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ABSTRACT Industrial waste is a major environmental concern. This paper proposes an optimization
approach to better manage the operations of a food production line, with the aim of minimizing material
waste. The configuration considered is inspired by a real situation. It is a two-stage flow shop with dedicated
machines at stage 1 and identical parallel machines at stage 2. A mathematical model is first proposed that
considers the minimization of the number of idle times exceeding an acceptable threshold as an objective.
A positive time lag for the product and machine setup is considered as a constraint. To solve large problem
instances, a hybrid genetic algorithm (HGA) is proposed. In addition, we developed a two-phase procedure
based on a decision tree to select the parameters of the HGA. The results show that we could achieve
the minimization of material waste without altering too much, another industrial goal, which is the total
production time.

INDEX TERMS Scheduling, hybrid flow shop, genetic algorithm, waste minimization, time lag, industry,
integer program.

I. INTRODUCTION
Many industries are facing two major environmental prob-
lems, such as energy consumption and material waste. One
example of these industries is pasta production. In this con-
text, energy consumption is mainly due to the drying cabins,
while material waste is owed to long idle time of a production
line, causing the perishability of pasta stuck in the machine.
In this article we consider a shop configuration inspired from
the pasta industry. In this context, traditional evaluation crite-
ria such as completion time known as the makespan (Cmax)
or maximum tardiness (Tmax), etc. do not reflect the only
objectives of the industry. A major concern in this situation
is how to minimize the waste of perishable material due to
a long machine idle time (IT). In this context, if the IT is
below the non-perishability time limit, then the material or
pasta stack inside the machine could be recycled, otherwise
the material is thrown away. This represents a considerable
loss to the industry. In other words, the objective is to min-
imize the number of occurrences of idle times exceeding
the ‘‘non-perishability’’ limit. To our knowledge, as we will
explain later in the literature review, such objective was only
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considered by us in a previous article [1]. This was confirmed
by a literature review by Hesran et al. [2]. Compared to the
work in [1], the MIP (Mixed Integer Program) is modified
to result in more acceptable results for the industry, and in
addition a metaheuristic is proposed for large size problems.

The production process is a hybrid flow shop (HF) with
two stages. Stage one (S1) represents the production phase
and contains two unrelated parallel machines, also called
dedicated machines. Stage two (S2) represents the drying
phase and is made of several identical parallel machines.
In fact, S2 contains ten drying cabins in our case. The prob-
lem can be defined as follows: a set J of n jobs should be
processed on S1, then on S2, where J = j1, j2,. . . jn. This
set is subdivided into two subsets or families, J1 and J2,
where J = J1 U J2. Jobs from J1 should be processed on
the first dedicated machine M1 at S1; they are no wait jobs.
This means that they should be processed on S2 (the drying
cabins) immediately when they finish processing on S1. Jobs
from J2 should be processed on the second dedicatedmachine
M2 at S1; they are authorized to wait for a maximum time
limit before going through S2. This means that we are in
a situation with a maximum time lag (lag+). In addition,
jobs from either J1 or J2 were subdivided into groups when
processed on S1. In fact, a machine setup is needed to

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 13997

https://orcid.org/0000-0002-4251-7820
https://orcid.org/0000-0003-1343-0838


H. Harbaoui, S. Khalfallah: Effective Optimization Approach to Minimize Waste in Complex Industrial System

perform a mold change if two successive jobs, processed
on the same machine, are from different groups. Following
the α|β|γ notation of Graham et al. [3], this problem can be
noted as HF2(PD2,Pm)|STg,sd ,lag+i|Nbr_IT+, where STg,sd
designates the constraint sequence-dependent group setup,
lag+i designates the maximum machine time lag for ji, and
Nbr_IT+ is a notation introduced by us to designate the
number of IT grater than perishability time limit (θ). In the
previous notation; proposed by Yang et al. [4], the dedicated
machines appear in the α term as PD2, while the identical
parallel machines at S2 are represented by Pm. This problem
could also be noted HF2 (R2,Pm)|Mj,STg,sd , lag+i|Nbr_IT+;
following Ribas et al. [5] notations. In this second notation,
R in the α field represents unrelated parallel machines, and
Mj in the β field indicates machine eligibility for the job.
In several industrial cases, a drying cabin is considered a
batchmachine that can handlemultiple tasks in one operation.
This could not be applied to our problem, as jobs do not have
the same drying characteristics. The main contribution of this
paper, compared to our previous work, is an approach to
consider an important objective for the industry, which is the
minimization of material waste through the minimization of
Nbr_IT+ while giving special attention to satisfactory Cmax
values. In a previous conference paper study, we investigated
the same configuration. In the first article [6], two MIPs were
proposed and compared, as well as several LBs, to mini-
mize the Cmax. A second paper [1] presented a MIP for
waste minimization without considering acceptable solutions
to the industry. In a third study, a genetic algorithm (GA)
approach [7] was proposed to minimize Cmax. In the present
work, a third MIP and GA are proposed. The objective was
to minimize material waste while maintaining a threshold
for Cmax.

The remainder of this paper is organized as follows.
Section 2 presents a literature review of a two-stage HF with
dedicated machines. Section 3 explains the constraints and
the objectives considered in this paper. In Section 4, MIP
is explained. Section 5 describes the GAs. Computational
analysis is presented in Section 6. We close with a conclusion
and perspectives.

II. LITERATURE REVIEW
In the following, we first investigate the literature on schedul-
ing with simultaneous constraints. Then, we examined works
dealing with scheduling operations for waste reduction.

A. FLOW SHOP SCHEDULING WITH SIMULTANEOUS
CONSTRAINTS
In 2009, both Ruiz et al. [8] and Goncharov et al. [9] pub-
lished reviews on non-permutation flow shop problem
(NPFSP), in which the authors concluded that there was
little work considering two simultaneous constraints: no-
wait and no_idle_time (N_IT). To our knowledge, the N_IT
and no-wait constraints were first studied as separate con-
straints by Adiri and Pohoryles [10] in a permutation flow
shop (PFS) in order to minimize the makespan. Kalczynski

and Kamburowski [11] studied the same constraints simul-
taneously. In addition, Baraz and Mosheiov [12] presented
a hybrid greedy algorithm with an enhancement heuristic
to solve a NPFS to minimize the Cmax. Shao et al. [13]
proposed a hybrid mimetic algorithm to solve a NIPFSP.
The authors worked on the Cmax criterion and compared
their results with those of the existing algorithms. More
recently, Wang et al. [14] considered the two-stage no-wait
HF scheduling problem with the STsd at S1. The authors pro-
posed a LB based on the Hungarian method, three heuristics,
a branch and bound (B&B) approach and a tabu search (TS)
algorithm. Khare et Agrawal. [15] proposed a configura-
tion with a no-wait hybrid flowshop and sequence-dependent
setup times (SDSTs). They proposed a MIP for small-sized
problems and a pairwise iterated greedy (PIG) algorithm to
solve medium- and large-size problems. To conclude, the
problem considered in this paper, and in two papers pub-
lished by us ( [1], [6]), are the only works considering three
constraints simultaneously, that is the no-wait, lag+, and
(STg,sd ). Compared to previous studies, this study is the first
to consider a new objective, which is the minimization of
waste due to the occurrence of an idle time exceeding a
given threshold (Nbr_IT+), and at the same time, indirectly
considering a threshold on a second objective, the Cmax.
It is worth mentioning that the objectives and constraints
considered by us are inspired by a real situation.

B. WASTE MINIMIZATION IN OPERATIONS SCHEDULING
According to Dewi et al. [16], waste is caused by operational
activities. The author identified seven types of operational
waste: overproduction, waiting, movement transportation,
unnecessary processes, inventory, and defects. Le Hesran [2]
presented a review of waste minimization in operations
scheduling. The author classified 71 articles according to
their environmental and economic objectives. The authors
identified four domains in which waste management was
important. These domains are the cutting stock problem
with scheduling aspects, the integrated cutting stock prob-
lem, the batch and hoist scheduling problem, and shop floor
scheduling. According to this review, waste is mainly due
to setup, idle time, operations sequencing, surface treat-
ment, due dates, and machine cleaning. The waste is mainly
composed of wastewater and perishable materials, such as
food and chemical products. The same author [17] pre-
sented a method for the identification and modeling of
waste-conscious scheduling problems using flow control.
In the study case of hubcap manufacturing, the economic
and environmental impacts are quantified, and decision vari-
ables for problem solving are provided. Georgios et al. [18]
considered yoghurt production, a representative food pro-
cess, in a large-scale dairy facility in Greece. They used
rescheduling to avoid demand disruptions, leading to product
waste. Table 1 presents a summary of the papers dealing with
scheduling problems with simultaneous constraints.

NPFS: No-idle Permutation Flow shop; HF2: Hybrid Flow
shop with two stages;
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TABLE 1. Contributions on the scheduling problems with simultaneous constrain.

PD: Parallel Dedicated Machine;
Cmax: makespan; Tw: Total weighted tardiness;

∑
Ci: sum of completion times;

∑
Nbr_IT+: sum of

idle−time
HGA: Hybrid genetic algorithm; HMA: Hybrid Memetic

Algorithm; PIG: pair−wise iterated greedy: Greedy-based
fixing algorithm; B&B: Branch−and−Bound

III. EXPLANATION OF THE CONSTRAINTS AND THE
OBJECTIVE
Given that the multitude of concepts considered in this paper
can lead to confusion, this paragraph explains the constraints
and objectives. In the following, we start with the presentation
of the positive time lag (lag+) and the no-wait constraints.
Then, we considered the setup constraints STg,sd . Finally,
we exhibit the objective Nbr_IT+, that is, the minimiza-
tion of the number of idle times exceeding a certain limit
objective.

A. POSITIVE TIME LAG AND NO-WAIT CONSTRAINTS
A positive time lag (lag+), is an upper bound (UB) on
the elapsed time between two successive operations of the
same job on S1 and S2. Let Cj1 be the completion time
of jj on S1 and Dj2 the starting time of the same job
on S2. Then the time lag TL = Dj2 - Cj1. The con-
straint states that TL ≤ lag+. The following graph illus-
trates a situation with acceptable and non-acceptable TLs
when lag+ = 2.
The No-wait constraint occurs when lag+ = 0.

B. THE SETUP CONSTRAINT
For the problem under consideration, the setup constraint is
considered when two successive jobs, on the same machine
at S1, are from different groups. Thus, if it is possible to
process all the jobs belonging to the same group successively,
without altering another constraint, the total setup time will
be minimized. Figure 2 illustrates this situation. Let Ji and
Jj be two jobs processed on M1 of S1, and belong to the
same group, and Jkand Jl be two jobs processed on the
same machine but belong to another group. And let the setup
time = 30 min.

C. THE Nbr_IT+ OBJECTIVE
Nbr_IT+ is the number of idle times that exceed a given
threshold θ . The idle time (IT) is the elapsed time between
the end and starting time of the processing of two suc-
cessive jobs on the same machine at S1. Let Ji and Ji+1
be two successive jobs on a given machine in S1. The
IT = Ci1 – Di+1,1. If IT > θ , then Nbr_IT+ is incre-
mented by one. The following figure illustrates the situation
where θ = 1.

IV. MATHEMATICAL FORMULATION
In a previous paper, Harbaoui et al. [6] proposed a MIP
model for the problem under consideration to minimize
the Cmax. This model (MIP 1) generated either optimal
solutions or UBs for small-size problems (up to 20 jobs).
This formulation was then extended to minimize Nbr_IT+
(MIP 2). As mentioned by Hesran et al. [2], this is the
first time that such an objective is considered. In fact, for
each idle time exceeding the perishability time limit θ ,
the material stuck in the machine cannot be recycled. This
results in a correlation between Nbr_IT+ and the quantity
of waste material. The notations used in both MIPs are as
follows:
Mk : set of machines at stage k
Pik : processing time of job i at stage k
Sik : setup time for job i at stage k
Li1: time lag of job i at stage 1
Bij: a binary matrix indicating whether ji and jj are from

the same group.
The decision variables common to either MIP 1 or

MIP 2 are as follows:
tik :Starting time of job i on stage k
Cmax:Completion time of all jobs makespan
xm,kij = {1 if job j is processed immediately after job i on

machine m of stage k;0 otherwise }
am,ki = {1 if job i is assigned to the machine m of stage k;

0 otherwise }
It is worth mentioning that for S1, am,1i is known

because of the machine eligibility property at that stage. For
MIP 2, two additional decision variables were introduced by
Harbaoui et al. [19]:
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FIGURE 1. Illustration of acceptable and unacceptable TL.

FIGURE 2. Illustration of minimization of setup time.

TMm1
ij :The elapsed time between the processing of job i

and job j on machine m on stage 1
v1i = { 1 if there is IT ≥ 0; 0 otherwise }
In MIP 2, two constraints were added, compared to MIP 1.

The first ensures that the IT could not be smaller than the time
elapsed between the completion and the starting time of two
consecutive jobs affected to the same machine. The second
one counts Nbr_IT+. Additionally, the Cmax constraint was
deleted.

Min
n∑
i=0

v1i

S.C
n+1∑
i=1

xm,ki0 = 0, m ∈ Mk , k ∈ {1, 2}, (1)

n∑
i=0

xm,kn+1i = 0, m ∈ Mk , k ∈ {1, 2}, (2)

xmkij + x
mk
ji ≤ a

m,k
i , i = 1 . . . n,

j = 1 . . . n,m ∈ Mk , k = {1, 2}, i 6= j (3)
n∑
i=0
i6=j

xm,kij = am,kj ∀j = 1 . . . n+ 1,m ∈ Mk ,

k ∈ {1, 2} (4)
n+1∑
j=1
j6=i

xm,kij = am,ki , ∀i = 0 . . . n,m ∈ Mk ,

k ∈ {1, 2} (5)

am,k0 = 1, ∀m ∈ Mk , k ∈ {1, 2} (6)

am,kn+1 = 1, ∀m ∈ Mk , k ∈ {1, 2}, (7)

am,1i = 1, ∀i = 1..n,m = Ai (8)

m2∑
m=1

am,2i = 1 i = 1 . . . n (9)

tj,k ≥ ti,k + Pi,k−M (1− xmkij )+ Sj,k .Bij,

i = 0..n, j = 1..n,m ∈ Mk , k = {1, 2}, i 6= j (10)

ti,2 ≤ ti,1 + Pi,1 + li, i = 1 . . . n (11)

ti,2 ≥ ti,1 + Pi,1, i = 1 . . . n (12)

TMm,1
ij ≥ tj,1 − (ti,1 + Pi,1)−M (1− xm,1ij ),

i = 1 . . . n, j = 1 . . . n,∀i 6= j,m ∈ M1, (13)

TMm,1
ij ≤ M .v

1
i + α.x

m,1
ij , i = 1 . . . n,

j = 1 . . . n∀i 6= j,m ∈ M1, α = 30 (14)

xm,kij ∈ {0, 1},m ∈ Mk , i = 1 . . . n,

j = 1 . . . n, k = {1, 2}, i 6= j (15)

am,ki ∈ {0, 1},m ∈ Mk , i = 1 . . . n, k = {1, 2} (16)

v1i ∈ {0, 1}, i = 1 . . . n (17)

TMm,1
ij , ti,k > 0, i = 1 . . . n,

j = 1 . . . n,m = 1..mk , k = {1, 2} (18)

In this model, the objective function minimizes the Nbr_IT+.
Constraints (1) and (2) ensure that the fictitious jobs j0 and
jn+1 have either zero predecessor or zero successor. Con-
straint (3) ensures that each job has at most one predecessor
and one successor on the machine to which it is assigned.
Constraints (4) and 5) state that each job must be processed
exactly once on one machine for each stage. Constraints (6)
and (7) pre-assign fictitious jobs to all machines. Constraint
(8) and (9) represent the pre-assignment of jobs on each
machine in S1 and S2. Constraint (10) expresses disjunctive
property. Constraints (11) and (12) are the technological con-
straints. Constraints (13) and (14) successively measure IT

14000 VOLUME 10, 2022



H. Harbaoui, S. Khalfallah: Effective Optimization Approach to Minimize Waste in Complex Industrial System

and the number of IT > θ . Finally, constraints (15) to (17) are
the non-negativity and binary constraints. Finally, the Mixed
Integer Program 3 (MIP3), proposed in this paper, is based on
following principle:

Given that MIP2 generated solutions, sometimes not
acceptable for the Cmax criteria, another MIP (MIP3) is
created by adding to MIP2 a constraint representing an upper
limit on the value of the completion time. This upper limit is
derived from MIP 1 and is expressed as follows:

ti,2 + Pi,2 ≤ UB, i=1..n

The UB does not concern the objective of the model but it
concerns the Cmax.

V. PRESENTATION OF THE GENETIC ALGORITHMS
Metaheuristics have been proposed to solve optimization
problems known as NP-hard. Their objective was to gen-
erate good solutions within an acceptable time. In the lit-
erature, several metaheuristics have been proposed to solve
HF. In this work, we chose GAs, as they proved their effec-
tiveness with several problems with a configuration close
to the one considered in this study. Indeed, we found sev-
eral authors affirming the efficiency of GAs in the resolu-
tion of HF with different constraints, such as Reeves [20],
Ruiz andMaroto, [21], Kahraman et al. [22], Jolai et al. [23],
Besbes et al. [24], Sioud et al. [ [25], [26]] and Wang and
Liu [27]. This motivated us to choose the resolution approach.

GAs were first introduced by Holland and then further
developed by Goldberg and Deb [28]. They were inspired
by Darwin’s theory of natural evolution. A GA belongs to
the family of evolutionary algorithms that are based on a
set of several solutions simultaneously called a population.
It evolves a population of solutions gradually from one gen-
eration to the other through a process of operators, that
are, selection, reproduction, crossover, and mutation, to cre-
ate new populations with better individuals. This process
is repeated through generations until a final population is
obtained with individuals of better quality. In this population,
the best individuals get as close as possible to the optimal
solution. The procedures proposed in this work consider
two objectives: the minimization of Cmax and minimization
of Nbr_IT+ without explicitly treating the problem as a
bi-objective. We propose two hybrid GAs, called GA-C-I
and GA-I-C. Figure 4 illustrates the functioning of the two
procedures.

The GA-C-I main objective is to minimize the Cmax and
evaluate the corresponding Nbr_IT+. For this first GA, the
population is first sorted according to the Cmax, and then
according to Nbr_IT+. The GA-I-C main objective is to
minimize Nbr_IT+ and evaluate the corresponding Cmax.
For this second GA, the population is first sorted according to
Nbr_IT+, followed by Cmax. Through GA-C-I, which is not
the main objective of this work, we will get an idea on how
far we are from a more prominent Cmax based solution.

In the next subsections, the solution encoding and the
genetic operators are explained.

A. SOLUTION ENCODING
A solution or a chromosome of this GA is represented by
a permutation of all jobs. The job that appears first in the
sequence is affected first to its dedicated machine. In the
second stage, to obtain a full schedule, the jobs are processed
in a FIFO manner. It is worth mentioning that the FIFO
provides the only feasible solution for the no-wait jobs and
a feasible solution for lag+ jobs. Figure 5 illustrates the
encoding for a ten jobs’ problem.

B. GENERATING THE INITIAL POPULATION
The initial population is composed of 200 individuals divided
into three sub-populations:
• The first sub-population, of size six, is generated by
dispatching rules; that are:
- - SPTS1: ‘‘Smallest Processing Time on stage 1’’
- - SPTS2: ‘‘Smallest Processing Time on stage 2’’
- - LPTS1: ‘‘Longuest Processing Time on stage 1
- - LPTS2: ‘‘Longuest Processing Time on stage 2’’
- - ITPT: ‘‘Increasing Total Processing Time
- - DTPT: ‘‘Decreasing Total Processing Time

• The second sub-population, whose size depends on the
number of job groups, is generated by considering one
setup per group of jobs. Thus, the setup time is mini-
mized. This sub-population presents 10% of the initial
population, that is, 20 individuals. The principle is to use
different group sequences to generate job permutations
(see Algorithm 1 [19]). Indeed, we will consecutively
launch all the jobs of the same group affected to the
same machine to minimize the setup time. The choice
of this sub-population is motivated by observations
of the structure of the optimal solutions generated by
the MIPs.

• The last sub-population, which represents the rest of the
individuals, is generated randomly. i.e. 174 individuals.

C. SELECTION, CROSSOVER, MUTATION OPERATOR
In this section, we start by presenting the GA operators, and
then explain how we select the best combination of them.
The aim of these operators is to create a new generation with
globally better fitness’s than the previous one.
• Selection
The selection operators appear in two steps of the GA.
The first one is the selection of parents for cross-over and
the second one is the selection of individuals that will
survive for the next generation. In this study, we exper-
iment with well-known genetic operators. The roulette
wheel method and the random selection were tested
to choose two parents from the current population for
crossover. Then, elitism selection is applied to choose
the best individuals among all individuals in order to
create the new generation.

• Crossover
The two parents crossed over to produce two infants.
We tested two techniques: SJOX (similar job order
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FIGURE 3. Illustration of Nbr_IT+ incrementation.

FIGURE 4. Description of the two gas.

crossover) proposed by Ruiz and Maroto [21] and ran-
dom maximal preservative crossover (RMPX) proposed
by Sioud et al. [25].

• Mutation
The mutation brings diversification to the population,
in order to efficiently explore the research space and
avoid premature convergence. In our study, we tested
two techniques frequently used in the literature: swap
and insert (FIGURE. 6). Swap involves randomly choos-
ing two jobs, ji and jj, and swapping them. The insert
involves randomly choosing a job ji and a position p (dif-
ferent from that of ji) and then reinserting ji in position p.

Several combinations of operators were tested, and the best
one was chosen experimentally. The best combination is
presented in Table 2:

We developed a procedure based on two phases to choose
the best combination of operators. Phase one is a decision
tree approach, and phase two is based on an Excel pivot
table.
- - In phase one, the decision tree tool used in this

research (SIPINA) [29], enables us to identify the
operators that differentiate the most between the
results. This problem turns out to be the crossover
operator.
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FIGURE 5. Solution encoding.

TABLE 2. The operators’ chosen to generate the results.

- - In phase two, a cross analysis of the crossover operator
with the other operators reveals the best combination of
operators.

In fact, we chose two instances of each family of problems
that we tested with all combinations of parameters. It should
be noted that the assessment of each instance is based on the
deviation of Cmax from the LB (RD). Given the randomness
of GA, we do not necessarily obtain the same result by
running the same instance multiple times, even if the same
settings aremaintained. On this basis, the objective is to deter-
mine the setting that is likely to produce the largest number
of good solutions (top 10%) with relative deviations (RD)
and not necessarily the best solution. The method used to
calibrate the GA is based on three steps. The first step consists
of grouping the RDs into classes, which allows the labeling of
the results. The second step is to apply a classification algo-
rithm to determine which operator affects the result the most.
The third step is to use Excel’s pivot table to determine the
RDs’ averages based on the crossing of different operators.
We illustrate in what follows the procedure and the results
for the family of problems with 20 jobs.

1) Step 1: Grouping of results (see Table 3)
We started by ranking the solutions according to the
average deviation (AD) from the best LB (i.e. RD).

2) Step 2: Operator that mostly affects the solutions (see
Table 4)
The second step is to apply a classification algorithm
based on a decision tree to determine the operator that
most affects the RDs. We used the SIPINA software,
which enabled us to conclude that the crossover oper-
ator better differentiated between the results (see table
below).

In this context, RMPX was superior to SJOX (low RD
values). Figure 7 illustrates the results of the SIPINA
application. The fact that the crossover operator, as an
attribute, is at the first level of the tree means that
it differentiates between RD values better than other
operators (mutation, number of generations, size of the
population).

3) Step 3: Cross-referencing of results
The third step is to determine the RD averages for
the other operators. Tables 5 and 6 present the results
according to the mutation operator and the number
of generations. These results were generated using
Excel’s pivot-table tool.

It appears that the combination of the RMPX crossover opera-
tor with the SWAPmutation operator and a population of size
200 produces smaller RDs compared to other combinations in
the case of 20 job problems.

Even though the results are slightly better with 500 gener-
ations, it is necessary to notice that the running time is quite
high. For this, we stopped at G200 and not at G500. On this
basis, for the GA, we adopted the parameters shown in the
following table.

D. FITNESS EVALUATION
We propose choosing the best individual by introducing a
filter function. To do so, in the case of GA-I-C, for each
individual, we first compute Nbr_IT+ on S1 and then calcu-
late its Cmax. We used a solution ranking function with two
filters in terms of switching from one generation to another.
We first sort individuals according to Nbr_IT+; then, we sort;
in ascending order of Cmax, the individuals with the same
Nbr_IT+. In this way, the population is organized in layers,
where each layer contains sorted solutions in ascending order
of Nbr_IT+ and Cmax (see Figure 8). The fitness evaluation
for GA-C-I follows the same logic by sorting individuals
based on Cmax, followed by Nbr_IT+.

Even though the objective was to obtain solutions with zero
Nbr_IT + and therefore No-waste, we accepted solutions
that do not necessarily satisfy a null number of Nbr_IT +.
To do so, we propose a filtering function that allows a gradual
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FIGURE 6. The insert and swap.

FIGURE 7. The SIPINA decision tree.

transition from less good solutions (dominated solutions) to
good-quality solutions (dominant solutions).

E. ITERATIVE LOCAL SEARCH
Although the crossover and mutation operators guarantee the
diversification and intensification of the search, their appli-
cation does not always guarantee obtaining solutions with

the desired quality. The introduction of a local search (LS)
makes it possible to further expand the search space, thereby
obtaining better solutions. An iterative local search iterates
the descent method, which is the LS. The LS remove a job
from one position and insert it in another position different
from the current position. If the new solution found presents
a better solution than an update of the best current solution
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FIGURE 8. Classification of individuals by two optimization criteria.

TABLE 3. Results classification.

TABLE 4. Parameters goodness of fit.

will be carried out until the stopping criterion is reached.
The stopping criterion is the number of iterations without
improvement. This was experimentally set to 10. For more
details, see Harbaoui [19].

F. EVALUATION AND VALIDATION OF THE MIP AND GA
A tight lower bound (LB) for Cmax permits the evalu-
ation of the quality of a solution. In a previous work,
Harbaoui et al. [6] tested a different LB and proposed a tight
LB that assumes the existence of a waiting constraint and the
smallest processing time on S2 is added. The authors added
the setup time of each group only once, as if jobs from the
same group were processed successively. It is evident that for
the objective minimizing of Nbr_IT +, the LB is zero.

VI. COMPUTATIONAL ANALYSIS
This section is dedicated to computational experiments.
We start with a presentation of the instances, and then
we discuss the results generated by the proposed GAs.
The evaluation of the quality of the algorithm is based
on a comparison of the results to the LB and to the
MIP output.

A. DATA GENERATION AND SETTINGS
Because there is no benchmark available for this problem,
we randomly generated 30 instances for each family of
problems. These instances depend on the total number of
jobs (n), the number of jobs dedicated to M1 of S1 (n1),
the number of machines at S2 (n-n1), the way the process-
ing times are generated, the way the STg,sd and lag+ are
generated.

Two families of instances were generated. The first one is
inspired by a real situation, where jobs from J1 are no-wait
and jobs from J2 have a lag+ constraint. The second family of
instances was proposed for theoretical purposes of exploring
different instances.

Parameters common to both families of instances:
• Number of stages |K| = 2;
• Number of jobs n: (10, 20, 50, and 100);
• Distribution of the setup times: uniform [5. . . 20];
• Distribution of the time lags: uniform [0. . . 30];
• Number of dedicated machines on S1: 2;
• Number of parallel machines on S2: 10;
• Number of jobs dedicated to M1 of S1; n1: (0.5n, 0.6n,
0.7n);
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TABLE 5. Crossover operator vs mutation operator.

TABLE 6. Operators vs number generations.

The values obtained by n1 were obtained from Wang and
Liu. ( [27], [30]) and Yang. [4]. For the other parameters, the
datasets depend on the family instances, as presented below.

1) Family 1 data sets: The processing times at S1 and at
S2 are generated as following: Pi1 ∈ [50,150] and Pi2
∈ [180,780]

2) Family 2 data sets: The processing times at S1 and at
S2 are generated as following:

• Class 1: Pi1 ∈ [1, 40] and Pi2 ∈ [5, 200];
• Class 2: Pi1 ∈ [40, 80] and Pi2 ∈ [200, 400];
• Class 3: Pi1 ∈ [80, 100] and Pi2 ∈ [400, 600];

These instances were randomly generated using a uniform
distribution. The processing time intervals with respect to the
ratio, |M1|/|M2| = 2/10.

In the following, the results generated by the MIP
models are presented, followed by a description of the
GA’s results. Finally, the results were analyzed and
compared.

TABLE 7. Final parameters of the GA.

B. RESULTS GENERATED BY THE MATHEMATICAL
MODELS
In the following, we compare first the results generated by
the three models. As mentioned above, model 1 (MIP1) is the
Cmax minimization, model 2 (MIP2) is the Nbr_IT+ mini-
mization, and model 3 (MIP3) is the Nbr_IT+ minimization
with an additional constraint on Cmax.

For MIP1, we recorded for each instance the objective
value Cmax and the corresponding Nbr_IT+. For MIP2 and
MIP3, we recorded for each instance the objective values
Nbr_IT+ and the corresponding Cmax. Table 8 presents the
results for the first family of instances, which is inspired by
a real situation. Column one represents the model, columns
2 to 4 represent the average (ARD), maximum, and minimum
relative deviations. Columns 5 to 7 represent the number of
instances with zero Nbr_IT+, with only one Nbr_IT+, and
with two or more Nbr_IT+. It is worth mentioning that zero
Nbr_IT+ represents the optimal solution for the minimiza-
tion of Nbr_IT+.

The relative deviation RD is defined as follows:

RDi =
Soli − LB

LB
× 100

Soli is the Cmax of the solution under consideration. Given
that we generated 30 instances for each configuration, the
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TABLE 8. MIP’s results for the family 1 instances.

TABLE 9. MIP’s results for family 2 - Class 1 instances.

TABLE 10. MIP’s results for family 2 - Class 2 instances.

ARD was defined by the following formula:

ARD =

30∑
i=1

RDi

30
For the 10 job problems, both MIP2 and MIP3 generated
permutations corresponding to the optimal solutions in terms
of Nbr_IT+ for 59/60 instances. Furthermore, for MIP3,
the generated permutations also corresponded to optimal

Cmax solutions. This is expected, as the number of parallel
machines is equal as the number of jobs.

For the 20 job problems, both MIP2 and MIP3 generate
optimal solutions in terms of Nbr_IT+. The Cmax generated
by MIP3 was better than that generated by MIP2 for all the
instances.

Tables 9 to 11 present the results for family 2 of
the instances, with its three classes. For these tables,
column 2 represents the number of jobs affected to M1 in
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TABLE 11. MIP’s results for family 2 - Class 3 instances.

TABLE 12. Comparison of instances with zero material waste.

TABLE 13. Comparison of ARD – Cmax values between MIP1 and MIP3.

S1. We observe that for all classes, in the case of the 10 job
problems, both MIP2 and MIP3 generate optimal Nbr_IT+,
with better Cmax values for MIP3. This is true for three
classes of instances.

We recall that the initial objective of MIP3 is to pro-
duce optimal or near-optimal results for material waste, with
acceptable Cmax values. For the 20 jobs’ problems, MIP2
generates optimal Nbr_IT+ values most of the time, and
MIP3 generates optimal solutions 2/3 of the time in the worst
case (Table 12).

The results generated by MIP3 for the Nbr_IT+ objective
are much better than those generated by MIP1 (Table 12),
while the decrease in the value of Cmax is not that important,
as summarized in Table 13.

It is clear that MIP3 generates much better results from
an industrial perspective, mainly when production is for the
stock. In this case, a small increase in the completion time
is not that important. It is worth mentioning that the results

presented above are based on single solutions generated by
the solver. Because we know that aMIP could have more than
one optimal solution, we need to keep inmind that there could
exist other optimal solutions, with better values of Nbr_IT+,
for MIP1, and solutions with better values of Cmax for MIP2.
In the followingwewill show experimentally how theGA can
overcome this situation.

C. RESULTS GENERATED BY THE GAs
Tables 14 to 17 compare the results generated by GA-C-I to
those generated by GA-I-C. It should be noted that the stop-
ping criterion is the number of generations without improve-
ment, which is fixed to 10, in addition to the running time.
The running time is fixed to 60 s for 10 and 20 jobs’ problems,
120 s for 50 jobs’ problems, and 180 s for 100 and 200 jobs’
problems.

1) For family 1 of instances, up to 10 jobs’ problems,
Nbr_IT+ is relatively high for GA-C-I, while the com-
pletion times are slightly better than GA-I-C. For prob-
lems with 100 jobs’ and 200 jobs’, Nbr_IT+ is high for
both GA-C-I and GA-I-C.
It should be mentioned that, in the case of 200 jobs, the
number of Nbr_IT+ that exceeds 2 occurs with 4/30
instances only.

2) For the second family of instances, the solutions gen-
erated by both GAs are the same for the 10 jobs’
problems. In fact, an optimal solution is generated for
all instances. This is true for three classes of instances.

For the rest of the problems, the optimal solutions are gen-
erated by GA-I-C for the first objective (zero Nbr_IT+), for
all instances. However, we observe a decrease in the quality
of Cmax most of the time. GA-C-I generated slightly better
makespans at the price of more Nbr_IT+ (more material
waste).

The ARD is slightly different for the two algorithms when
the number of jobs is less than 50. For the remaining prob-
lems, the GA-C-I generated somewhat better makespans.
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TABLE 14. GA results for family 1.

TABLE 15. GA results for family 2 - Class 1 instances.

For the instances from the class 2 problem, the observations
are similar to those of class 1, except that for the 200 jobs’
problems, the GA-I-C did not generate zero Nbr_IT+ for
approximately one third of the instances. For some instances,
this number exceeded two Nbr_IT+.

For class 3 instances, the decrease in the performance of
GA-I-C is observable starting from the problems of 50 jobs.
This decrease in performance becomes important as the size
of the problem increases. For the 200 jobs’ problems, with
both GAs, there is more than one Nbr_IT+ most of the time;
for GA-I-C, and more than two Nbr_IT+ all the time with
GA-C-I. The ARD is nearly the same for the two algorithms
when the number of jobs is less than 50 for the remaining
problems. GA-C-I resulted in a slightly better Cmax. This
will be explained in the last section.

It should be mentioned that, for 100 jobs’ problems, only
3/30 instances have a Nbr_IT+ that exceeds 2, for 200 jobs’

problems, only 6/30 instances have a Nbr_IT+ exceeding 2.
For class 3 instances, the decrease in the performance of
GA-I-C is observable starting from the 50 jobs’ problems.
This decrease in performance becomes important as the size
of the problem increases. For the 200 jobs’ problems, with
both GAs, there are more than one Nbr_IT+ most of the
time; for GA-I-C, and more than two Nbr_IT+ all the time
with GA-C-I. The Cmax ARD is almost the same for the two
algorithms when the number of jobs is less than 50 for the
remaining problems. The GA-C-I resulted in a slightly better
Cmax. This is explained in the last section.

In the following, we propose to compare and understand
the performances of the different classes of problems in terms
of Nbr_IT+, mainly for GA-I-C.

It appears from this table that the performance of the
algorithm with Class1 instances is better, whether there is
an equilibrium of charge, in terms of number of jobs, on S1
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TABLE 16. GA results for family 2 - Class 2 instances.

TABLE 17. GA results for the Class 3 instances.

machines or not. This could be explained by the fact that
for class 1, there were some overlaps between the intervals
of processing times for both stages. This means that there
is a chance to encounter more jobs that are processed on
S2 directly after completing (or within the lag+) on S1.
Thus, there is no need to delay the launch of subsequent

jobs on S1. In fact, it is this delay that results on situations
where IT ≥ θ .

D. EVALUATION OF MATERIAL WASTE
As mentioned above, material waste is caused by an idle time
that exceeds the perishability limit. In fact, in one of the pasta
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TABLE 18. GA-I-C performances for the Nbr_IT+.

TABLE 19. The waste quantities found by GA-C-I and GA-I-C algorithms.

production lines, it is necessary to clean the machine and
remove the material stuck in it if its idle time exceeds 30 mn.
The amount of removed pasta or material was estimated
to be 50 kg. This quantity cannot be recycled or used for
production purposes. During the full production period, the
total waste (TW) is estimated as follows:

TW = 50× Nbr_IT+

Table 19 presents the results presented in Table 14 in terms
of the quantity of material waste.

We observe that with the GA-I-C algorithm, zero waste
was realized for all instances (90 instances) corresponding
to problems of small and medium size (10, 20, and 50 jobs).
It is worth mentioning that a 50 jobs ’instance corresponds to
one week of production. This objective was achieved while
maintaining a satisfactory makespan. It should be noted that
GA-C-I causes a quantity of waste between 75 kg and 168 kg
for large instances (100 and 200 jobs). GA-I-C maintains the
average amounts of waste low (less than 100 kg) compared to
those obtained byGA-C-I (more than 300 kg). From an indus-
trial point of view, the results found by GA-I-C seem more
interesting than those found by GA-C-I because the wasted
material is divided by three while maintaining a satisfactory
production time.

VII. CONCLUSION
The configuration presented in this paper that distinguishes
this work from other studies is the objective of minimizing
waste resulting from the occurrences of machine idle times
exceeding the perishability limit (Nbr_IT+) while simultane-
ously considering several temporal constraints. A MIP incor-
porating the new objective and two hybrid GAswas proposed.
TheMIP generated better results than the previous ones with-
out a significant increase in Cmax. Within the proposed GAs,
we incorporated many priority rules and an iterative local

search, with a filtering function for both Nbr_IT+ and Cmax.
The effectiveness of the proposed approach was validated
through a numerical analysis. The results indicate that the
hybrid GA generates either optimal or near-optimal solutions.
The generated solutions satisfied the industrial expectations
as material waste was very limited or null, with acceptable
completion times. Future research may be conducted to con-
sider industrial objectives, especially those related to the due
date, such as total tardiness. Another future improvement
direction may be the use of other resolution methods, such as
tree-based heuristics or constraint satisfaction optimization.
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