional
layers, the transition from convolutional layer to FCL, and the
transition from FCL to FCL. Pooling layers do not include
any parameters, as they are aimed at size reduction of the
outputs.

The number of parameters in the convolutional layers can
be computed by

F × KC × K 2
D + BC , (4)

where BC denotes the bias number in the convolutional layer.
In the transition from convolutional layer to FCL, the

number of parameters is

N × IC × I2D + BCF , (5)

where N is the neuron number in the first FCL; IC an ID
are the channel number and spatial dimension of the tensor
previous to the first FCL; and BCF represents the bias number
in the layer.

In the transition from FCL to FCL, the number of parame-
ters is

FP × F + BFF , (6)

whereFP andBFF are the neuron number in the previous layer
and biases respectively.

Consequently, the total number of parameters in AlexNet,
calculated by means of (4)-(6) defined above, is 62,378,344,
as detailed in Table 2.
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FIGURE 2. Difference between image classification (a) and object
detection (b) tasks.

D. CNNs FOR IMAGE CLASSIFICATION AND OBJECT
DETECTION
Before delving into the recent studies of CNNs for classifica-
tion and object detection, it is essential to explain these two
imaging tasks. In general, classifying an object in an image
aims at assigning it to a certain category, while object detec-
tion involves localization and classification of all present
objects. Fig. 2 illustrates the outcome of the two operations,
where as a result of the image classification task, the image
in Fig. 2 (a) is identified as a car; and as a result of object
detection in Fig. 2 (b), cars, persons, and traffic lights are
detected, and their positions and sizes are established by
drawing a bounding box around the objects of interest in the
image.

There is an obvious overlap between the two tasks, which
requires that designs of high-performance object detection
CNNs incorporate high-quality image classification proper-
ties in their architectures. In other words, an effective CNN
architecture for object detection depends directly on the
image classification quality of that CNN architecture.

In the rest of this section, frequently used datasets and
libraries for the implementation of CNNs for image classi-
fication and object detection are introduced.

Representative CNN architectures for image classification
and object detection are discussed in Sections III and IV
respectively.

1) DATASETS
The learning capabilities of CNNs are obtained during train-
ing and heavily rely on the suitability and comprehensiveness
of the available training datasets. In fact, features of datasets,
such as collection scenarios, class numbers, resolution, etc.,
are crucial for CNN performance. In this section, we intro-
duce the most widely cited datasets that are related to the
scope of the paper along with their distinctive characteristics.
For clarity of presentation, we divide the existing datasets into
two classes: domain-general and domain-specific. Domain-
general datasets here represent datasets that can be used
for the training of CNNs for image classification or object
detection, which then could be utilised for a particular appli-
cation domain. For instance, ResNet-50 [17] has been trained

on a domain-general dataset, ImageNet [31], and deployed
for image classification tasks in various domains, such as
medical [32], agriculture [33], autonomous driving [34], and
so on. Contrary to domain-general, domain-specific datasets
are originally created for a particular domain with the aim
to facilitate learning of specialised domain-related features.
Main features of renowned examples of both classes are
summarised in Table 3, where the names in the left-most
column are shaded light grey for domain-general datasets and
dark grey for domain-specific datasets.

There exist two prominent domain-general datasets for
image classification, which are CIFAR-10 & 100 [18] and
ImageNet [31]. As an intermediate level dataset for image
classification, CIFAR-10 & 100, have been introduced by
one of the creators of AlexNet [28], Alex Krizhevsky. Both
consist of a 50k training set and 10k test set fixed size
32× 32 colour images. In CIFAR-10, each class is rep-
resented by 6k images, whereas in CIFAR-100 there are
600 images per class. As for ImageNet [31], it is regarded
as an advanced level dataset, which has been developed with
around 14M labelled high-resolution images according to the
WordNet hierarchy with 22k subcategories. There has been
also held a CNN competition since 2010 based on this dataset,
referred to as the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). Since the 2012 ILSVRC competition,
the dataset has been kept unchanged and involves 1k subcat-
egories, ∼1.3M training images, 50k images for validation,
and 100k images for testing. In addition, the number of
images for each class, termed ‘synset’ [31], ranges between
732 and 1300. The newly proposed CNNs for domain-general
image classification in the academic community have been
mostly trained on these two datasets. The main features of
these datasets are summarised in Table 3 and further details
are provided in Section III.

Frequently used domain-general object detection datasets
according to the open literature are Pascal VOC (Visual
Object Classes) [35], MS COCO (Microsoft Common
Objects in Context) [36], and ILSVRC 2014 [31]. Pascal
VOC is a standardised dataset for object recognition, and
popular challenge competitions based on it had been run
from 2005 to 2012. Pascal VOC 2012 has 11,530 images with
27,450 annotations and 20 object categories. The currently
most popular object detection dataset, MS COCO, is a large-
scale dataset consisting of 328k images. It is suitable for mul-
tiple tasks, such as object detection, segmentation, keypoint
detection, and captioning. Another widely used large-scale
dataset in detector training is ILSVRC 2014, which is a part
of the 2014 ILSVRC competition [31]. It comprises 450k
training imageswith 200 object categories, 20k validation and
40k test images.

The main features of the datasets, outlined above, are
summarised in Table 3 and further details are included in
Section IV.

While there is no doubt of the usefulness of ImageNet [31]
and MS COCO [36], their images often represent single-
object scenes, which are not representative enough of what
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TABLE 3. Main features of training datasets for image classification and object detection CNNs.

is encountered in real-time self-driving situations. Besides
that, these domain-general datasets lack the necessary content
to support the learning capabilities of ADSs with regard to
specific self-driving scenarios. For example, adverse weather
conditions could lead to poor CNN detection performance in
ADSs, if weather-related information has not been present
in the training data. In consequence, various domain-specific
datasets have been created including different self-driving
scenarios to facilitate CNN classification and detection learn-
ing capabilities for ADSs.

The most cited self-driving-specific datasets developed in
recent years, main features of which can be found in Table 3,
are briefly overviewed below:

(i) KITTI Vision Benchmark [37] is the most widely cited
dataset [50] among researchers and developers since its pub-
lication year, 2012. It offers a relatively large amount of
self-driving scenes with 2D, 3D, and bird’s eye-view object
detection datasets together with annotations.

(ii) UC Berkeley DeepDrive, BDD100K [38] is a recent
dataset with 100k annotated videos and 10 different tasks
for evaluation of self-driving image recognition algo-
rithms. The dataset comprises more than 1k hours of driv-
ing experience and 1M frames. It also provides a large

context diversity for self-driving by being strengthened with
all-weather, geographic, and environmental conditions in the
day/night time.

(iii) CityScapes [39] is a large-scale dataset and focuses on
the semantic understanding of urban street scenes with 25k
annotated images and 30 classes.

(iv) A2D2 [40] has been released by Audi and includes 41k
labelled data with 38 features and 390k unlabelled data. Its
size is around 2.3 TB and is split by annotation types, such as
semantic segmentation, 3D bounding boxes, etc.

(v) nuScenes [41] has been created by a full sensor suite
mounting six 360◦ cameras, five radars, a 36-beam LIDAR,
and a Global Positioning System and Inertial Measurement
Unit (GPS-IMU). It contains over 1.4M images with a diver-
sity of driving manoeuvres, traffic situations and unexpected
behaviours.

(vi) ApolloScape [42] is a part of the Apollo project, which
is an evolutive and ever-growing research project across all
aspects of autonomous driving. The project website offers
various simulation tools over 80k lidar point cloud, 100k
street views, and 1000km trajectories for city traffic.

(vii) Caltech [43] is a pedestrian detection dataset with
annotations.
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(viii) Leddar PixSet [45] was released in 2021. It consists
of 29k frames in 97 sequences with more than 1.3M 3D
bounding box annotations, collected by a full Autonomous
Vehicle (AV) sensor suite (LIDARs, cameras, radars, and
GPS-IMU). What presents this dataset novel is the deploy-
ment of a flash LIDAR with the inclusion of the full-
waveform data.

(ix) Oxford RobotCar [46] contains over 100 records of a
consistent route during a year in Oxford, UK, which brings
a long-term diversity approach in data collection. Its sensor
suite comprises six cameras, LIDAR, and Global Positioning
System and Inertial Navigation System (GPS-INS).

(x)Waymo [47] was collected byWaymo self-driving cars.
More details about it are presented in Section V.

The domain-specific datasets EuroCity [44], Udacity [48],
and TorontoCity [49] in Table 3, feature person instances,
mountain views and large-scale urban views, respectively.

Apart from the above, more sophisticated types of training
datasets are also available, for example, naturalistic driving
datasets, such as NUDrive [51], euroFOT [52], etc., which
focus on the human element in autonomous driving: the
driver.

2) LIBRARIES AND FRAMEWORKS
In this subsection, the most frequently used libraries
and frameworks in the CNN field are reviewed. Com-
pared to other programming languages, Python-based
machine learning libraries have been the go-to choice
for researchers and developers as they offer a variety
of features and flexibility, which can increase produc-
tivity and quality of code writing, implementation and
integration.

The CNN coding process can be divided into two main
stages: 1) data pre-processing and 2) building of the CNN
algorithm. Several general-purpose libraries can be employed
at the first stage to insert and prepare datasets for the second
stage, such as, the multi-dimensional array-processing library
NumPy [53], scientific computing library SciPy [54], data
frame processing library Pandas [55], etc. A few power-
ful drawing libraries, such as matplotlib [56], seaborn [57],
plotly [58], are available as well.

As regards the second stage, there are a large number of
frequently used libraries and frameworks. The most popular
ones are summarised in Table 4, and some of them are out-
lined below:

(i) Google’s Tensorflow [59] is an open-source ML library,
available since 2015, which has been widely used. It enables
the development of highly computational ML tasks by using
data flow graphs in which edges signify tensors. Through
this, a single Application Programming Interface (API) can
distribute the load between multiple nodes, such as GPUs,
and CPUs.

(ii) Theano [60] is compatible with numerical computa-
tions and simplifies code writing in deep learning. It also
provides tight integration with NumPy [53] resulting in quite
accurate calculations.

TABLE 4. Commonly used libraries with a Python interface.

(iii) Keras [62] is another widely used library that can be
run on top of Theano or Tensorflow, as it is designed as a high-
level API. As such, it offers a productive and user-friendly
interface reducing developers’ cognitive load.

(iv) PyTorch [63] has been a fast-growing library in recent
years. It has been upgraded by the Facebook AI Research Lab
(FAIR) with many outstanding novel features, such as scala-
bility for distributed training [28] and cloud support, offering
design simplicity from research to production. In addition,
it smoothly integrates with the Python data science library
NumPy. In fact, PyTorch was ranked as the most-used frame-
work in ML implementations, reported in the open literature
since March of 2019 [66], as shown in Fig. 3.

However, Keras has still a better real-time performance
than PyTorch.

FIGURE 3. Trends in the selection of ML frameworks [66].

(v) Caffe [65] is a research-based library and has been writ-
ten in C++ with Python interface by Berkeley AI Research
(BAIR) and community contributors. Its remarkable features
are speed and switching between CPU and GPU by a single
flag. It also offers seamless integration with GPU training in
image-based datasets.
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Other powerful Python-based libraries and frameworks,
such as MXNet [64], Chainer [61], ScikitLearn [67], have
also been commonly used.

III. REVIEW OF CNNs FOR IMAGE CLASSIFICATION
One of the primary objectives of image classification algo-
rithms is to be deployed in systems aimed at solving different
computer vision tasks. For instance, they can act as a back-
bone network, also known as a base network, in various object
detection modules. In this respect, a distinctive classification
network can play a crucial role in enhancing the performance
of detection systems.

This section looks comprehensively at outstanding CNN
models for image classification by grouping them into
two classes based on their model size: heavyweight and
lightweight designs. It can be said that improving and design-
ing a new CNN architecture is based on understanding
the design and historical relations of previous architectures.
Therefore, the CNN architectures discussed below are con-
sidered in chronological order taking into account the archi-
tectural influences inspired by previous designs.

There are certainly numerous qualities that affect the
CNN design process. However, the types of convolutions
and specially designed operations could be seen as one
of the most significant design parameters in convolutional
networks. In this section, we attempt to briefly introduce
the architectures of the majority of the outstanding image
classification CNNs, published in the open literature, with
a focus on their accuracy performance, parameter number,
model size, and inference speed. The aim is to provide evo-
lutionary insight, highlighting the progressive developments
in convolutional operations. The focal point is mainly on
the most popular convolutional processes shown in Fig. 4,
even though, numerous other types of convolutions and oper-
ations have been proposed, such as 3D [68], dilated [69],
spatially separable [70], flattened [71], etc. The parameters
ID, IC ,KD,KC ,OD,OC ,F used in Fig. 4 are introduced in
Section II.A and the spatial 2D convolution in Fig. 4 (a) is
discussed in Section II.A.2) above. The convolutional pro-
cesses, shown in Fig. 4 (b) - (f) are described in Section A
and B below, as follows: Fig. 4 (b) and (c) are explained
in Section B.7); Fig. 4 (d) – in Section A.1); Fig. 4 (e) – in
Section B.11); and Fig. 4 (f) – in Section B.9).Furthermore,
multifaceted experimental results are reported revealing the
individual training and inference performance of the convo-
lutions and operations in Fig. 4 using ResNet [17] as the
reference network to achieve a fair comparison. Layer-based
timing performance is also provided through the decomposi-
tion of the network layers and modules, where the operations
take place.

The performances of the reviewed heavyweight and
lightweight CNN designs are summarised in Table 5, where
the Top-1 and Top-5 accuracy metrics are used. The Top-1
accuracy means that the highest probability prediction of
the CNN model for an image must be exactly the expected
answer or otherwise it fails, while the Top-5 accuracy

requires that the top five highest probability predictions of
the model must include the expected answer or otherwise
it fails.

A. HEAVYWEIGHT CNN DESIGNS
1) AlexNet
As introduced in Section I.A, the concept of CNNs was intro-
duced for the first time in 1998 by LeCun et al. [3], [4] and
named LeNet-5. The model was developed using a multi-
layer artificial neural network including two convolutional,
two pooling, and three fully connected layers, and had 60k
parameters. As the ReLU activation function hadn’t been
improved in these years, the TanH activation function was
mostly used in the learning process, whereas the sigmoid
function was only used in the output layer. The average
pooling method was employed rather than max pooling in the
pooling layers. The training process was slow taking many
days due to the type of processors at the time, however,
nowadays this has improved significantlywith the use of new-
generation GPUs.

LeNet-5 was classifying handwritten digits [72], MNIST
(Modified National Institute of Standards and Technology),
which is referred to as the ancestor of basic level image clas-
sification with 60k training and 10k test fixed-size images.
By means of using a backpropagation algorithm [5], it could
be trained to detect the patterns from raw pixels and to
eliminate a separate feature detection. The method had a
0.95% accuracy rate performance in the dataset. Despite all
these advantages, LeNet-5 was ineffective when applied to
complex problems such as video classification, which needs
a large set of training data and powerful processors for the
computation. However, the novelty of the LeNet-5 design is
enormous, as it has provided a standard ‘template’ for almost
all subsequent CNNs.

Following the improvements on both compute-bound and
memory-bound computing platforms, Krizhevsky et al. [28]
upgraded the AlexNet architecture shown in Fig. 1, and it
achieved the best score in the ILSVRC competition based on
ImageNet [31] dataset in 2012. Though it was only assem-
bling three more convolutional layers into the LeNet design,
therewere four notable architectural contributions: (i) the first
implementation of the ReLU activation function, enabling
six times faster training than the TanH function; (ii) the
first deployment of the overlapping pooling technique in the
pooling layers; (iii) the application of a data augmentation
technique [73]; and (iv) the introduction of the grouped con-
volution.

AlexNet was implemented on two Nvidia GPUs GTX
580 with 1.5GB virtual memory per node to allow effi-
cient network training as shown in Fig. 5. The design fea-
tures two separate spatial 2D convolution paths grouping
the convolution operation with two filter groups, which rep-
resents model-parallelization across two GPU nodes, also
known as a model-distributed training method. In addition,
a compact and efficient version of AlexNet, named CaffeNet,
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FIGURE 4. Frequently used different types of convolutions and operations.

was executed on a single node NVIDIA GeForce graphics
card GTX 1080Ti.

The 2D spatial and grouped convolutions are illustrated in
Fig. 4 (a) and (d), respectively. In a grouped convolution, the
number of kernel channels KC is equal to the number of the
input channels IC , and the number of filters is separated into
an equal number of sub-groups, which are responsible for a
conventional spatial 2D convolution with the divided group
depths. Unlike the AlexNet design with two filter groups in
Fig. 5, we divide the kernel channels and filter number into
three sub-groups as seen in Fig. 4 (d), whereby each filter
group could be defined by the tensor [KD : KD : KC/3 : F/3].
As a result, each group creates OC/3 = F/3 output

channels. Overall, three groups create 3× OC/3 = 3× F/3
output channels, equal to OC = F .

FIGURE 5. Implementation of AlexNet with grouped convolutions on two
GPUs [28].

The use of grouped convolutions in networks brings three
essential benefits. The first one is making it possible to par-
allelise the CNN model, which allows executing the convo-
lutions over multiple GPUs. The second benefit is that the
network could be fed with more images per step compared to
a single GPU implementation. Furthermore, each filter group

can learn a unique representation of the fed data achieving
more structured learning. The third benefit is the improved
efficiency since the number of parameters decreases when
the number of filter groups increases. This can be easily
shown analytically. In a spatial convolution, the number of
parameters is calculated by the expression F × KC × K 2

D,
whereas in a grouped convolution it could be expressed as
(F/3×KC/3×K 2

D)× 3. Thus, it can be seen that with three
filters a decrease in the parameter number by two thirds or
67% is achieved.

It can be observed from the above that grouped convolu-
tions bring substantial advantages compared to standard spa-
tial convolutions, representing another notable contribution
of the AlexNet model.

2) ZFNet
One year later, Zeiler and Fergus [74] proposed ZFNet,
the winner of the 2013 ILSVRC competition [31], which
significantly reduced the classification error of AlexNet by
visualizing the convolutional networks layer by layer and
by adjusting layer hyper-parameters, such as filter sizes and
strides.

Although there had been some observation and improve-
ment of shallow layer features, it was the ZFNet authors who
investigated deeper features of the pixel domain. Using the
deconvolution and un-pooling techniques, they were able to
visualize the convolutional networks layer by layer, as shown
in Fig. 6. By means of the deconvolution technique, they also
analysed and rearranged several hyper-parameters of their
algorithm, which led to reducing the error rate.

In deconvolution, two problems were determined in the
first two layers. There was only high and low-frequency
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FIGURE 6. Visualization of the layer-based features by deconvolution and
un-pooling [74].

information in the first layer, as well as the scarce number of
mid-frequencies was causing a chain effect in the learning of
some mid-frequency features. In the second layer, an aliasing
problem, occurring in the event of a low level of the sampling
frequency, was detected, which was due to the large stride in
the convolution operation of the first layer. The researchers
fixed the problems by reducing the filter size from to in the
first layer and changing the stride step of the first layer to
2 instead of 4. As a result, a valuable performance increase
was achieved.

3) VGGNet
VGGNet [75] is another heavyweight CNN,whichwas devel-
oped by VGG (Visual Geometry Group) from the University
of Oxford. It was followed by many other improved mod-
els, such as VGG-11, VGG-11(LRN), VGG-13, VGG-16,
VGG-16 (Conv1), and VGG-19, built on top of VGGNet.
Unlike [28] and [74], which used 11 × 11 and 7 × 7 ker-
nels respectively, it was based on the placing of 2 × 2 and
3 × 3 convolution kernels and is comprised of thirteen con-
volutional and three fully-connected layers by deploying the
ReLU activation function. The aim was to go deeper into the
layers in order to improve the accuracy. This work was highly
important as it allowed to reduce the error rates in CNN image
classification. However, that entailed a significant increase
of the parameters and model size amounting to 138 million
(M) and 575 megabytes (MB), respectively, where the model
size specifies the required storage space for all parameters of
the trained model. Nevertheless, it was the winner of [31] in
localization tasks and the runner-up in general.

4) SENet
The introduced CNN designs so far have been focused on
improving the spatial components to strengthen the represen-
tational effectiveness in each layer even though central blocks
of CNNsmight have been used to obtain informative features.
From that point of view, Hu et al. [76] fromOxfordUniversity
designed and proposed SENet as a novel architecture by

enhancing channel-wise feature responses. Despite the fact
that SENet had improved the accuracy level comparing to
the former winners of the ImageNet competitions [31], it had
also increased the computational costs slightly bringing the
number of parameters to 146M. Its Top-5 error rate was tested
as 3.7%, which secured its winning place in 2017 and ever
since it has been the best performing classification CNN
model.

5) NASNet
Zoph et al. [77] from Google Brain proposed NASNet. The
followed method was initially tracing an architectural build-
ing block with a small dataset, CIFAR-10 [18]. That was
then applied to a larger dataset, ImageNet [31]. A novel regu-
larization technique, ScheduledDropPath, was also proposed
that significantly improved the generalization of NASNet.
Their architecture was composed of blocks and cells, called
‘‘normal’’ and ‘‘reduction’’ cell, whereby the former returned
a feature map in the same dimension and the latter returned a
feature map whose height and width were reduced by a factor
of two. As a consequence, NASNet reached the same Top-1
accuracy 82.7% of SENet with a lower parameter number on
the ImageNet dataset.

6) ResNeXt
Until the emergence of ResNeXt [78], the state-of-the-art
image classification models had relied on supervised pre-
training [79], and the ImageNet dataset had been widely used.
In this study, Mahajan et al. presented a peerless pre-training
scheme to predict hashtags for social media images. Through
the application of their unique transfer learning technique,
they demonstrated a remarkable performance of ResNeXt on
ImageNet classification, and thus, it was listed as the winner
of the 2018 competition [31].

7) EfficientNet-L2
In EfficientNet-L2 [80], a semi-supervised learning
approach [81], named Noisy Student Training, was intro-
duced under the assumption of an abundance of labelled data.
The work draws on the machine learning method of self-
training [82] and the data compression technique of distilla-
tion [83]. (More information about machine learningmethods
and compression techniques is provided in the Appendix.)

Firstly, the EfficientNet [84] model is trained with labelled
images on ImageNet, and then, the model is used as a
teacher in producing pseudo labels for 300M images. Next,
a larger model of EfficientNet is trained as a student with
a combination of labelled and pseudo images, produced in
the first stage. Following that, the same process is applied
iteratively by adding to the student different types of noise,
such as dropout, stochastic depth, and data augmentation,
to be able to learn better than the teacher. Thus, the perfor-
mance of this model on the ImageNet [31] dataset proved
to be explicitly outstanding in 2020 with a Top-1 accuracy
of 85.5%.
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8) FixEfficientNet-L2
FixEfficientNet-L2 [85] is an upgraded model of
EfficientNet-L2 [80], reported by Touvron et al. from the
Facebook AI Research group, and it utilises the augmen-
tation technique proposed by the same researchers in [86],
which is aimed at reducing the discrepancy between objects
by using different resolutions at testing and training time.
The method has resulted in notable performance enhance-
ments in different existing algorithms, for example achiev-
ing Top-1 accuracy in ResNet-50 [17] - up to 79.8%,
ResNetXt-101 32×48d [78] - up to 86.4%, and EfficientNet-
L2 [80] - up to 88.5%. On the other hand, EfficientNet-
L2 and FixEfficientNet-L2 have been one of the weightiest
heavyweight algorithms in terms of parameter number,
amounting to 480M.

9) VIT-H/14
Dosovitskiy et al. [87] from Google Research have brought
to life the idea of the Transformer architecture [88], which is
mainly used in natural language processing tasks, for image
classification tasks. Their model, Vit-H/14, has shown a strik-
ing result with an 88.6%Top-1 accuracy on the ImageNet [31]
dataset. The model’s accuracy, thus, is ranked as the 2020’s
highest in Table 5.

10) LambdaResNet200
LambdaResNet200 [89] is a quite recent CNN architecture,
which was reported at the 2021 ICLR conference. It intro-
duces novel lambda layers, which enable a 4.5× faster train-
ing on modern ML accelerators compared to EfficientNet-L2
[80]. Along with the training performance, its Top-1 accuracy
performance on [31] has been listed as 84.3%, which is
excellent as it keeps a low model parameter number.

11) META PSEUDO LABELS
Google AI [90] introduced a novel semi-supervised learning
method, named Meta Pseudo Labels, which has enabled the
highest Top-1 accuracy on [31] ever. The idea improves on
the student-teacher concept in [80], whereby the teacher net-
work generates pseudo labels by using unlabelled data [91]
to teach a student. The difference is that the teacher is not
fixed, and it is constantly adapted by means of feedback that
comes through the student network performance on a labelled
dataset [31]. That produces better pseudo labels compared
with the method in [80]. In this way, EfficientNet-L2 and
EfficientNet-B6-Wide [80], when trained with the method,
achieved the highest Top-1 scores of 90.0% and 90.2%
accuracy performance, respectively. However, the parameter
number is also correlative with the results reported in [80]
and [87], which are the highest among the algorithms intro-
duced above.

B. LIGHTWEIGHT CNN DESIGNS
1) INCEPTION-v1 (GoogLeNet)
Inception-v1, also known as GoogLeNet, proposed by
Szegedy et al. [29], is a distinctive and lightweight archi-
tecture, which is based on [92], [93]. The authors introduced

the inception modules, which comprise convolutional kernels
of different sizes operating over the same input, and then
stacking all the outputs from the different kernels. Using
convolution kernels of different sizes, the architecture was
able to capture all sorts of features, containing 22 layers
with 6.8M parameters. It has been the first architecture ever
using 1× 1 convolution kernels at the middle of the network
to reduce dimensionality, parameter numbers, and computa-
tional budget in layers, and at the same time increasing non-
linearity. Global average pooling was only used at the end of
the network instead of every layer. ReLU was the deployed
activation function. By going deeper with these inception
modules, it was ranked as the winner of the 2014 ImageNet
competition [31].

Inception-v1 also introduced two auxiliary classifiers to
improve the classification performance in the lower stages
of the classification process and to rise the backpropagation
gradient signal, as well as for additional regularization. The
auxiliary networks are only employed for training and are not
used in testing or at inference time.

2) INCEPTION-v3
Following the publication of Inception-v1 [29], Szegedy et al.
[94] designed a new architecture called Inception-v3. The
study first introduced the Inception-v2 model with a deep
learning method, called batch normalization, which was cre-
ated for normalizing the value distribution prior to the next
layer, allowing to increase the accuracy performance and
training speed. Keeping that novelty and introducing an addi-
tional factorization technique have led to the release of the
third version, Inception-v3.

Inception-v2 had some flaws in the loss function, which
was adding batch normalisation to the auxiliary classifiers
in its layers, and in the optimization method. (Readers are
referred to the Appendix for information on optimization
algorithms.) Inception-v3 incorporated these weaknesses but
avoided computational problems by using the factorization
method, which factorises the n × n kernels to 1 × n and
n × 1 asymmetric kernels. This led to a reduction in the
parameter number of the architecture without compromising
network efficiency. For instance, by using a 5 × 5 kernel in
a layer, the number of parameters were equal to 5× 5 = 25.
However, by using two layers of 3×3 kernels, the number of
parameters amounts to 3×3+3×3 = 18. Thus, the number
of parameters was reduced by 28%.

Other specific features in Inception-v3 were the use of only
one auxiliary classifier, aimed for regularization and batch
normalization, and employing efficient grid size-reduction
techniques instead of using a pooling layer. Due to its new
efficient properties, the Inception-v3 architecture was able
to achieve increased accuracy levels on [31], as detailed in
Table 5.

3) ResNet
As it could be observed from the architectures discussed
until now, the increase of the number of network layers leads
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to achieving better accuracy results. Taking this on board,
the Microsoft researchers He et al. designed the ResNet
model [17], including five networks with different layer num-
bers from varying 18 to 152.

A ResNet architecture comprising 50 layers is illustrated
in Fig. 7, where bottleneck modules comprise two 1× 1 and
one 3× 3 spatial convolutions with varied channel numbers.
There are residual (identity/projection) connections, allowing
to connect sequential modules to increase feature reuse. The
primary contribution of the residual connections was the pre-
vention of the vanishing gradient problem in the first layers.
By means of going deeper in the network, ResNet-50 was
ranked as the winner of 2015 ILSVRC [31] with a 93.3%
Top-5 accuracy performance.

4) INCEPTION-v4
The high performances of the Inception models [29], [94]
and the high impact on the performance of the residual
connections in ResNet [17], have raised the question as to
whether there is an advantage of combining the Inception
models and the residual connections. Inspired by that idea,
Szegedy et al. [95] proposed the Inception-v4 architecture,
which is an empirical study demonstrating that residual con-
nections considerably accelerate the training performance of
Inception networks. Moreover, it was proved that the training
process might be facilitated by deploying an activation func-
tion scaling technique. As a result, Inception-v4 achieved a
3.8%Top-5 error rate in ImageNet ILSVRC competition [31].
Inception-ResNet-v2 was another model proposed as part of
the same study, which even outperformed Inception-v4.

5) TRIMPS-SOUSHEN
The Trimps-Soushen model was the winner of ILSVRC 2016
[31], with a 2.99% Top-5 error rate. However, the creators of
the Trimps-Soushen architecture did not publish any techni-
cal report or paper. They only released the testing results of
their model on the ImageNet dataset in a presentation at the
2016 ECCV workshop. Nevertheless, the results have been
approved and listed by ImageNet.

6) SqueezeNet
Iandola et al. [96] proposed a new compact model, called
SqueezeNet, based on the AlexNet architecture [28]. They
achieved a remarkably low model size of 0.5MB, keeping
the AlexNet accuracy levels. In order to obtain that result,
3 steps were followed. Initially, the 3 × 3 spatial 2D filters
were mostly changed with 1 × 1 filters providing lower
parameter numbers. Following that, squeeze layers were used
to reduce the number of input channels to 3× 3 filters,
and finally, for utilising large activation maps in the con-
volutional network, a late downsampling technique was
applied.

As a result, the same level of accuracy as in [28] was
achieved with ×50 fewer parameters, and thus, SqueezeNet
has been one of the most striking lightweight algorithms.

FIGURE 7. ResNet-50 architecture with bottleneck modules [17].

7) MobileNets
In 2017, Howard et al. [70] from Google Inc. introduced
the MobileNets CNN, which was focused on reducing
model size and complexity, targeting mobile and embedded
vision applications. Depth-wise separable convolutions in
Fig. 4 (b) and (c) form the basis of MobileNets. Compared to
a same spatial convolution structure, the parameter numbers
were reduced by means of depth-wise separable convolu-
tions. But, neither the model size of SqueezeNet [96] nor
its parameter number of around 1.2M were outperformed by
MobileNets. However, in terms of the accuracy performance,
MobileNets has shown a distinct enhancement with 13.1%
higher Top-1 accuracy than SqueezeNet.
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For a simple representation of a spatial convolution like the
one expressed by (1), we suppose that the input/output spatial
dimensions are identical, and the stride step is 1. Thus, we can
compute the outputs of the depth-wise convolution, Ôk,l,m,
in Fig. 4 (b) by

Ôk,l,m =
∑
i,j

K̂i,j,mIk+î,l+ĵ,m, (7)

where K̂∈ RDK×DK×IC denotes a depth-wise convolution
kernel.

Likewise, the point-wise convolution,Ok,l,n, in Fig. 4 (c) is
defined by

Ok,l,n =
∑
m

K̂m,nÔk,l,m, (8)

where K̂∈ R1×1×IC×F is a point-wise convolution kernel.
Similar to grouped convolutions (Sec. III.A.1)), the reason

why depth-wise convolutions are selected is related to their
efficiency, as they reduce considerably the parameter number
and computational cost. This is because, in the standard
spatial convolutions, the parameter number is defined by
F × KC × K 2

D, whereas the parameter number in a depth-
wise convolution followed by a point-wise convolution is
calculated by (KC × K 2

D) + (F × 1 × 1), which is quite
less. As to the computational cost comparison, we define the
FLOPs number as F×KC ×K 2

D×O
2
D in spatial convolutions

and as (KC × K 2
D × O2

D) + (F × KC × 12 × O2
D) in depth-

wise separable convolutions. These two expressions can be
evaluated by using identical dimensions. They could also be
compared by the ratio of the number of FLOPs between the
depth-wise separable convolution and the 2D convolution,
which is defined by

1
F
+

1

K 2
D

. (9)

It is evident from the above expression that it has a
fractional value, which shows that the parameter number
and computational budget of depth-wise separable convo-
lutions are significantly more efficient compared to spatial
convolutions.

8) XCEPTION
Xception is another model developed by Google [97], which
was inspired by Inception-v3 [94], discussed in Section 2)
above. It employs depth-wise separable convolutions that
generally consist of depth-wise and point-wise convolutions,
as illustrated in Fig. 4 (b) and (c). The Inception modules
in the Inception-v3 were replaced with depth-wise separa-
ble convolutions instead of spatial 2D convolutions, which
improved its performance. In spatial convolutions, whereas
1 × 1 convolution kernels provide for cross-feature map
correlations, 3 × 3 and 5 × 5 convolution kernels support
spatial correlations. In depth-wise separable convolutions,
these correlations are provided without even using mid-
level activations, and due to that Xception has outperformed
Inception-v3.

9) ShiftNet
The popularity and extensive usage of depth-wise separable
convolutions in CNNs led to several further research works,
including a remarkable approach, proposed byWu et al. [98].
In theory, depth-wise separable convolutions seem to improve
the parameter number and computational cost of CNNs. This
could be demonstrated by the ratio between computational
cost and memory access, which is expressed in spatial 2D
convolutions as follows:

F × KC × K 2
D × O

2
D

I2D × (KC + F)+K 2
D × KC × F

, (10)

whereas the ratio for depth-wise separable convolution is the
following:

KC × K 2
D × O

2
D

I2D × (2KC )+K 2
D × KC

, (11)

where the input/output dimensions are identical.
A lower ratio indicates that memory accesses take more

time, causing several orders of magnitude slower operation
and higher energy consumption per floating-point operation.
Thus, this drawback prevents I/O-bound devices to perform
to their maximum computational ability. Based upon this
viewpoint, a novel convolutional operation, named shift, was
proposed.

The shift operation, illustrated in Fig. 4 (f), can be viewed
as a special type of depth-wise convolutions, the output of
which, Õk,l,m, could be expressed by

Õk,l,m =
∑
i,j

K̃i,j,mIk+î,l+ĵ,m, (12)

where the kernel of the operation is a tensor K̃∈RKD×KD×IC

and every kernel can be represented as follows:

K̃i,j,m =

{
1, if i = im and j = jm,
0, otherwise.

(13)

In (12), the im and jm indices depend on channels and assign
arbitrarily one of the values to 1 in K̃:,:,m∈RKD×KD called shift
matrix. Thus,K 2

D possible shift matrices exist and any of them
corresponds to a shift direction.
The shift operation could be seen as a bundle of mem-

ory operations shifting the input tensor channels into certain
directions by convolving with shift kernels. In contrast to
spatial 2D and depth-wise separable convolutions, the shift
operation does not bring any overhead in terms of parameter
or FLOPs cost due to fusing a point-wise convolution after
it. This allows the point-wise convolution to directly fetch
the shifted data from the cache. Thus, the shift operation has
allowed a lightweight CNN model to achieve a remarkable
performance on both parameter number and accuracy in [31],
as seen from Table 5.

10) MobileNetV2
A year later, the MobileNet’s creators, Howard et al. [99],
proposed a new algorithm, MobileNetV2, improving the per-
formance of MobileNets by revising the residual structure
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where skip connections were added between the bottleneck
layers. Via those structural changes, MobileNet-V2 improved
the Top-1 accuracy performance to 72.0 % and the parameter
number to 3.4M in comparison with MobileNets. In addition,
MobileNet-V2 was not only improved for image classifica-
tion but was also designed for object detection tasks.

11) ShuffleNet
ShuffleNet [100] as a computation-efficient algorithm was
designed for mobile devices. It is inspired by and linked to
the grouped [28], and depth-wise [70], [97] types of convo-
lutions. In a nutshell, shuffled grouped convolutions involve
a grouped convolution combined with a channel shuffling.

As explained earlier in Section III.A.1) group convolutions
significantly reduce the number of the total operations. Nev-
ertheless, there is a drawback that each filter group could
operate over a certain fixed portion of information from the
previous layers, as shown in Fig. 4 (d). As such, filter groups
are limited in the learning of few features, which weakens
the representation and information flow throughout different
channel groups. Channel shuffling overcomes that problem
by mixing up the information between channels. In Fig. 4 (e),
the feature map with three channels, I∈RID×ID×IC obtained
subsequently to the first grouped convolution via three filter
groups in Fig. 4 (d), is first divided into several subgroups,
and then these subgroups are mixed up. Following the shuf-
fling, the usual second grouped convolution is performed
with the difference of strengthening the representation and
information flow between channel groups.

In ShuffleNet, the point-wise grouped 1× 1 convolution is
also considered instead of the 3 × 3 convolutions employed
in [70], [97]. The idea behind that was the lower computa-
tional efficiency of the 1 × 1 point-wise convolutions. The
operation is identical to the grouped convolutions with a
minor alteration of the used kernel size.

As a result, the model utilized grouped, depth-wise, and
point-wise convolutions enabling a computation-efficient and
lightweight algorithm while maintaining the accuracy level
of 73.6 % in [31] as seen from Table 5. Thus, it has gained
popularity in CNNs for mobile devices.

12) SqueezeNext
After the SqueezeNet model [96] reduced dramatically the
parameter number of AlexNet [28] by keeping similar accu-
racy levels, Gholami et al. [101] introduced a new family
of CNN architecture, SqueezeNext, which enables the same
accuracy with 112× fewer parameters. There are different
types of SqueezeNext models with varied parameter numbers
between 1.5 and 0.54M. One of them, the 1.0-SqNxt-44
model, has achieved a 5% better Top-1 and Top-5 perfor-
mance compared to SqueezeNet with the same number of
parameters.

Their design was based on the lower rank filters and com-
pression of the redundant parameters of SqueezeNet, which
do not affect the accuracy. Moreover, the architecture used a
final bottleneck layer cooperating to reduce the input channel

size of the last FCL in SqueezeNet. The application of these
microarchitecture level strategies has allowed to achieve a
considerable reduction of the parameter number. (Details
about micro/macro architecture design parameters are intro-
duced in the Appendix.)

13) ColorNet
Another interesting finding has been explored by Gowda and
Yuan [102]. They have focused on the importance of colour
spaces of RGB images in datasets and shown that colour
spaces, especially transformations of RGB images, are able
to significantly improve classification accuracy. By using
that idea, their architecture, named ColorNet, takes RGB
images as input and converts the images into 7 different
colour spaces. Following that, every colour space is used as an
input to individual DenseNet modules [103]. By applying this
method, the 84.6% Top-1 accuracy performance of ColorNet
on ImageNet [31] was listed as the winner in 2019 on Table 5.

C. DESIGN TRENDS ON IMAGENET DATASET
The performance of the most prominent CNNs for image
classification is summarised in Table 5, in which the names of
the lightweight models are shaded in light grey colour, while
the names of the heavyweight models – in dark grey colour.
For each model, the following data are provided: literature
source, year of introduction, Top-1 accuracy, Top-5 accuracy,
number of parameters, number of FLOPs, model size in MB,
and number of layers.

It can be observed from Table 5 that the heavyweight
models achieve better accuracy levels mostly by increasing
the layer and parameter numbers without regard for themodel
size or energy consumption. For instance, ViT-H/14 [87],
which has achieved the best ever Top-5 accuracy of 99.0%,
has a high layer number of 132, and a very high parameter
number of 632M as well. Similarly, MPL- EfficientNet-L2
[90], which is a deeper CNN model than ViT-H/14, has
obtained the second-best score on Top-5 accuracy of 98.8%
and it has reached the highest Top-1 accuracy ever of 90.2%
by including 154 network layers and having 480M parame-
ters. A major downside of the heavyweight CNN designs is
that their large parameter numbers prevent them from being
implemented on computational devices with limited off-chip
memory, such as FPGAs, ASICs, SoCs, etc.

On the other hand, as it can be seen from Table 5,
the lightweight CNNs, aim to reduce the model sizes
by conceding their accuracy performance, for example
SquuezeNet [96], MobileNets [70], ShiftNet [98], and
SqueezeNext [101]. In SqueezeNet, the layer number has
been reduced to 19, the parameter number to 1.2M, and the
model size to 0.5MB by utilising 1 × 1.2D spatial convolu-
tions. SqueezeNet was implemented in an FPGA with 10MB
on-chip memory without using an off-chip memory [104].
By taking advantage of depth-wise and point-wise convolu-
tions MobileNets obtained 4.2M parameter number. As the
best performance lightweight algorithm in Table 5, Shift-
Net has benefitted from a parameter-free shift operation in
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TABLE 5. Performances of image classification algorithms on ImageNet.

its layers achieving AlexNet accuracy [28] with only 0.8M
parameters. The aforementioned CNN developments reveal
the importance and impact of enhancing the convolution
operations and kernels, which have substantially contributed
to these breakthroughs. However, it is beyond dispute, that
the accuracy performances of the lightweight CNN designs
are considerably lower compared to the heavyweight models.
Nevertheless, both low and high parameter number/model
sizes have pluses and minuses, as discussed in Section V.

D. EVALUATION OF COMMON CONVOLUTION PROCESSES
Due to the use of CNNs for image classification in a wide
range of applications, many researchers have worked on
techniques to reduce their high storage overhead and com-
putational cost, resulting in a compact and accurate model
design. As part of that, it has been recognised that carefully

designed convolutional operations, which serve as a basic
component of the network layers, as the ones are shown
in Fig. 4, can bring significant benefits. Some of them are
accuracy-oriented, whereas others improve efficiency. In this
section, the training and runtime performances of each of the
convolutional operations in Fig. 4 are examined and com-
pared by employing them in the well-known CNN architec-
ture ResNet [17].

As explained in Section II.A.2), the spatial 2D convolu-
tion in Fig. 4 (a) is frequently used especially in heavy-
weight models [28], [29], [75]. The rest of the convolution
types in Fig. 4 are proposed to enhance the performance of
the spatial convolutions. For example, the grouped convolu-
tion [28] in Fig. 4 (d) brings three essential benefits, which
are: enabling of model-parallelization; more structured learn-
ing with unique representations of data; and computational

VOLUME 10, 2022 14091



T. Turay, T. Vladimirova: Toward Performing Image Classification and Object Detection With Convolutional Neural Networks

efficiency by reducing multiply-add operation number. Fur-
thermore, the shuffle operation [100] in Fig. 4 (e) allows
improving the accuracy of the grouped convolution kernels.
On the other hand, the depth-wise separable convolutions in
Fig. 4 (b) and (c), which are used in designing lightweight
architectures [70], [97] reduce the parameter and FLOPs
numbers. However, despite their superiority in terms of low-
ering the computational cost, their fragmented memory foot-
prints prevent efficient implementations in practice as shown
by expressions (10) and (11). To overcome that constraint,
the shift operation [98] in Fig. 4 (f) presents an alternative by
cooperating with the point-wise convolutions in Fig. 4 (c) and
aggregating the spatial information for free.

1) OUTLINE OF EXPERIMENT
The approach is to train separately different convolutions
using the same reference architecture (ResNet-50 [17]). The
six different convolution types in Fig. 4 are placed in the bot-
tleneck module of the ResNet-50 architecture in Fig. 7 for a
fair comparison. As the model in Fig. 7 is originally designed
with spatial 2D convolutions, it forms the first experimental
CNN with the required dimension adjustments arising from
the used dataset, and four more designs are constructed using
the remaining convolution types in Fig. 4. While the second
is shaped with two-grouped convolutional kernels, the third
design is created by three-grouped shuffle operations. As an
exception in the fourth, 3× 3 and 1× 1 spatial convolutions
in the original model are replaced by depth-wise and point-
wise convolutional filters, respectively as they are usually
deployed together [97], [70]. Regarding the final design,
we remove the 3×3 spatial convolutions and place shift oper-
ations to form the fifth model. Then, we train the designed
models, test them and analyse their accuracy and inference
time on the CIFAR-10 and CIFAR-100 [18] datasets. More-
over, by decomposing the architectures into basic compo-
nents they are analysed to find their individual execution
times on compute-bound (CPU) and memory-bound (GPU)
computation platforms during inference.

In the training, two NVIDIA GPUs Tesla P100s, part of
the ALICEHigh-Performance Computing Facility at the Uni-
versity of Leicester, are employed according to five different
model requirements with a mini-batch size of 128 and a base
learning rate of 0.1. The weight decay and momentum are
0.0001 and 0.9, respectively. The training for each architec-
ture stops after 32k iterations. In addition, the learning rate
decays with a factor of 10 after 16k and 24k iterations. The
inference time of the trained models is tested on both a CPU
(Intel Core i5-8500) and a GPU (Tesla P100) by decomposing
it into proportional slices to the time taken by the basic
components of the architecture.

2) EVALUATION RESULTS
The individual performances of the evaluated convolution
types are presented in Table 6 and Fig. 8.

As it could be seen from Table 6, different convolutions
perform differently when deployed in the same CNN model.

The grouped convolution and shuffle operation reduced the
parameter and computational overheads compared to the
spatial 2D kernels as well as enabled a better accuracy,
which confirms the findings presented in the AlexNet and
ShuffleNet sections above. Notably, as shown in Table 6,
there is a sharp drop in the parameter and FLOPs number
when the depth-wise separable and shift operations are being
employed. Moreover, they achieve a similar accuracy perfor-
mance compared to the others.

It should be mentioned that the accuracy levels of the
evaluated models in Table 6 are lower than those reported
in [17], [98], [100]. One reason for that is the smaller number
of iterations in our experiment, as the aim here is to assess the
relative performance of the different convolution types.

TABLE 6. Cifar-10 and 100 training of ResNet-50 with different
convolution types.

It can also be seen from Table 6 that the accuracy rates
on the CIFAR-10 dataset are higher compared to CIFAR-100
for all convolution types, which is due to the difference in the
class number, as detailed in Section II.D.1).

Fig. 8 represents a summary of the timing analysis of
the ResNet-50 [17] model during the inference stage for
the evaluated convolutions and operations in Fig. 4. For a
clear demonstration, element-wise operations, such as ReLU,
batch normalization, tensor addition and concatenation, etc.,
are incorporated into a single word (Elwise.). Also, the
pre-processing time for the data feeding is not represented
here. Results are obtained under PyTorch and averaged from
30 runs. Fig. 8 (a) shows evaluation results for the ResNet-50
model with spatial filters; Fig. (b) and Fig. (c) - with grouped
filters and shuffle operation, respectively; while (d) includes
depth-wise and point-wise convolutions; and (e) uses shift
operations. The convolution time (Conv.) is depicted by blue
colour for the CPU-based executions, and by orange colour
for the GPU-based executions.

First of all, it could be seen from Fig. 8 that the element-
wise operation (Elwise.) in each ResNet-50model takes more
time in the GPU compared to the CPU during inference as
they are more prone to compute-bound (CPU) computation
platforms. The reason behind that is their memory access
cost is heavy even if they have small FLOPs. As an expected
outcome, the slices of the convolution (Conv.) operations
in Fig. 8 (b) and (c) are lower compared to (a) as grouped
convolutions reduce computational overhead. It can also be
observed from Fig. 8 (c) that the slice of the shuffling opera-
tion (Shuffle) equals 12% of the runtime of the GPU, which
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FIGURE 8. Graphical representation of the runtime timing analysis of the ResNet-50 model for the convolutions and operations in Fig. 4. (a) ResNet-50
model with spatial filters; (b) and (c) - ResNet-50 model with grouped filters and shuffle operation, respectively; (d) ResNet-50 model with depth-wise
and point-wise convolutions; (e) ResNet-50 model with shift operations.

means that its parallel hardware is limited by the shuffling
operation. Nevertheless, the accuracy level and efficiency of
the shuffling operation outperform spatial convolutions as per
the results in Table 6.

The pie charts in Fig. 8 (d), verify expressions
(10) and (11). Even though depth-wise convolution filters
require fewer parameters and lower computational overhead
in theory, unlike spatial convolutions, their memory access
demand dominates computations and limits the performance
ofmemory-bound computation platforms such as GPUs. As it
can be seen in Fig. 8 (d), the dept-wise convolution operations
(Depthwise.) occupy a substantial part of the runtime in
GPU amounting to 53%. This drawback also indicates higher
energy consumption per floating-point operation, thereby
leading to an inefficient computation. Lastly, Fig. 8 (e) proves
that the shift operation takes a step further compared to the
depth-wise separable convolution in terms of performance.
Despite its considerable runtime, caused by the large number
of memory accesses instigating bottlenecks, the shift opera-
tion requires a lower number of parameters and FLOPs and
occupies a smaller slice of the GPU runtime compared to the
dept-wise convolution in Fig. 8 (d), i.e. 25% versus 53%.

In conclusion, based on a fair comparison, Table 6 and
Fig. 8 practically confirm the introduced theoretical findings
for the popular convolution types and reveal invisible timing
aspects related to their runtime execution.

FIGURE 9. Data-flow diagram of traditional detectors.

IV. REVIEW OF CNNs FOR OBJECT DETECTION
Object detection has been a long-standing theme in com-
puter vision research. With regards to self-driving vehicles,
object detection is an essential part of modules in the ADSs
pipeline, such as scene understanding and object tracking.
The aim is to identify the locations and sizes of the objects
present in images taken by cameras at the viewing angle
of the car. These could be both static objects, e.g., traffic
lights, road signs, etc., and dynamic objects, e.g., vehicles,
pedestrians, etc.

Looking back over the last two decades of detection
methods, until the early 2010s the limitations on comput-
ing resources, datasets, and the mostly theoretical nature of
DNN development had led to employing traditional detec-
tors, such as DPM [106], Selective Search [107], Oxford-
MKL [108], HOG [109], NLPR-HOGLBP [110], SIFT [111],
VJ Det [112], Bag of Words [113], etc. A modular data-flow
diagram and a historical publication timeline of these popular
detectors are depicted in Fig. 9 and Fig. 10, respectively.

The purpose of the Region Selector module in Fig. 9 is
to prepare sliding windows of different sizes and to slide
them over the image from left to right and top to bot-
tom by keeping a certain step size. Then, cropped image
blocks are produced by the sliding windows and converted
to images with uniform dimensions. In the Feature Extrac-
tor module, features are extracted from the images by the
way of deploying different algorithms such as HOG [109],
SIFT [111], etc. The last module in Fig. 9 is a Classifier,
which is used to identify the category of objects, extracted
in the previous step via different algorithms like SVM [114]
and Adaboost [115]. Despite their popularity, the tradi-
tional detectors were relatively mature and had multiple
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FIGURE 10. Timeline of traditional and CNN-based object detectors.

drawbacks, such as high window redundancy, computing
complexity, etc.

Following the emergence of high-performance computing
devices and inclusive datasets as well as the staggering perfor-
mance of AlexNet [28], in the last decade, the attention in the
field gradually turned to CNN-based solutions, as illustrated
in Fig. 10.

In the rest of this section, first, building blocks for
CNN-based object detection are discussed, such as back-
bone networks and baseline types, then representative state-
of-the-art designs are outlined, dividing them into two
categories: one-stage detectors and two-stage detectors.
Table 7 presents experimental results from the literature
for each of the reviewed models based on particular image
datasets.

A. BACKBONE NETWORKS
Object detectionmodels deploy a classification algorithm as a
backbone or a base network that acts as a basic feature extrac-
tor. The CNN models for image classification, introduced
in Section III above, such as ResNet [17], Xception [97],
SqueezeNet [96], MobileNets [70], ShuffleNet [100], can
be directly adopted or improved with new features to be
used as a backbone for object detection tasks. In several
publications [116]–[118], specific requirements have been
stated for existing classification algorithms to perform better
in a detection pipeline. Additionally, it is recognised that
even if detection speed is a key factor, e.g., in real-time
applications, high precision and accuracy hold at least an
equal importance as well. That means that there is a need
for a good trade-off between speed and accuracy [19] when
selecting backbone networks for detectors. The recently pub-
lished high-performance CNN architectures for classification
may help to solve the problem, as quality feature extraction
raises up the whole detection performance. For example,

He et al. [119] achieved a remarkable performance following
this approach. Further details are included in the descriptions
of the individual detection algorithms in Sections C and D
below.

B. TYPICAL BASELINES IN CNN-BASED DETECTOR
DESIGN
In CNN-based detector design, there are two commonly
used baseline schemes: one-stage and two-stage detection
pipelines. Among the two-stage detectors, the Region-based
Convolutional Neural Network (R-CNN) series [120]–[122]
are the most prevalent ones, whereas YOLO [116] and
SSD [123] are the CNNs of choice for the one-stage detectors.

FIGURE 11. Functional diagrams of typical detector pipelines.
(a) Two-stage detector. (b) One-stage detector.

The functional diagrams of the two baselines are illus-
trated in Fig. 11. The two-stage detector pipeline is shown in
Fig. 11 (a), where region proposal network block (Proposal
Generation) feeds region proposals into the classifier and
localization modules. These detectors differ from the one-
stage detectors, depicted in Fig. 11 (b), in the operation of the
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RoI (Region of Interest) pooling layer. Unlike the two-stage
detectors, where the prediction of the bounding-boxes is car-
ried out by the region proposal stage (Proposal Generation),
in the one-stage detectors, it is implemented directly from the
input images, which allows them to perform faster. This is
why one-stage detectors aremore preferred in real-time appli-
cations despite their low accuracy performance compared to
the two-stage ones. Weighing the merits of the two schemes,
it could be said that the accuracy of object recognition and
localization is higher in two-stage detectors, whereas the
inference speed is better in one-stage detectors [124].

Fig. 10 displays the entire timeline of both the tradi-
tional object detectors and the CNN-based designs of the
last decade. It could be seen from Fig. 10 that the two-
stage CNN-based detectors preceded the development of the
one-stage detectors. Therefore, in the following review of
the existing object detectors with CNNs, first, the two-stage
designs are introduced in Section C, and then the one-stage
detectors - in Section D.

C. TWO-STAGE CNN DETECTORS
1) R-CNN
In 2014, Girchick et al. [120] introduced a detection algo-
rithm called Region-based Convolutional Neural Network
(R-CNN), which featured a high object detection perfor-
mance. Fig. 12 illustrates the architectures of the three best-
knownR-CNNmodels: R-CNN [120], Fast R-CNN [121] and
Faster R-CNN [122] during both the testing and the training
phase. The diagrams related to the testing phase are depicted
using only amber colour. The diagrams of the training phase
are depicted using both amber and purple colour for the Fast
R-CNN and the Faster R-CNNs in Fig. 12 (b) and Fig. 12 (c),
respectively, which include multi-task loss functions.

As shown in Fig. 12 (a), the R-CNN method starts by
identifying category-independent ∼2k region proposals con-
taining potential objects, and then, proceeds each region to the
backbone network AlexNet [28] to extract 4096-dimensional
feature representations. Lastly, while an SVM is deployed
for classification, fine adjustments of the bounding boxes are
provided by a Bounding-Box regression and a greedy non-
maximum suppression (NMS) method [125]. Using such a
design, R-CNN achieved an improved mean average preci-
sion (mAP) of 58.5% on the Pascal VOC dataset [35]. Despite
its accuracy performance, R-CNNhad a few design problems.
For instance, it was slow in processing the images, taking a
second per image or 1 frame per second (fps), and required
many GPU days to be trained, as ∼2k region proposals per
image had to be classified in the network. The algorithm,
therefore, could not be utilised in real-time. In order to solve
these drawbacks, new versions of R-CNN were proposed
afterwards.

2) SPP-NET
He et al. [126] proposed a new algorithm, SPP-Net, with
a strategy, which is referred to as spatial pyramid pooling

(SSP) eliminating the singly passing of ∼2k region pro-
posals to the backbone network in R-CNN. SPP-Net firstly
computes a convolutional feature map of the whole input
image and following that, classifies each object proposal by
taking advantage of the spatial pyramid pooling layer. Thus,
SPP-Net accelerated the testing time of R-CNN by between
10 and 100 times. Another superior side of SPP-Net was
that it could be used for increasing the performance of all
CNN-based tasks, like image classification. ZF-Net [74] was
used as a backbone to measure the mAP performance of
SPP-Net on Pascal VOC [35] dataset and it achieved 60.9%,
which was better than the R-CNN performance with a lower
computational load. In spite of its advantages, SPP-Net also
had several drawbacks of [120]. The training was a multi-
stage pipeline that included extracting features from the input
image, which required fine-tuning of the network with log
loss, using of SVMs, and providing bounding boxes for
the regression stage. All those signalled new approaches in
the field.

3) FAST R-CNN
In an attempt to resolve the problems of R-CNN [120]
and SPP-Net [126], outlined in Sections 1) and 2) above,
Girshick [121], from Microsoft Research, proposed a new
algorithm called Fast R-CNN at the ICCV 2015 conference.
By introducing several innovations in the Fast R-CNNdesign,
the training and testing speed of R-CNN was improved, and
its detection accuracy was increased as well. A novel RoI
pooling layer was fitted to the network as the single-level
spatial pyramid pooling layer in SPP-Net.

Fig. 12 (b) represents the architecture, where region pro-
posals are first created by a Selective Search algorithm [107]
and then, mapped onto the feature maps. Following that,
the RoI Pooling layer prepares different feature regions as
fixed-size feature vectors, which are then used as inputs in
FCLs. Finally, whereas object categories are predicted by the
softmax operation [127] with log loss [128] in contrast to
R-CNN employing SVM [114], object locations are located
by a bounding-box regression with a smooth L1 (absolute)
loss [129]. Thus, its performance on the Pascal VOC 2007,
2010, and 2012 datasets on training with the backbone net-
work VGG-16 [75] was measured as 70.0%, 68.8%, and
68.4% mAP, respectively. Fast R-CNN was trained on the
VGG-16 base network 9× faster than R-CNN and was 213×
faster during testing. As for SPP-Net, Fast R-CNN was 3×
faster in training, 10× faster in testing, and more accurate
when training on VGG-16. Besides improving training, test-
ing, and accuracy performance, there were three other con-
tributions which are: end-to-end training, no need for disk
storage, and updates on all network layers.

4) FASTER R-CNN
In R-CNN [120] and Fast R-CNN [121], region propos-
als were being generated by different blocks, rather than
using only one convolutional neural network. That was time-
consuming, i.e., ∼2.3s for making predictions and ∼2s for
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FIGURE 12. Architectural demonstrations of the three best-known R-CNN models R-CNN, Fast R-CNN and Faster R-CNN [120]–[122].

generation of 2k RoIs, representing a bottleneck in system
performance. To solve the drawback, Ren et al. [122] pro-
posed a novel Region Proposal Network (RPN), shown in
Fig. 12 (c), which was constructed by using CNN-based
layers, where the region proposals are generated right after
the backbone network. Unlike its ancestors, the number of
RoIs is not a constant value and is defined by the size of the
feature map. Thus, the region proposals were implemented

on GPUs with nearly free of computation cost compared to
previous baselines. The performance results of the algorithm
are detailed in Table 7.

5) RFCN
Dai et al. [130] addressed the basic shortcoming of Faster
R-CNN [122], which was related to the RoI layer being
located between the backbone network and the object
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detection modules. Such a design caused a lack of transla-
tional invariance in the detector as the RoI was converting the
multi-dimensional feature map to fixed size FCLs. To over-
come the problem, they proposed position-sensitive score
maps in the design of RFCN, based on a fully convolutional
network. Thus, all learnable parameters were convolutional
and sharable in the kernels, which was increasing the trans-
lational invariance. It achieved 80.5% mAP on the Pascal
VOC [35] dataset with a ResNet101 [17] backbone network.
Further details are represented in Table 7.

6) MASK R-CNN
Mask R-CNN [119] is a result of extending Faster
R-CNN [122]. It has been primarily designed as a framework
to perform a segmentation task in addition to object detection.
The Mask network as a modernised version of FCNs [131] is
placed in parallel to the detection pipeline for the generation
of split masks for each RoI. Due to an alignment problem
between the feature map and the original image in the RoI
pooling layer, which uses integer quantization, a RoIAlign
layer based on a bilinear interpolation method was employed.
This allows preserving the alignment at pixel-level in the
exact spatial locations between the feature map and input
image. It also enables to achieve a better detection accuracy.
Thus, by deploying ResNeXt-101 [78] as a base network,
a rise in performance was achieved compared to the previous
detectors, as shown in Table 7.

7) FPN
In 2017, Lin et al. [117] proposed the Feature Pyramid
Network (FPN) that fuses features and enhances the system
detection performance. The algorithms, proposed until then,
were detecting either a top-level feature or were performing
an independent detection in feature layers. This disallows to
combine classification and location information. However,
FPN introduced a way of laterally connecting layers top-
down and bottom-up, evoking a pyramidal operation. FPN
was incorporated in Faster R-CNN [122] and achieved state-
of-art results on the MS COCO dataset [36], as detailed in
Table 7.

8) NASNet
NASNet [77] was not solely designed for the purpose of
image classification. It was also targeted at object detec-
tion tasks, as the learned features from the classification
process can be used in detectors. Thus, NASNet used the
Faster R-CNN [122] framework for detection and obtained
a remarkable accuracy of 43.1% mAP compared to previous
baselines, such asMobileNetV2 [99] with 22.1%mAP onMS
COCO [36] dataset.

9) DETR
Carion et al. [132] from the Facebook AI team developed
a new CNN model, called DETR, which was designed as a
solution to the direct set prediction problem for object detec-
tion. The model does not include anchor generation [133] and

non-maximum suppression [125] as they prevent the use of
prior information in the detection pipeline.

There are two main contributions. The first one is a
set-based global loss, which enables powerful predictions
through partite matching and the other one is a transformer
encoder-decoder architecture. Via these strategies, the model
has improved a bit further the accuracy rate of the two-
stage detectors to 44.9% mAP with 10 fps in the COCO
dataset [36].

10) DYNAMIC R-CNN
In 2020, Zhang et al. [134] published an advanced R-CNN
algorithm. Their idea was based on addressing the inconsis-
tencies between the dynamic training process and the fixed
network adjustments, which significantly affect performance.
To tackle the problem, Dynamic R-CNN provides an auto-
matic and dynamic adjustment on both the shape of the
regression loss function, e.g., the parameters of Smooth L1
Loss [129], and the label assignment criteria, e.g., the IoU
threshold [135], by using the region proposal statistics in
training.Moreover, no extra cost has been added to themodel.
Thus, the model performance was improved considerably
achieving 49.2% mAP on the COCO dataset.

D. ONE-STAGE CNN DETECTORS
1) YOLO
Even though the proposed RPN in Faster-RCNN [122]
reduces the region proposal number and the overlaps between
them, the repetitive computations due to inevitable overlaps
still cause an essential bottleneck in the performance of these
detectors. So as to deal with the problem, Redmon et al. [116]
introduced a new hybrid CNN-based architecture, named
YOLO (You Only Look Once), which is illustrated in
Fig. 13 (a). It combines the region proposals and detection
branches into one single stage in contrast to R-CNN [120],
Fast R-CNN [121] and Faster R-CNN [122], as seen in
Fig. 13 (a), where the classification and bounding boxes
regression are responsible to detect the object centres in the
grid cells.

YOLO detectors first divide the input images into S × S
grids and then, each grid is responsible to predict C class
probabilities, B bounding boxes, and the confidence value
for those boxes. Thus, the input is encoded as a tensor
with S × S× (5B+ C) dimension. The end-to-end architec-
ture is built by 24 convolutional and 2 FCLs. As a result,
YOLOv1 has achieved a high processing performance of
45 fps, which satisfies real-time implementation require-
ments. Further details are presented in Table 7.

Despite its success, the YOLO model has also exhibited
a few limitations. As a major problem, its detection ability
on dense small objects is inefficient, since each grid predicts
two bounding boxes from the same class at most. Another
shortcoming is its generalization ability in case of different
aspect ratios of objects on different images during testing.
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Lastly, the loss function is in a need of improvement, as it
affects the detection score.

2) SSD
As discussed in Sections C) and D.1) above, the R-CNN
series [120]–[122] and YOLO [116] come with their supe-
rior and inferior features, trading-off between accuracy and
speed. Liu et al. [123] proposed the Single Shot MultiBox
Detector (SSD), which has advantages on both sides. In the
SSD design, VGG-16 [75] is used as the backbone network,
in which the fully connected sixth and seventh layers are
replaced with convolutional layers as well as four more con-
volutional layers are placed at the end.

The entire design, which comprises six-stages, is hierarchi-
cal, and represents a single forward pass network. The reason
for such a design is to provide hierarchical extraction of
features, where each hierarchical layer provides object classi-
fication and bounding-box detection with different semantic
information levels, as it could be seen from Fig. 13 (b).
Moreover, each stage applies a fast non-maximum suppres-
sion (NMS) technique [125], aimed at post-processing of
redundant bounding boxes. The purpose is to eliminate over-
laps in bounding boxes at every stage, and it also leads to
reducing the amount of computation without compromising
the accuracy. Thus, SSD512 outperforms Faster R-CNN on
both accuracy and speed, and SSD300 shows a processing
performance of 59 fps, which is higher than that of YOLO.

3) SqueezeDet
In 2017, another CNN model was proposed by the creators
of SqueezeNet [96], named SqueezeDet [136], which is a
fully convolutional neural network designed for object detec-
tion. In fact, it received inspiration from both YOLO [116]
and SqueezeNet. SqueezeDet is aimed at satisfying real-
time constraints of embedded deployment in terms of model
size, energy efficiency, as well as a high level of accuracy,
as discussed in Section V.D. below.

Due to its single forward pass neural network pipeline,
the SqueezeDet architecture is effectively fast, small model
sized, accurate and energy efficient. By keeping the same
accuracy as previous baselines, such as YOLO, it enables
8MB model size, which is 30× smaller compared to Fast
RCNN + AlexNet [121]. The energy consumption of 1.4J
per fps in NVIDIA Titan X GPU is 35× lower compared
to [121], and, the inference processing speed of 57 fps,
is 20× faster compared to [121]. It also requires fewer DRAM
(Dynamic Random-Access Memory) accesses and enables
the best average precision in all three difficulty levels of
cyclist detection of the KITTI dataset [37], which is intro-
duced in Section II.D.1).

4) YOLOV2 (YOLO9000)
As stated in Section 1) above, YOLO has several limita-
tions, causing lower localization and recall performances.
To address the problems, the YOLOv2 [137] model intro-
duces a number of improvements onYOLO. First, it enhances

the generalization capability by means of batch normaliza-
tion [138], which speeds up the optimization process. The
anchor idea [122], aimed at increasing the generalization
capability in different aspect ratios, is also incorporated in
YOLOV2, and thus, more scale and aspect ratio can be pre-
dicted by each grid cell. The second improvement is that it
trains high-resolution classifiers to locate images with higher
resolutions. Third, in order to increase the detection abil-
ity, the K-means clustering algorithm [139] is deployed to
automatically find the bounding boxes. Lastly, it handles the
instability of the YOLO model [116] by limiting the ground
truth offset in regard to the grid coordinates. By upgrading
YOLO with these advancements and designing a new base
network, Darknet-19, based on VGG-16 [75], YOLOV2 has
achieved a 78.6% mAP on the COCO dataset [36] and a
higher number of learned object categories.

5) MobileNetV2-SSDLite
MobileNetV2-SSDLite is based on the classification CNN
MobileNetV2 [99], which was discussed in Section III.B.10)
above. It includes an architecture for object detection using
a modified version of the SSD (Single Shot Detector)
model [123] that is a mobile variant of SSD, whereby the
main idea comes from the separation of regular convolutions.
All the spatial 2D convolutions in the SSD prediction layers
are replaced with separable convolutions (i.e., depth-wise
convolutions, followed by point-wise convolutions). As a
result, its performance was even better than that of YOLOv2
[137] with 10× fewer parameter number and 20× less com-
putational load.

6) YOLOv3
YOLOv3 [141] inherits the superior sides of the previous
YOLOv1 and YOLOv2 models and handles their shortcom-
ing balancing accuracy and speed. To actualize the object,
YOLOv3 combines residual networks [17], FPN [117], and
binary cross-entropy/log loss [128]. As a result, the model
can detect complex multi-size objects with more categories
achieving performance of 28.2% mAP at 22ms or 33.0%
mAP at 51ms on the COCO dataset [36].

7) CenterNet
In 2019, Duan et al. [142] proposed an algorithm, CenterNet,
whose motivation comes from the realisation that faults in
the detection of bounding boxes are the main problems in
architectures, and if the cropped regions are looked into again,
the accuracy performances could level up. CenterNet, there-
fore, focused on minimising that kind of errors. They built
their framework being inspired by CornerNet [140], which is
a typical one-stage key-point based detector. Unlike a pair of
key-points in CornerNet, each object in CenterNet is detected
as a triplet of key-points, which allows to improve precision
and recall accuracy.

As seen from Fig. 14, a convolutional backbone network is
used to define a two-corner feature map and centre key-point
features on the map by employing cascade corner and centre

14098 VOLUME 10, 2022



T. Turay, T. Vladimirova: Toward Performing Image Classification and Object Detection With Convolutional Neural Networks

FIGURE 13. Illustrations of the single-stage pipelines of the YOLO [116] and SSD [123] architectures.

FIGURE 14. CenterNet network [142].

pooling modules, respectively. By using these feature maps,
CenterNet detects the final bounding boxes. It outperformed
on the COCO dataset state-of-the-art detectors such as Faster
R-CNN [120], YOLO [116], SSD [123] and CornerNet,
achieving an accuracy performance of 47.0% mAP.

8) YOLOv4
Bochkovskiy et al. [144] introduced YOLOv4 at CVPR
2020 as the latest version of the YOLO series. It incor-
porates several existing universal and unique strategies,

such as DropBlock regularization, CIoU loss, Mosaic data
augmentation, Mish activation, etc., into the architecture.
CSPDarknet53 [145] is used as the backbone network as
well as SPP [126] and PAN [147] are employed as neck
layers. These are transition layers between the backbone
and head blocks (classification and bounding boxes), which
are inserted to improve detection accuracy. Consequently, its
real-time processing speed and accuracy are quite good with
43.5%mAP at 65 fps, which is better than the previousYOLO
version, YOLOv3 [141].

E. DESIGN TRENDS ON MS COCO AND PASCAL VOC
The performance of the leading CNN-based detectors is sum-
marized in Table 7, in which the names of the two-stage
models are shaded in light grey colour, while the names of
the one-stage models – in dark grey colour. For each model,
the following data are provided: literature source, backbone
network, year of introduction, model size in MB, processing
speed in frames per second (fps), implementation platform,
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TABLE 7. Performances of CNN-based object detectors.

and mean average precision (mAP) on the Pascal VOC [35]
and MS COCO [36] pascal datasets.

It can be observed from Table 7 that the models that have
performed best in terms of accuracy in their baseline class
are Detr [132] and Dynamic R-CNN [134] for two-stage
detectors and CenterNet [142] and YOLOv4 [144] for one-
stage detectors. It can also be seen fromTable 7 that themodel
sizes of these detectors are quite high among models. Thus,
it seems that heavyweight detectors have provided higher
accuracies on the test datasets like the image classification
models, discussed in Section III.

As for the low model size detectors, the winners are
SqueezeDet [136] and MobileNetV2-SSDLite [99] having
the outstandingly small size of around 8MB and 18MB,
respectively, according to the literature. However, their accu-
racy levels are remarkably low for any real-time imple-
mentation, compared to other state-of-the-art detectors. So,
lightweight CNN-based object detection solutions have
shown the same tendency as classification CNNs.

It is not surprising that the evolution of the object
detection CNN-based models and the CNNs for image
classification have shown similar tendencies. This is
because they have a close historical and architectural
relationship.

V. AUTONOMOUS DRIVING SYSTEMS
The accumulation of knowledge on vehicle dynamics, the
ground-breaking improvements on computer vision through
the emergence of deep learning, and the advent of newly
designed sensor modalities energized the R&D activities
among researchers and developers of Autonomous Driving
Systems (ADSs). From the first large-scaled automated driv-
ing competitions, DARPA Grand [148] and Urban [149]
Challenges, to this day, numerous approaches have been
proposed, and common system architectures have been estab-
lished. In addition, substantial tasks in ADSs have been
divided into subcategories, and explicit dominance of deep
learning (DL) models has been seen in a number of subcat-
egories [150]. Nevertheless, robust ADSs in urban environ-
ments have not been implemented yet [151].

Owing to the extraordinary advances in CNNs as a sub-
branch of DL, they have become a promising choice for
the implementation of visual tasks in different modules of
Autonomous Driving Systems, aimed at reducing human
interventions in driving. This section first presents a review
of the most recently published ADS related works that are
focused on CNN-based image classification and object detec-
tion. Then, an outline of the current industry status is given.
Next, the architecture and components of computational
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pipelines in the latest ADSs are discussed. Following that,
application constraints are introduced, and, lastly, future
directions are summarised.

A. REVIEW OF ADSs RELATED WORKS ON OBJECT
CLASSIFICATION AND DETECTION
This review is targeted at the perception part of ADSs, which
is one of the subsystems of self-driving cars, among oth-
ers, as detailed in Section V.C. below. It is responsible for
understanding scenes of the driving environment that include
objects from multiple different categories. Consequently,
multi-label image classification [152] is employed in ADSs
rather than the traditional single-label image classification,
which handles images as containing one category of an object
per image. Multi-level image classification is also referred to
as object classification in the rest of the paper.

The image classification and object detection algorithms
in Tables 5 and 7 are specifically designed for general-
purpose datasets, such as ImageNet [31], Pascal VOC [35],
MS COCO [36], which can be utilised in different fields,
as discussed in Section II.D.1). To enhance the object clas-
sification and detection capabilities of ADSs, a diverse set of
naturalistic driving scenarios have to be addressed, e.g., all
weather conditions, day/night time, pedestrians, traffic lights,
cyclists, traffic density, etc., which are not properly repre-
sented in domain-general datasets. Thus, it is necessary to use
domain-specific datasets (exemplified in Section II.D.1)).

In this section we overview ADSs related works on object
classification and detection, which are published in the last
three years, by analysing them in terms of dataset collection
scenarios, sensors, and detection types.

1) SELF-DRIVING SCENARIOS
Understanding the complexity of naturalistic road scenes is
vitally important when there are diverse self-driving scenar-
ios, such as day/night time and weather conditions. In fact,
handling diverse driving conditions represents the most chal-
lenging research part of ADS design. Hence, enhancements
in object classification accuracy of such scenes can be seen
as a foremost solution to overcoming the difficulties.

In this direction, Li et al. [153] proposed a deep adap-
tive neural network for multi-label image classification,
ML-ANet, which enhances the accuracy performance in
cross-domain adaptations. Aiming at an effective knowl-
edge transfer between similar but different domains, the pro-
posed approach exploits the technique of transfer learning
from a fully labelled to a limited or unlabelled domain.
In order to achieve this, the domain discrepancies are
reduced by distributing feature maps of source and target
domains via multiple-kernel variants of maximum mean
discrepancies (MK-MMD) loss. The experimental work is
primarily focused on domain changes arising from the con-
version between clear and hazy weather conditions. It is
shown that the proposed multi-label classifier network out-
performs existing state-of-the-art methods [154]–[156] on
three commonly used domain-specific datasets: KITTI [37],

Cityscapes [39], and Foggy Cityscapes [157]. The ML-ANet
neural network is also capable of adapting to round the
clock illuminations in diverse weather conditions. In addition,
it offers a reduced development cycle, as there is no need of
fully labelled training data.

Three models aimed at a detection of pedestrians in
hazy weather, which are based on the YOLO CNNs
(Sections IV.D.1) and IV.D.4)) are proposed in [158]. In one
of the models, named MNPrioriBoxes-Yolo, the detection
precision is increased by employing a new weighted com-
bination layer. The network features a high speed and low
computational cost due to the use of depth-wise separable
convolutions and linear bottlenecks. In addition, a modified
priori boxes method [122] is employed to enhance precision
and detection speed. Evaluation results based on a purpose-
built hazy weather pedestrian dataset, which was created
using six different augmentation techniques, have shown that
the proposed model outperforms state-of-the-art methods in
terms of accuracy and speed.

Fog is also an adverse weather condition that can occur in
the driving environment. The object detection performance of
Faster R-CNN [122] in four levels of foggy weather: clear (no
fog), light, medium, heavy is analysed in [159]. Other works
could be found in [160]–[162].

A large number of works have been addressing rainy and
snowy weather conditions. The performance of the Faster
R-CNN [122] and YOLO-v3 [141] detectors under clear and
rainy conditions is analysed in [163]. The impact on perfor-
mance of mitigating the effect of rain is investigated using
various techniques, such as image translation [164], domain
adaptation [165], and deraining (i.e., raindrop removal) [166].
The BDD100K dataset [38] is used in the experiments, as it
offers image tagging for weather types. Thus, each image
weather condition, such as foggy, rainy, and so on, is labelled.
The evaluation results show that the mitigating techniques
have a positive effect on the rainy weather detection perfor-
mance of the employed CNNs.

Regarding snowy weather, Bernuth et al. [167] apply
an adverse weather augmentation approach to reuse exist-
ing, well-organised, and labelled datasets, KITTI [37] and
Cityscapes [39]. The approach produces lifelike and phys-
ically correct images to be added to existing ready-to-
use datasets created with real-world images. Rendering the
scenes with snowflakes for realistic images is provided by
using OpenGL. Then, these generated images are evaluated
in the proposed object detection algorithm to verify their
efficiency. Other recently published works regarding rainy
and snowy weather are [162] and [168].

Driving at night-time under low-light conditions causes a
lack of details in the driver’s field of vision and increases
accident risks. Thus, many research works have been targeted
at finding possible solutions. Li et al. [169] proposed an
image enhancement network, LE-net based on CNN, which
specifically addresses the exceedingly low-light conditions at
night-time, such as rural areas without street lighting. Then,
the study follows four sequential steps: (i) building a novel
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pipeline to generate low-light images from existing daytime
images, extracted from BDD100K [38]; (ii) generation of
naturalistic image pairs via the proposed pipeline for model
development; (iii) training and validation of the designed
network with the generated low-light images; (iv) testing of
the network, LE-net, on real night surroundings with variable
low-lights. It is shown that on the BDD100K dataset, the pro-
posed network outperforms other models [170]–[172]. The
EuroCity [44] dataset is used as a second evaluation metric,
whereby a better performance is also observed in comparison
to other studies [171]–[173].

To enhance the accuracy performance of object classifica-
tion tasks at night, a dataset is created in [174] by combining
two well-known datasets, MMSP [175] and BDD100K [38].
Following that, the created dataset samples are subclassi-
fied into daytime and night-time, and similar samples in the
dataset are removed to prevent overfitting. The evaluation
results have shown an improved night-time object classifica-
tion performance. Other works addressing night-time object
classification and detection are [176] and [162].

2) SENSORS
The works introduced in the section above mostly use
camera-based image data, which are susceptible to level
changes in the lighting conditions due to different seasons,
intemperate weather, and shifting shadows. Changes in illu-
mination could lead to failure of algorithms, affecting badly
the quality of perception. Alternative sensors for perception
tasks inADSs are lidar and radar, however lidar struggleswith
foggy and snowy weather [177], while radar lacks sufficient
resolution for perception tasks [178].

Sensor fusion is currently employed to improve precision
and prevent any single point of failure [179]. Furthermore,
dynamic conditions in camera-only systems [180] and low
lighting conditions in thermal infrared imaging [181] are
dealt with by data processing techniques that extract light-
ing invariant features [182] and assess feature quality [183].
Despite that, perception quality remains a central issue and
prevents the ADSs from becoming prevalent in vehicles.

In addition to illumination changes, another issue is the
image space for camera-based perception, as the scale of the
image scene is unknown in advance. In fact, making use of
scale information in dynamic tasks, such as obstacle avoid-
ance is feasible by means of a single camera [184], although
multi-view or stereo systems are more preferable in terms
of robustness [185]. However, they lead to a considerable
amount of computational load to an already complicated per-
ception pipeline. As a relatively new and alternative sensing
method for 3D perception, 3D lidars exist to solve the scale
problem as they depend far less on illumination changes and
intemperate weather. Nevertheless, their owning cost remains
as a noteworthy problem as stated in Section I.A.

In view of the above, numerous recent works have been
concerned with enhancing the perception quality of self-
driving scenes on different collection scenarios and improv-
ing the object classification and detection performances in

real-time. For instance, Gao et al. [186] have fused lidar and
vision data in an object classification task. Point clouds of
lidar data and RGB images from the KITTI [37] dataset are
used in the study. They initially upsample and convert the
point cloud data into depth feature maps at pixel-level, and
the RGB images are also converted to depth feature maps.
Following that, the integrated depth and RGB data are fed
into a CNN. Thus, experiments on the KITTI [37] dataset
exhibit superior object classification accuracy compared to
using only depth or RGB data. Moreover, acceleration in
feature learning and convergence has been achieved using
lidar data.

Another fusion-based system [166], which employs a
cheaper 4-beam lidar, rather than an expensive 64-beam one,
and a stereo camera for 3D object detection, handles the cost
problem of lidars. Due to a significant enhancement of the
depth estimation technique, the proposed method has shown
an improved 3D object detection performance on the KITTI
dataset [37].

In [187], the performance of point clouds of lidar data on
3D object detection is addressed by simulating clear weather
to foggy weather compared to other sensor types. Details
about more sophisticated recently published works can be
found in VoxelNet [188], SECOND [189], IPOD [190],
PointPillars [191], PointRCNN [192], F-PointNet [193].

3) DETECTION TYPES
So far, the review of ADS related works has focused on the
overall content of the self-driving scenes, or in other words,
the big picture. On the other hand, enhancements of object
classification and detection of specific features of the scene,
such as pedestrian, cyclist, traffic sign and light, pavement
marking, etc. are also quite important, e.g. from a safety point
of view. Here we call these sub-classification and detection
types.

In a recent study on pedestrian detection, Boyuan and
Muqing [194] placed a novel Spatial Pyramid Pooling (SPP)
network to YOLOv4 [144] detector for an improvement of the
detection accuracy, where a Mish activation function [195]
is used instead of Leaky ReLU. Then, the anchor parame-
ters of YOLOv4 were optimized with a K-means clustering
algorithm. As a result, an excellent pedestrian detection accu-
racy of 84.7% mAP was obtained with 36.6 fps in real-
time, on the Caltech [43] dataset (introduced in Table 3).
In [196], thermal imaging, enabling day/night time and
illumination-independent data collection, was used to imple-
ment a robust pedestrian and cyclist detection using the Faster
R-CNN [122]. Details of other related approaches are avail-
able in [197], [198], and [199].

Detection of traffic signalization, comprising elementarily
traffic signs, traffic lights, and road surface markings in the
surrounding of self-driving cars allows the ADSs to make
correct decisions according to the traffic rules. There are
several most recent studies regarding this research topic.
Henchri and Mtibaa [200] propose a two-stage approach for
traffic sign detection. In the first stage, only the shape of
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the signs, which are circular or triangular, are detected and
classified by using HOG [109] features and support vector
machines (SVM). Then, the second stage by means of a
CNN attempts to classify these detected shapes into their
own subclasses. Finally, the approach is tested on the GTSDB
benchmark [201] with improved results.

Another significant object for ADSs in road scenes is
traffic lights. An SSD [123] detector is exploited for an adap-
tation study to detect traffic lights and small objects in [202].
The Inception-v3 CNN (Sec. III.B.2)) is employed as the
base network instead of the originally enlisted VGG CNN
(Sec. III.A.3)) to increase speed and accuracy. The study
adapts a prior box generation allowing smaller strides in the
latter network layers, which enables detections of smaller
object. Non-maximum suppression (NMS) is also adapted
to prevent multiple detections for a single object. Finally,
an additional block is inserted to classify the states of the
traffic lights (i.e., red, amber, or green). The model showed a
good performance on the DriveU [203] traffic light dataset.

Road surface markings as an important component of
traffic signalization have been also studied in recent years.
Ye et al. [204] have addressed partly distorted and worn
road markings by means of a two-stage model based on
YOLO-v2 [137]. The first stage is responsible for the detec-
tion of initial road markings with coordinates and class con-
fidences of bounding boxes by using the YOLO-v2 CNN
(Sec. IV.D.4)). In the second stage a novel, lightweight,
and transformation-invariant classification network, RM-Net,
is used for road markings detection, which is able to tackle
the distortions and surface wears. An annotated road marking
detection dataset for public use is developed, consisting of
∼12k high-resolution images, grouped into 13 classes, which
are collected under various weather conditions in day/night
time. The model achieved 86.5% mAP on this dataset, out-
performing other existing frameworks.

Details of other most recently performed works could be
found in [205] and [206] for traffic sign detection, [207]
and [208] for traffic light detection, [34] and [209] for road
surface marking detection. Readers are referred to [23] for
information about more works on traffic signalisation.

B. CURRENT INDUSTRY ACTIVITIES
1) TAXONOMY OF VEHICLE AUTOMATION
In 2017, the US National Highway Traffic Safety Author-
ity [210] released guidelines for ADSs, in which six levels
of automation were specified [211]. These are summarised in
Table 8 and are outlined below.

• LEVEL 0: NO AUTOMATION
All driving tasks must be completed by a human driver,
which also means zero autonomy.

• LEVEL 1: DRIVER ASSISTANCE
The vehicle is mainly controlled by a driver. Only under
limited driving conditions, some driving assistance fea-
tures, such as steering, acceleration/deceleration, are
shared with the automated system.

TABLE 8. Automation levels.

• LEVEL 2: PARTIAL AUTOMATION
The vehicle fully controls the steering and accelera-
tion/deceleration even under limited conditions. How-
ever, drivers must remain focused on other driving tasks
and monitor vehicle surroundings at all times.

• LEVEL 3: CONDITIONAL AUTOMATION
The human driver is not required to monitor the environ-
ment as the automated system takes on all driving tasks,
including lane change as well. What the driver must still
do is to be in a state of readiness to respond to requests
arising from the automated system.

• LEVEL 4: HIGH AUTOMATION
Under certain conditions, the vehicle is capable to handle
all the driving tasks. A human driver might have an
option to take part in the control.

• LEVEL 5: FULL AUTOMATION
In this level of autonomy, vehicles are capable of per-
forming all the driving tasks under all driving conditions.
There is no task assigned to the human driver.

In brief, as seen from Table 8, whereas in levels 1 and 2
drivers are still responsible for a few tasks, in levels 3-5
the responsibility for all driving tasks, even lane change,
is supposed to be handled automatically. Fig. 15 shows recent
updates to the level definitions above by the Society of Auto-
motive Engineers (SAE) [211].

2) CURRENT STATUS QUO IN INDUSTRY
This subsection presents the results of a literature survey on
the current status and activities of industry leaders in terms
of the achieved level of automation as well as used sensors
and computing platforms in the vehicle, in an attempt to
establish where automakers stand. A summary of the findings
is presented in Table 9.

It could be seen from Table 9 that even Tesla [12],
Audi [212], and Mobileye [13], [14] which are lead-
ing automotive companies, have only achieved automation
levels 2 or 3, in which the driver must be highly involved
in completing the driving tasks. It would appear that the
production process relating to ADSs of many automakers is
still under experimentation. In addition, some of them have
imposed certain conditions on the use of their ADSs, i.e.,
driving in confined areas such as specific cities, particular
highways, etc. Currently, levels 3-4 can be operated only in
limited Operational Design Domains (ODDs) like highways,
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FIGURE 15. SAE recent updates on automation levels [211].

and Audi claims to be the first company which have produced
a level-3 vehicle under the condition that it is driven on a
restricted highway [213].

In 2020, Volvo and Lidar-maker Luminar [214] stated
that they aim to deliver genuine hands-free level-3 driving
without monitoring surroundings by drivers in the real-world
environment, rather than under certain conditions, by 2023.
Although, as shown in Table 9, Waymo [215] have reached
level 4 driving under certain conditions, there has not been yet
any production of a vehicle satisfying levels 3-5 driving on
any road in an urban environment. Furthermore, the Toyota
Research Institute [216] have stated that there is no one in
the industry that has been even close to attaining level 5.
Thus, the details in Table 9 show that there are still challenges
in the production of highly automated vehicles, especially
at levels 3-5, which motivates the research community to
actively investigate this emerging area.

As for the used sensors, as seen from Table 9, Nvidia/Audi
[212], Waymo [215], and Navya [217], who have achieved
automation levels 3-4 differ from the others by using lidars,
which enable high precision as sensing devices send light
beams to surroundings. However, the reason why the industry
tends to mount cameras instead of lidars is their overwhelm-
ing cost, as mentioned in Section I.A. There is also a general
tendency for using a combination of SoCs and GPUs based
high-performance computing platforms, as shown in Table 9,
as these can support high-speed processing of large volumes
of sensor data.

TABLE 9. Current situation of autonomous driving under
experimentation.

C. SYSTEM ARCHITECTURES AND COMPONENTS
System architectures of ADSs defining working order can
be classified into two types by their connectivity sta-
tus and algorithmic design. By connectivity status, archi-
tectures could be subdivided into two classes: ego-only,
i.e., a single vehicle [26], [218] or connected vehicles,
i.e., multi-agent systems [219]–[221]. Depending on their
algorithmic design ADSs architectures could also be subdi-
vided into two alternative classes, which are: modular [26],
[218], [46], [178], [222]–[227] or end-to-end driving sys-
tems [146], [228]–[236].

1) CONNECTIVITY IN ADSs ARCHITECTURES
The idea behind the connected systems is based on a
communication network among the vehicles (agents). It is
expected that this type of system would allow to advance
autonomous driving in a more hierarchical way. Even
though there is not any kind of operational system of
this type at present, in academia, it is notably believed
that this emerging technology will take a high proportion
of the future ADSs [219]–[221]. Current ever-developing
design approaches to connected systems are: Vehicular
Ad hoc NETwork (VANETs) [219], vehicle to everything
(V2X) [237],

Information-Centric Networking (ICN) [219], and Internet
of Vehicles (IoV) [219].

Contrary to connected systems depending on other vehicles
on the roads, the ego-only system brings a different approach,
whereby all the necessary automated driving operations
are managed by a self-sufficient vehicle. At present, this
approach is the most preferred system type [26], [218], [46],
[178], [222]–[226], as it may be that the enormous develop-
ment challenges force the industry to focus on this system
type for now.

2) ALGORITHMIC DESIGNS FOR ADSs ARCHITECTURES
Modular systems consist of separate linked components that
form the pipeline of ADSs, including connections from the
sensory inputs to the actuator outputs [150]. It is referred to
as a mediated approach in [228]. Fig. 16 (a) demonstrates
a state-of-the-art modular system design, which is based on
recent publications [15], [16], [238]. The individual modules
in Fig. 16 (a) are described in Section 3) below.

Unlike modular systems, end-to-end systems generate ego-
motion information by using directly the input data provided
by the sensors. Ego motion is defined as either the contin-
uous operations on the steering wheel and driving pedals
or a set of discrete actions, e.g., acceleration and turning
left/right [16]. It is also referred to as a direct reception
in [228]. The pipeline of an end-to-end system is represented
in Fig. 16 (b). Neuroevolution [235], [236], direct supervised
deep learning [228]–[232], and deep reinforcement learn-
ing [233], [234] are three different main approaches for these
systems.

Table 10 summarises the pros and cons of the two algo-
rithmic designs. The key factor of why automakers prefer
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FIGURE 16. Algorithmic design types: (a) modular system and (b) end-to-end system.

modular designs compared to end-to-end design is exist-
ing literature, which enables easier production even though
there are still many shortcomings, primarily error propaga-
tions. End-to-end designs still need many efforts for near-
future production. Particularly, hardcoded safety measures
and interpretability remain crucial topics for these designs.

TABLE 10. Comparison of design types.

3) MODULES
A variety of sensors are used in the onboard data process-
ing pipelines of cutting-edge ADSs. Commonly used types
of sensors are exteroceptive sensors, e.g., ultrasonic, radar,

lidar, and cameras, which are responsible for perceiving the
vehicle surroundings. They are employed in bothmodular and
algorithmic designs, as seen from Fig. 16 (a) and (b). As pre-
viously stated in Section I.A., many leading companies, such
as Tesla [12] andMobileye [13], [14] have mainly focused on
camera-based approaches. However, others have used lidar
sensors as well, e.g., the Uber car (XC90) [225] deploys
20 cameras and 8 lidars, and VisLab’s BRAiVE [222] has
10 cameras and 5 lidars. The data-flow diagram for modular
systems is shown in Fig. 16 (a).

Data collected from sensors are utilised for two different
purposes: (i) perception and (ii) localisation & mapping. The
first requires detector and tracker modules, while the second
requires a localizer module, as illustrated in Fig. 16 (a). The
perception modules perform the crucial task of perceiving
the vehicle environment and extracting meaningful informa-
tion from the objects. They also play a significant role in a
vehicle’s navigation system. Perception has some core sub-
tasks which are object detection [116], semantic segmenta-
tion [119], road and lane detection [243], [244], and object
tracking [245]–[248]. Information extracted by the detector
and tracker in the pipeline is combined with the localizer
in the fusion module. Then, this information is used in the
behaviour prediction module, also known as path planning.

The localization & mapping modules are responsible for
finding the vehicle’s ego-position relative to a map or a
reference frame taken in the surroundings [249]. By means
of localization, the vehicle finds its precise relationship with
all of the objects on the map. This task is crucial for ADSs
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similarly to for any other mobile robotic system [250]. This
is because vehicles need to estimate their ego-position with
a centimetre-level precision [16]. In the industry, mainly the
following five localization techniques are used: SLAM [251],
Absolute positioning sensors [252], Odometry/dead reck-
oning [253], GPS-IMU fusion [254], prior map-based
[255]–[257], and many of them are lidar-based approaches.
There have been suggestions that the future of localization
may be shaped by camera-based approaches as their deploy-
ment is more cost-efficient [16].

Lastly, a significant part of the ADSs pipeline is respon-
sible for behaviour prediction and planning, which are pro-
duced in a route planner module as shown on Fig. 16 (a).
Planning modules realise two sub-tasks, global planning and
local planning. As the name suggests, a global planner finds
a route from point of departure to point of arrival by using
the road network, whereas local planning tries to perform a
defined global plan with as lower as a possible error. In other
words, ADSs strive to reach the final destination by finding
trajectories avoiding obstacles and satisfying optimization
criteria.

In addition, many modern cars are equipped with navi-
gation systems, which plot a global route by utilising GPS
or offline maps. Both, the academy community and indus-
try have proposed a number of global planning methods,
such as goal-directed path [258], separator based[259], hier-
archical [260], bounded-hop [261]. In addition to these
methods, some hybrid studies have been published as
well [262], [263]. Recently, several methods on local plan-
ning have been proposed too, following different approaches,
e.g., graph search [264], sampling-based [265], [266], curve
interpolation [267], [268], numerical optimization [269].
Apart from these traditional methods, new approaches to
planning have emerged based on DL and reinforcement
learning [269], [270], which still have many shortcomings
that need to be overcome such as interpretability [239],
hard-coded safety measures [242], generalization, training
data, etc.

In contrast to modular systems, end-to-end systems aim to
produce a similar result in one step, as shown in Fig. 16 (b).
However, these systems are still an ongoing research topic
and need a lot of development efforts.

D. ADSs DESIGN CONSTRAINTS
According to official information, 94% of the total number of
road accidents are due to human errors [271]. Against these
grim statistics, ADSs promise to reduce traffic accidents,
driving-related stress, emissions, and many others [272].
However, ADSs have been the cause of accidents as well.
For instance, Google’s ADS [273] hit a bus when changing
lanes, as the system did not accurately estimate the speed of
the bus. As another example, Tesla’s Autopilot [274] failed
to detect a truck and it caused a fatal accident resulting in the
death of the driver. There are many other such collisions with
tragic ends [275], [276]. These unfortunate events show that

there are still many issues that need to be addressed during
the design process of such systems.

The purpose of this section is to discuss the main criteria
that should be handled to realise the object detection algo-
rithms designed for ADSs.

Design of ADSs is a trade-off decision process taking
into account a number of requirements on different parts of
the system, in terms of performance, predictability of per-
formance, power consumption, storage, thermal constraints,
among others [15]. The object detection part of ADSs,
for example, must satisfy real-time implementation require-
ments. In this section, ADSs design constraints will be eval-
uated based on the open literature, after which a trade-off
analysis between accuracy and model size will be discussed.

Mainly, four parameters that affect directly the perfor-
mance of the vehicle are considered, when designing a new
CNN for object classification or object detection, namely
accuracy, model size, inference speed, and efficiency. As seen
from Table 5 and 7 increasing the accuracy level of CNNs
for both classification and detection has been a main-
stream research goal, apart of several works, such as [70],
[96], [98], [101] on classification and [122], [116] on object
detection. Moreover, what is another trend exemplified by
Tables 5 and 7 is that the rises in the accuracy have been
followed by rises in the model sizes as well. However, while
the former is regarded as an added value, the latter is not a
favourable result for real-time implementations.

Without a doubt, a novel CNN architecture featuring both
low model size and a high accuracy level would bring
many advantages to ADSs systems. Some of the bene-
fits of a small model size are low power consumption
(efficiency), low latency and high inference speed. It also
facilitates over-the-air updates [96], online and distributed
training [96], [277], FPGA-based implementation, use of
low memory bandwidth [96] and it even leads to lower fuel
consumption [15].

Some technical terms about latency and memory types of
processors (CPUs) are clarified next. There are two types
of CPU memory – internal (on-chip) and external (off-chip)
where the former could be of two types: ROM (non-volatile)
or RAM (volatile). When the processor needs to process
data, it fetches it from an on-chip memory component that
is embedded in the processor itself, as shown in Fig. 17. The
on-chip RAM is of an SRAM type and the off-chip memory
is of a DRAM type.When the processor needs to process data
not available in the on-chip memory, it fetches it from an off-
chip memory component that is not a part of the processor
itself.

The on-chip SRAM memory allows reducing the latency
(delay time), as generally, it supports a single-cycle access
time. SRAM performs as a cache memory for the off-chip
DRAM as well. The off-chip DRAM has a much greater
latency of 1000× cycles more compared to the on-chip
SRAM [278] as illustrated in Fig. 17. Due to its high cost,
SRAM memory is preferred at low sizes. Although DRAMs
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are low-priced memories, they are quite power-hungry due to
their internal design features [279].

FIGURE 17. Memory hierarchy in processors [278].

1) PERFORMANCE AND PREDICTABILITY
Being candidates for preventing car accidents, ADSs need the
capability of understating their surroundings and reacting to
them in an acceptably fast way. Despite the promise for such
a potential, the real-time performance requirements for ADSs
are still largely undefined.

According to Mody [280], the reaction time of ADSs is
defined by two criteria, frame rate and processing latency.
While frame rate denotes how fast the data coming from real-
time sensors can be fed into ADSs, the processing latency
is defined by how fast the system reaction to every piece
of fed data (frame) is. Following that, Lin et al. [15] state
that ADSs should be able to react or process current traffic
events within the latency of 100ms and support a frequency
of at least 10 fps in object detection, as well. These metrics
are based on the actual real-time performances of the human
driver [271], [281]–[284].

In [15], the reaction performance of human drivers is used
to systematize the ADSs real-time performance. Even though
the human being is a very complicated non-linear system,
and its behaviour cannot be assessed easily [285], [286], it is
shown in [287], [288] that human ability for image classifi-
cation outperforms DNNs indisputably. Ideally, in operation,
a 100% accuracy rate is expected from object detectors in
finding objects of interest. However, such an accuracy, which
is on par with human abilities, is yet to be achieved by ADSs,
and it is a great challenge in the field. In summary, the only
agreed so far target to be reached by ADSs is up to %100
accuracy rate, and the evaluation of human behaviours on
detection accuracy is yet to be finalised.

Three performance targets of ADSs were defined so far:
processing latency, frame rate, and accuracy. The predictabil-
ity constraint is determined by the reliability and quickness
of the ADSs reactions to the real-time traffic conditions.
In general, they are defined with both temporal aspects,
like timing deadlines, and functional aspects, like making
the correct operational decisions. Not being able to respond
reliably within a specific deadline may endanger passengers
and could result in fatal accidents. The performance of ADSs,
therefore, needs to be exceedingly predictable to be adopted
in real driving scenarios.

2) POWER
As mentioned previously in Section I.A., Intel [10] has stated
that fully developed ADSswill be required to process approx-
imately 1GB of data per second of its real-time operation.
This data needs to be processed very fast so that vehicles
can react to their surroundings by keeping real-time perfor-
mance constraints. Consequently, that results in huge power
consumption as well. In addition, as stated in [15], a power-
hungry system could cause a significant downgrade of the
fuel efficiency of the vehicle, i.e., up to 11.5%.

3) STORAGE
In localization tasks of ADSs, tens of TBs data are required
to store the prior maps [15], [255]–[257]. For instance, a prior
map of the USA is 41 TB [289], which need to be stored
while driving. The reasons why such prior maps are needed
are the lack of precision and accessibility in GPS technol-
ogy [290], [291].

Apart from the above, there are also many other con-
straints, such as thermal [15], privacy [10], hardware relia-
bility, etc.

4) TRADING-OFF ACCURACY AND SIZE
The low model size of CNN-based object detectors enables
many advantages, but their accuracy is not so high. In view
of this, here we evaluate the trade-off between high accuracy
and low model size.

The benefits of lowmodel size CNNdesigns come from the
feasibility of their implementation on embedded computing
platforms, as previously pointed out with ablation experi-
ments in Section III.D. and summarized in Table 11. The
high performance of GPUs in terms of processing latency is
mostly due to the use of large on-chip memories, which have
a very short access time. Nevertheless, despite their quite low
latency, they have a high-power consumption. This is also
confirmed by [15] with experimental results based on testing
of a number of real-time implementations of CNN-based
object detection, tracking, and extraction using CPUs, GPUs,
and FPGAs. Moreover, [15] reveals that GPUs are outper-
formed by FPGAs in respect of energy consumption.

At the same time, processing latency of CNN FPGA
implementations is restricted by the size of the on-chip
memory, which often amounts to less than 10MB [96].
Examples of automotive-grade FPGA families are XA
Spartan-3A (576KB) [292], XA Artix-7 XA7A12T (720KB)
[293], XA Spartan-7 XA7S75 (3.2MB) [294] for XILINX
and Intel Cyclone IV E EP4CE1150 (3.9MB) [295], Intel
MAX 10 10M50 (1,6MB) [296], Intel Cyclone 10 10CL055
(2,3MB) [297] for Intel. Even though these FPGAs support
access to external off-chip memory, performance of CNN
models would be limited by the amount of the on-chip SRAM
memory.

In conclusion, there are many benefits of reducing the
model size of CNN-based detectors as well as making them
capable of state-of-the-art accuracy rates as seen in Table 11.
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Therefore, there is a need of improving low model size CNN
designs by increasing their accuracy to a favourable level.
Such developments would expedite the use of CNNs in the
ADSs design process by allowing CNN deployment in low-
power FPGA-based implementations despite the low on-chip
memory resources.

TABLE 11. Advantages of accuracy and model size in CNNs.

E. PROMISING DIRECTIONS
Here we discuss the emerging trends in the two main areas
covered above: object detection and ADSs.

1) OBJECT DETECTION
Several prominent directions could be noted in the area of
object detection.
• Firstly, as seen from the object detection designs in
Section IV, while the two-stage detectors are only
focused on accuracy, the one-stage detectors are con-
cerned primarily with the model size and efficiency.
Thus, each of them sacrifices a design parameter in their
design. From this perspective, utilizing one-stage and
two-stage detectors by combining their superior sides
is a big challenge enabling higher accuracy and lower
latency together in the detectors.

• Another trend is troubleshooting video data streaming
problems, such as video defocus, motion blur, intense
target movements, etc. so that their detrimental effects
on performance are removed.

• The third direction is related to the used machine learn-
ing method in CNN training. To avoid the long time
and inefficiency of the training process in supervised
learning, unsupervised learning methods have started to
be employed as an emerging research direction.

• Another non-CNN based trend is using GAN-based
detectors [298]. The necessity of a large amount of
data in deep learning has several drawbacks. To over-
come this problem, GAN-based detection methods are
expected to become a promising and ever-increasing
area.

• Finally, decreasing the model size of detectors brings a
large number of advantages. However, the design pro-
cess has to be managed efficiently so that the accuracy
level is improved as well.

Apart from these, there are also many other trends, such
as multi-task learning [299], assistance with multi-source
information, e.g., social media, big data, etc.

2) ADSs
Similarly to detectors, the area of ADSs has several promising
directions, as follows.

• The first is 3D object detection, which is a challenging
area due to the cost of the sensors. Although lidars
are quite efficient in 3D object detection, their costs
at present are too high to be deployed in the ADSs.
However, the approach is highly innovative.

• Connected systems promise a huge potential in improv-
ing the level of autonomy, but they require commu-
nication among road users, which is a complex and
challenging problem that is yet to be addressed.

• The third one is human-machine interaction, which is
an attractive area, required in designs at automation
level 3 or upper levels. However, mutual understanding
between cars and human requires further research work.

• Lastly, establishing ADSs requirements for real-time
applications is another important area. As discussed in
Section V.D., despite the fact that human behaviours
are not easy to be evaluated, investigations of paral-
lels between humans and machines have already been
undertaken towards formulating commonly held ADSs
regulations in real-time applications [15].

In addition to the above, other ADS trends are deep
learning-based route planners [300], multi-task networks in
ADSs [301], etc.

VI. CONCLUSION
This paper provides a comprehensive review of the literature
on the contemporary state-of-the-art of Convolutional Neural
Networks for image classification and detection as well as
Autonomous Driving Systems. Layer-based details of CNNs
along with parameter and floating-point operation number
calculations are outlined.

Using an evolutionary approach, the latest CNN models
for image classification are discussed covering the most
up-to-date developments. A novel timing analysis aimed at
assessing the impact of commonly used convolution types
on CNN performance is presented running a reference CNN
model on a desktop computer and two powerful GPUs. This
extensive experimental study provides a new insight into the
performance of each convolution type in terms of training
time, inference time, and layer level decomposition.

Building blocks for CNN-based object detection are also
discussed, such as backbone networks and baseline types,
and then representative state-of-the-art designs are outlined.
Experimental results from the literature are summarised for
each of the reviewed models based on particular image
datasets.

Most recent ADSs related works on CNN-based object
classification and detection, current ADSs technologies and
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promising directions are outlined. In addition, a compre-
hensive trade-off analysis of ADSs from a human-machine
perspective is presented. Thus, the paper deals with a broader
study area compared to previous reviews, covering new
trends and improvements that are expected in the near future,
as well. In particular, it is highlighted that CNN models that
feature low model sizes and achieve satisfactory accuracy
have a promising future. It is our strong belief that with the
necessary real-time hardware capabilities and successful res-
olution of design constraints, CNNs would enable a safer and
more efficient self-driving cars and a rise in their popularity.

APPENDIX: DESIGN SPACE EXPLORATION
Sections III and IV above have highlighted that it is by
innovating and perfecting the existing design approaches and
techniques that researchers have been advancing so effec-
tively the CNN state-of-the-art. The investigation of the liter-
ature reveals that the success of CNN models depends on the
design strategies in regard to the CNN micro/macro architec-
ture parameters as well as optimization algorithms, activation
functions, compression techniques, learning types, normal-
ization [302], regularization [303], loss functions [304], data
augmentation [305], RoI feature extractors [122], Region
proposal algorithms [120], etc. Therefore, in this section,
we review some of the most important areas of design space
exploration for classification and object detection CNNs.

A. OPTIMIZATION
Optimization algorithms have played a significant role in the
training of machine learning models in recent years. In par-
ticular, iterative or coordinate descent methods, have been
instrumental in increasing model performance. However, the
optimization field has gradually faced more challenges with
the growth in model complexity and data size, as reported
in [19]. A summary of the algorithms, employed in CNN,
is presented below, dividing them into three main categories:
first-order, high-order, and heuristic derivative-free.

1) FIRST-ORDER ALGORITHMS
Gradient descent algorithms are the most used algorithms in
first-order optimization methods. They depend on the first-
order derivatives of the loss functions, represented in Jaco-
bian matrices. In its simplest form, the weight matrice θ is
defined by

θ = θ − µ · ∇J (θ ), (14)

where µ is the learning rate and ∇J (θ ) is the Jacobian matrix
of the cost function J(θ).

Three gradient descent variants are used depending on the
number of examples (m) from a dataset, which the algorithm
uses to compute the gradient objective in each iteration. The
first variant, Batch gradient descent, uses all m examples in
every iteration and is calculated with

θ = θ − µ · ∇θ J(θ;x(i:i+m);y(i:i+m)), (15)

where x represents the input features of the ith training exam-
ple and y is the real value for the ith example. Its drawback
is a possible slowness, as it calculates the gradients for the
whole dataset.

The second one is Stochastic gradient descent (SGD) that
uses only one example in each iteration. Its limitation is
that SGD performs updates frequently with a high variance
that produces intense fluctuations in the objective function.
Its function is

θ = θ − µ · ∇θ J(θ;x(i);y(i)). (16)

The last variation is Mini-batch gradient descent that uses
n = m/x examples, where x is selected according to the
application, in each iteration. The method, which is defined
by the expression below, enhances performance, as it reduces
the variance effects and computational load.

θ = θ − µ · ∇θ J(θ;x(i:i+n);y(i:i+n)). (17)

Among these three algorithms, the SGD method [306],
[307] and its variants have been widely used in the last years,
as a representative of first-order optimization methods. It is
crucial to state that the SGD term can be interchangeably used
whenmini-batches are used as well. It is also quite significant
to pay attention to the application scope and characteristics of
these methods while selecting them for application in DNNs.

There is a long list of gradient descent algorithms that
fall in the category of first-order optimization methods.
Methods have pros and cons towards each other. Further
details could be found in Nesterov Accelerated Gradient
Descent (NAG) [308], AdaGrad [309], AdaDelta [310],
RMSProp [311], Adaptive moment estimation (Adam) [312],
Stochastic Average Gradient (SAG) [313], Stochastic Vari-
ance Reduction Gradient Since (SVRG) [314], etc.

2) HIGH-ORDER ALGORITHMS WITH HESSIAN MATRIX
Compared to the first-order methods, the high-order opti-
mization methods [315]–[317] converge most correctly to
the local or global minimum as the curvature information
of these methods is more powerful. In spite of the attractive
features, they face multiple challenges. Second-order algo-
rithms present problems with the computation and storage of
the inverse matrices of the Hessian matrices, which are used
in the high-order optimization to hold the second or higher-
order derivatives, in each iteration of the training process.

Newton’s methods have been applied to overcome the
problem [318], [319]. Following that the Stochastic quasi-
Newton method and its improved versions [320]–[322]
has been proposed, to allow the use of high-order meth-
ods on large-scale datasets. Several other methods have
been proposed too, such as Conjugate Gradient [323],
Newton’s Method [324], Quasi-Newton Method [325],
Stochastic Quasi-Newton Method [326], Hessian Free
Method [318], Sub-sampledHessian FreeMethod [327], Nat-
ural Gradient [328].
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3) HEURISTIC DERIVATIVE-FREE ALGORITHMS
The heuristic derivative-free algorithms in [322], [329] have
been proposed to address the case when the derivative infor-
mation of the target functions may not exist or be hard to
calculate. They are based on two root ideas. While the first
one is a heuristic investigation with empirical rules [330], the
second one is trying to fit the function with samples [331].

B. CNN MICRO/MACRO ARCHITECTURE
Microarchitecture parameters of CNN are related to layer-
based adjustments, such as filter dimensions, pooling oper-
ation types, etc. There is a variety of those parameters
among CNN architectures. For instance, while VGGNet [75]
employs 3×3 filters, Inception-v1 [29] makes use of different
sizes of filters, such as 1 × 1, 3 × 3, and 5 × 5. In addition,
as CNNs tend to go deeper, manual adjustments of kernel
types and input/output dimensions become impractical in
individual layers. To address the problem, higher-level pre-
designed blocks or modules, which involve different sizes
and types of kernels, bypass connections, activation func-
tions, etc., have been proposed to lighten designers’ effort.
An example of modules is the inception modules, which were
used in the design of the Inception-v1 CNN, also known as
GoogLeNet, where many of them are combined with ad-hoc
layers to construct a complete network.

Whereas the properties of individual layers and modules
represent microarchitecture, CNN macro architecture con-
cerns the system-level organization in its entirety or the end-
to-end algorithm pipeline. The selection of depth, i.e., the
number of layers or modules, and the choice of connection
types across multiple layers or blocks can be listed as the two
primary areas of the CNN macro architecture. In VGGNet,
increasing the number of layers and modules gives a better
accuracy performance at the system level. An example of
connection types between the layers is the FCLs that are visu-
alised in Fig. 1 for AlexNet [28]. In addition, several macro
architecture strategies were proposed in ResNet-50 [17] that
advanced the state-of-the-art in its publication year. Several
other CNN designs [103], [116], and [122], which are intro-
duced before, have gained success with innovative macro
architecture-based strategies as well.

C. COMPRESSION
Although Deep Neural Networks (DNNs) have obtained
great success in various computer vision tasks, many exist-
ing designs are computationally intensive and require a
large amount of memory. This prevents their implementation
on hardware with limited memory like FPGAs and uses
in applications that run on strict latency constraints. For
these reasons, compression of a pre-trained algorithm into
a lightweight one without ceding from the model perfor-
mance is a frequent technique to enable real-time deploy-
ments of the models. Four approaches exist, which are
pruning, tensor decomposition, quantization, and knowledge
distillation.

1) PRUNING
Pruning reduces the redundant parameters, which have no
effect on the performance. Thus, weight matrices are turned
into spare ones. Parameter pruning is quite robust over vari-
ous settings in the layer and can support training from scratch
or pre-trained models. Additionally, it helps with the over-
fitting problem. More information on pruning could be found
in [332]–[334].

2) QUANTIZATION
Quantization is to adopt low-bit number representations
instead of floating-point ones for every weight parame-
ter. Currently, the main research tendency on quantization
is model binarization. For instance, Binarized neural net-
works [335] quantize the weight values to 1-bit represen-
tations based on BinnaryConnect as well as changing the
activation values to 1 bit. Thus, it reduces memory usage and
simplifies many multiply-add operations into bitwise opera-
tions XNOR-Count. Another example is XNOR-Net [336],
which achieves 32× compression, providing a 52× speed
rise. Several other techniques [337]–[342] have been pro-
posed as well.

3) KNOWLEDGE DISTILLATION
The idea behind the knowledge distillation approach is related
to a type of migration learning, in which a complex architec-
ture, called teacher model, is used to train a compact algo-
rithm, called student model, bymeans of distilling knowledge
from the teacher. The knowledge distillation approach is used
in both classification and detection algorithms. However, the
technique is quite sensitive to the range of applications and
there is no pre-trained model option. An example of distil-
lation is EfficientNet-L2 [80], in which it is applied quite
effectively. Improved versions of the technique can be found
in [343]–[351].

4) TENSOR DECOMPOSITION
The aim of tensor decomposition is to exploit channel or
spatial-wise redundancies of convolution filters and to seek
the lower rank approximations of them. Further details are
reported in [352]–[356].

D. MACHINE LEARNING METHODS
Here we briefly touch upon the current machine learn-
ing methods, as choosing the right machine learning
approach in ADSs pipelines may allow improving their
performance [80], [85].

Based upon the addressed problem and data type, machine
learning approaches can be broadly divided into three
groups: primary approaches, hybrid approaches, and other
types. Primary approaches comprise supervised [357], unsu-
pervised [358], and reinforcement learning [359]. Hybrid
approaches, the use of which has become quite prevalent
in the last few years [81], could be subdivided into three
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groups: semi-supervised learning [81], self-supervised learn-
ing [360], and self-taught learning [361].

Numerous other types of machine learning methods have
also been developed, such as active [362], online [277],
transfer [363], federated [364], adversarial [365], ensem-
ble [366], meta [367], targeted [368], multi-task [369], and
multi-modal [370] methods.
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