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ABSTRACT Convoying or platooning with a fleet of autonomous vehicles, which is denoted as autonomous
convoying in this paper, has attracted increasing attention from the research communities, governments, and
private sectors in recent years. Autonomous convoying offers immense opportunities due to its potential in
enhancing logistical efficiency as well as reducing road incidents/accidents by eliminating human errors due
to stress and fatigue. While humans can make complex decisions, involving humans in decision-making
processes often causes delays as compared with those of automated machines. Indeed, human errors
cause approximately 90% of road accidents and fatalities. Efficient platooning techniques can also reduce
fuel consumption and carbon footprints. This paper presents a concise survey on current research and
development initiatives in autonomous convoying while critically discussing the underlying techniques and
technologies developed in this domain. Implications of autonomous convoying toward different industries
are also analyzed and discussed.

INDEX TERMS Autonomy, convoying, sensor fusion, defense, platooning.

I. INTRODUCTION
A convoy refers to a fleet of moving objects (e.g. vehicles or
robots) traveling together under the same command. Moving
a fleet of vehicles by following one leader decreases the
need for human intervention in operations. There is extensive
research in truck convoying in recent years [1]. The function-
alities of trucks include delivering goods, moving furniture,
people, etc. Although there are several options for delivering
goods in small locality, such as using cars, motorcycles,
or even drones, people mainly rely on large vehicles to deliver
food supply and equipment due to cost effectiveness [1], [2].
A convoy of ships is a common technique of transporting
goods and military equipment overseas. People often rely on
trains in land transportation [3]. However, rail networks are
not available in many places, especially where the population
density is low. Since trucks move on roads, truck convoying
is becoming popular for transporting goods in many areas [4].

The term autonomous driving is synonymously used
as self-driving of vehicles or driverless vehicles. In an
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autonomous driving scenario, a vehicle moves autonomously
towards its destination. In an autonomous convoying
scenario, a group of vehicles moves following a single
command and considering the presence of other vehi-
cles in the group [5]. Fig. 1 presents an example of an
autonomous convoy of military trucks. Autonomous driv-
ing and autonomous convoying are two growing research
domains. Fig. 2 and Fig. 3 present the number of published
papers related to autonomous driving and autonomous con-
voying from 2005 to 2019, respectively (statistics gathered
from Google Scholar on 17th October 2021). As can be
observed, research and development (R&D) in autonomous
driving far exceeds that in autonomous convoying, noting
that autonomous driving research covers that in autonomous
convoying. Since R&D on autonomous convoys requires
a larger investment, papers pertaining to autonomous driv-
ing are roughly 50 times more than those in autonomous
convoying.

In this paper, the term autonomous convoying and
autonomous platooning are used synonymously. In a convoy,
a group of vehicles travels together, providing mutual support
and protection [6]. The word ‘platoon’ indicates a group of

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 13663

https://orcid.org/0000-0002-0360-5270
https://orcid.org/0000-0002-0090-8081
https://orcid.org/0000-0002-0945-2674


S. Nahavandi et al.: Autonomous Convoying: Survey on Current Research and Development

FIGURE 1. An example of autonomous convoying of military trucks
consisting of a leader and two followers (Photograph taken during a
project demonstration with the Australian Army).

soldiers receives commands from a leader and acts accord-
ingly. However, autonomous platooning is known in the
research community as a group of autonomous vehicles mov-
ing by following a leader vehicle [7]. There are research stud-
ies that focus on efficient autonomous platooning with better
fuel efficiency and better usage of road areas [8], [9]. Several
researchers have proposed artificial intelligence (AI)-based
solutions for the efficient organisation of vehicles [10]. Small
vehicles designed to operate at a high speed are efficiently
deployed to minimize air drag. Indeed, air drag costs a sig-
nificant portion of fuel in large vehicles. Therefore, several
research studies investigate the use of machine learningmeth-
ods for prediction of air drag [11], [12]. It is anticipated that
more machine learning-based solutions will be available over
time.

Many research initiatives received initial funding for
military or exploration purposes. As an example, data com-
pression and aircraft research activities were funded mostly
for military and exploration applications in the early stages.
The resulting benefits have spread across various fields.
In this respect, autonomous convoying, which is an emerging
technological development, is currently a key area in military
research [13], [14]. Military trucks need to ensure continuous
supply for troops and civilians. They are prone to attack from
enemies and unexpected situations in contested environments
subject to extreme weather or geographic conditions. Robust
and reliable autonomous convoying technologies can poten-
tially reduce the number of fatalities, fuel consumption, and
deaths due to accident.

Autonomous convoying also offers immense commer-
cial potentials. Several companies have started R&D into
realisation of efficient and effective autonomous convoys.

FIGURE 2. The number of publications in autonomous driving in recent
years. (Google Scholar, accessed on 17th October 2021).

FIGURE 3. The number of publications in autonomous convoys in recent
years. (Google Scholar, accessed on 17th October 2021).

A semi-autonomous fleet of trucks reached the Dutch port
of Maasvlakte on 7th April 2016 after traveling across Europe
as part of the European Truck Platooning Challenge [4], [15].
In this voyage, trucks remained close to each other, in order
to move on roads efficiently and to save time and fuel. The
distance between trucks is optimized to minimize air friction.
The trucks adjusted the distance between them when any
vehicle came into the convoy. Trucks communicated using
GPS, Radar, and Wi-Fi, and human drivers were presented in
each truck to handle emergencies.

The remaining of this paper is organized as follows.
Section II presents autonomous convoying methods and tech-
niques through literature review. Section III presents the
capabilities with respect to constructing a successful follower
in autonomous convoying. Section IV describes R&D in
autonomous convoying in different industries. Section V
presents advanced techniques for realizing autonomous con-
voying. Concluding remarks are given in Section VI.

II. AUTONOMOUS CONVOY TECHNIQUES
Autonomous vehicle convoys or platoons, where each vehicle
follows the same path traveled by the preceding vehicle
by keeping a safe distance, have become very popular.
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Autonomous convoying requires the application of several
techniques, as described in the later part of this section.
It utilizes common path planning methods for keeping a
certain formation among all autonomous vehicles. It can
potentially solve transportation problems and complete spe-
cific tasks more efficiently as compared with the use of
single autonomous vehicle. Multi-vehicle convoys are mostly
used in military when personnel and resources need to be
transported to different locations, and traveling in a convoy
provides extra protection for both vehicles and personnel in
adverse environments. In addition to military convoys [16],
[17], other sectors include commercial vehicle convoys [18],
[19] as well as public urban transport convoys [20].

When a convoy of vehicles travel on the road with ideal
weather conditions and clear painted lines, a computer vision-
based method can be used to detect the painted road lines and
keep vehicles in convoy on the road. However, the images of
road lines deteriorate due to weather conditions, obstacles,
and missing lines, leading to potential failures in utilizing
vision-based control methods [21].

Some autonomous convoys apply a leader-follower
approach. In this approach, one vehicle becomes a leader,
and other vehicles follow the leader. One can design a
follower with lower control complexity in a leader-follower
configuration with the help of a leader detection algorithm.
Such a follower tracks the leader in an off-road situation and
in absence of other vehicles. However, moving under con-
gested traffic conditions and sharp road boundaries requires
more consideration. It is possible for the leader to deviate
slightly from the expected movement, and uncertainty in the
follower system can drive the follower out of the road. When
the vehicle convoy is in a city or within certain confined
environments in industrial settings, such anerror can lead to
unwanted events, e.g. hitting a person or an object, destroying
a landmark, etc.

A leader-follower convoy configuration consists of a leader
vehicle and one or more follower vehicles. Each follower
vehicle obtains the direction signals from its preceding vehi-
cle to stay on the travel route. During convoying, these
autonomous vehicles use sensing systems to maintain a
safe distance from the front vehicle. Every vehicle in an
autonomous convoy knows the path and last stop beforehand
as well as the current location along the path in real-time.
In this respect, the vehicle to vehicle (V2V) communica-
tion method [22]–[24] is useful to share information from
the leader vehicle to the convoy system and other follower
vehicles. As such, an autonomous convoying system requires
a shared travelable path, including a map with path points,
poses, speed, and other target tracking information through
sensors in each vehicle.

As a full autonomy of the vehicle convoy is yet
to be achieved, several research groups are working on
different approaches to realize autonomous convoying.
Some of the existing methods focus on the global posi-
tioning system (GPS) and inertial sensing, which can
cause computational latencies due to scene generation,

FIGURE 4. The combined model-based and template-based vehicle
tracking architecture [25].

simultaneous localization, as well as real-time object detec-
tion and classification. Moreover, methods that use the GPS
data of the leader do not necessarily deliver enough accuracy
to keep an appropriate convoy traveling path. Inaccuracy
in GPS data deteriorates the performance of autonomous
convoying. There are some other non-GPS-based approaches
where each vehicle tracks its predecessor without resorting
to waypoints. However, these methods are not applicable for
a large convoy due to accumulative errors with respect to
following information [21].

Besides computational latencies, fusion methods are also
unable to obtain an acceptable accuracy for long convoys.
There are some other drawbacks in using autonomous con-
voying, including the risk of tracking interruptions, which
can be catastrophic for travelling in a convoy. According
to [26], an embodiment relating to V2V communication is
necessary for allowing safe vehicle convoys by using proper
communications between the vehicles [27]. Such embodi-
ment method proposed in [26] enables autonomous vehicles
in a convoy to move along a path with a leader vehicle
being in communication with at least one of the follower
vehicles. The leader can be either in an autonomous mode or
in a driver-based mode. The wireless data between vehicles
can combined with other vehicle sensor data using methods
based on real-time GPS and sensor errors aiming to obtain
a precise and safe target tracking analysis of locations for
the follower vehicles. Using the proposed method, at least
one follower should receive communication pertaining to the
target offset position and path data. The target offset position
provides a target position relative to the leader vehicle and
the path information, including a route history and predicted
route of the leader vehicle. The route data can include a
global position and a GPS solution of the leader vehicle.
Tracking data, including a traveled route of the leader vehicle,
can be obtained from sensing equipment of at least one of
the follower vehicles [26], [28], [29]. The route data and
tracking data are compared, to ascertain accuracy between
the route data relative to the tracking data. By observing the
tracking data and itinerary data, the target offset location is
adjusted. A set of route points is computed to offer a trajectory
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FIGURE 5. General framework of autonomous convoy for each vehicle [22].

travel path from an existing location of at least one follower to
the adjusted target offset location. Thus, at least one follower
can produce the essential control signals to autonomously
transition the follower along with the set of trajectory points
to the adjusted target offset location.

Petrov [30], Petrov and Boumbarov [31] developed a kine-
matic model of a two-vehicle convoy and a vehicle following
adaptive tracking controller. The follower vehicle combines
lateral and longitudinal control to track the trajectory of the
leader vehicle. The follower also maintains a desired inter-
vehicle gap. A standard robotic method with homogeneous
transformation matrices for modeling the system dynamics
is used. The main challenge in developing the controllers for
autonomous vehicle tracking is to determine the right trajec-
tory for the follower vehicle. Following the leader vehicle on
a curved road segment with a larger or smaller radius and
cutting corners is unacceptable.

As the linear and rotational velocities of the leader vehi-
cle and its path curvature radius are unknown constant
parameters, the developed adaptive tracking controller using
adaptive control law results in asymptotic stabilization of
the closed-loop system in error coordinates. The controller
receives the relative inter-vehicle positions, orientations as
feedback controls as well as approximated velocity of the
leader vehicle.With this information, the controller calculates
the control velocities of the follower vehicle. With respect
to constant velocity maneuvers of the leader vehicle, the
two-vehicle convoy can travel concentric arcs of similar radii,
keeping a suitable distance between vehicles. This solves
the ‘‘cutting the corner’’ issues. For time-varying velocity
maneuvers of the leader vehicle, the developed controller
in [30], [31] can potentially achieve ultimate boundedness
of the closed-loop system in error coordinate. Ollis [21]
developed methods for position estimation of an autonomous
vehicle convoy. Methods include initializing a convoy state,

choosing the next sensor reading, predicting a convoy state,
updating the convoy state, and broadcasting the convoy state
to vehicles in a multi-vehicle convoy.

Fries et al. [25] proposed a robust vehicle tracking system
for an autonomous convoy in urban and unstructured envi-
ronments. A monocular camera is adopted as a nonstationary
passive vision system. Passive vision sensors are popular
as they are inexpensive and have low power consump-
tion. The advantages of model-based tracking systems [32]
and template-based tracking methods using various fea-
tures to accurately estimate a 3D vehicle pose and the
associated velocity combined with a fast (re-) initializa-
tion approach are evaluated. Fig. 4 presents a combined
model-based and template-based vehicle tracking architec-
ture. The model-based method utilizes a particle filter that
requires a hypothesis when the system starts and with the
presence of a tracking loss. As such, the template-based
tracking method needs to re-initialize the particle filter to
detect the tracked leader vehicle rapidly. The results of the
proposed method show that vehicles that are not properly
visible can be tracked in variousweather conditions. A vision-
based convoy system with a combined pan-tilt-zoom camera
mechanism using the monocular camera was developed [16].
The camera keeps the leader in the follower vehicle’s field of
view while following the path of the leader vehicle. However,
a vision-based convoy is not robust against poor visibility and
extreme weather conditions.

Zhao et al. [22] developed a general framework compris-
ing a real-time leader path following control system, as
depicted in Fig. 5. The system consists of pose estimation
of the preceding vehicle, leader path queue management,
and autonomous controller for convoying. Algorithms for
waypoint management, vision&LIDAR-based vehicle track-
ing, EKF-based data fusion, adaptive inter-distance control,
and model-based trajectory with obstacle avoidance are
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FIGURE 6. A flowchart for handling size/shape switching [33].

developed. Evaluated on unmanned ground vehicles in dif-
ferent terrains, including off-roads, the results show that
the proposed method works efficiently and robustly under
environmental disturbances. The system robustness is further
enhanced with algorithms for multi-modality fusion-based
preceding vehicle trajectory estimation and leader waypoints
management. Higher velocities and shorter inter-distances are
obtained by applying the developed longitudinal and lateral
navigation control method.

Algorithm 1 Reading Horizon Control [33]
Measure: The current state vector z
Calculate: u and z for [t, t + tf ]
Apply: u = u for the period [t, t + δ]
Update: t ← t + δ
Return: Start of Size/shape Switching Algorithm

Algorithm 2 Size Switching [33]
Measure: The current state vector z
Update: d as αd
Calculate: u and z for [t, t + tf ]
Apply: u = u for the period [t, t + δ]
Update: t ← t + δ
Return: Start of Size/shape Switching Algorithm

Algorithm 3 Shape Switching (Graph Not Changed) [33]
Measure: The current state vector z
Update: d
Calculate: u and z for [t, t + tf ]
Apply: u = u for the period [t, t + δ]
Update: t ← t + δ
Return: Start of Size/shape Switching Algorithm

Jond et al. [35] implemented a formation control objective
to drive multiple agents for obtaining a pre-defined con-
straint on their states with a proposed method incorporating

Algorithm 4 Shape Switching (Graph Changed) [33]
Measure: The current state vector z
Update: D,W , d
Calculate: u and z for [t, t + tf ]
Apply: u = u for the period [t, t + δ]
Update: t ← t + δ
Return: Start of Size/shape Switching Algorithm

a quadratic performance index using graph theory [33]. The
multi-agent system dynamics are applied as a controllable
linear system. The solution of the control law is a nonlinear
function of the graph Laplacian matrix and formation of
desired distance vectors. Algebraic Riccati equation solution
leads to a solution matrix a receding horizon control law in
a closed form. A control structure including four algorithms
based on closed-form control to handle formation size/shape
switching is developed, as shown in Fig. 6. Initially, the con-
voy follows Algorithm 1. The convoy needs to tune its shape
due to obstacles. The convoy also needs to tune its size for
any change in the vehicle number. According to the received
signals from an external observer or a decisionmaker, the
vehicle that is equipped with sensors selects a control mode at
each sample time. The control loop stops when the formation
control objectives aremet. The simulation results of this study
indicate efficiency of the proposed solution.

Formation control in an autonomous convoy refers to
adjusting the vehicle control inputs to form and maintain a
predefined shape and moving configuration. Platooning is a
linear formation that mostly considers the longitudinal coor-
dinated control of vehicles [36]. Mohamed-Ahmed et al. [37]
designed a coupled longitudinal and lateral control method
for autonomous convoying using nonlinear predictive control,
aiming to track a trajectory. This method enables controlling a
convoy using accessible information and following a leader’s
path while keeping a safe distance between vehicles in the
convoy to eliminate any possible collisions. The proposed
nonlinear model controls different components. Accelerating
and braking wheels control the longitudinal motion of the
convoy vehicles. The steering angle is responsible for lateral
motions.

The nonlinear control method proposed in [37] provided
precision in performance with trajectory tracking of lateral
convoy motions. It is also robust when the parameters are
not accurately calculated. The control rule ensures a safe
distance between vehicles to eliminate any possible col-
lision using longitudinal control while the convoy moves
with a similar leader velocity. Accumulation of the con-
voy tracking error is negligible using the proposed control
method. Kato et al. [38] developed a new multi-lane platoon-
ingmethod for maximizing safety of cooperative autonomous
vehicles on highways. A predefined number of vehicles (up
to 5) is engaged in a convoy, including the leader. Using a
multi-lane group control method, the level of safety improves
as a vehicle collaborates with other vehicles in the same lane
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TABLE 1. A summary on autonomous convoying techniques in several published studies.
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as well as neighboring lanes. Marjovi et al. [39] developed a
technique where a convoy of autonomous vehicles adapts to
the path on a road, and different vehicles can join or leave
the convoy using a complex messaging system. However, the
convoy fails to adapt to changes in terms of road shapes and
impacts from other vehicles. Both longitudinal and lateral
convoy algorithms are coordinated, since they are necessary
for different vehicle maneuvers, including adaption to road
shapes, lane changes, as well as maneuvering and overtaking
operations [40].

Many researchers apply various multi-agent system-based
algorithms in formation control of autonomous convoys. The
formation control approaches include vision-based leader-
follower [41], heterogeneous line formation using virtual-
structure [42], distributed graph-based control [35], and
behavior-based methods [43]–[46]. The leader-follower for-
mation control method for autonomous convoying is one of
the most popular methods. However, in case of loss of the
leader vehicle, the entire convoy formation fails. To solve
this issue, a leaderless formation control mechanism was pro-
posed by Jond et al. [33]. Using an optimal formation control
strategy for structuring a leaderless autonomous convoy, each
agent has the same role in the group. The control problem
of an autonomous convoy is modeled in terms of linear
dynamics. The convoy formation control problem is studied
under the receding horizon Linear Quadratic (LQ) optimal
control framework. The LQ modeling approach to formation
control is used because of the analytic tractability of LQ
problems. Using the proposed method [33], the formation
control objective to drive multiple agents for obtaining a pre-
defined constraint on their states is implemented by applying
a quadratic performance index with graph theory [47].

The study in [5] proposed a tracking control method of
a convoy of autonomous vehicles to avoid any possible
collisions while following a pre-defined path. A coordinate
transformationmethod is used to transform the position errors
with respect to each of two consecutive vehicles in a con-
voy. Transformation is performed from the earth-fixed frame
of two consecutive vehicles into their relative position and
angle errors to fulfill the predefined transient and steady-state
constraints. Using the pre-determined performance method,
a nonlinear transformation is used for transforming the con-
strained relative position and angle errors and achieving an
unconstrained kinematic error equation. A new kinematic
controller is developed to meet the transient and steady-state
performance conditions without causing collisions and con-
troller singularities. Moreover, the Dynamic Surface Control
method is applied for simplifying the controller design of the
convoy at the dynamic level by applying a first-order filter.
An adaptive neural network is employed to keep robustness
of the control system against model errors, noise, and distur-
bances. The Lyapunov theory is exploited to confirm stability
of the control system. The overall controller performance for
the convoy, including several autonomous vehicles, is tested
and validated in a simulation environment, and efficiency of
the proposed method is confirmed. A graph-based distributed

control approach in a coordinate system parallel to the path
was proposed for controlling heterogeneous vehicles aiming
to form multi-lane convoys [35]. Every vehicle in the convoy
keeps a local graph with information received from close
vehicles while the required distances between vehicles are
calculated dynamically. This permits quick adaptation to the
variations in vehicle numbers and their locations. Through the
implemented distributed mechanism, the vehicles in the con-
voy can collaboratively change lanes. The formation velocity
through this method is fixed, and does not satisfy the shifting
necessities for various traffic conditions.

The potential field approach is one of the main methods
that create corresponding repulsive and potential fields for
obstacles, road maps, and target locations. This is a useful
approach to model the driving area, measure risk in the
driving environment, and enhance the obstacle avoidance
capability. A smooth track without any collisions is planned
through the potential field approach while keeping the vehi-
cles close to the initially planned path. Gautam et al. [48]
developed a novel technique for a group of multiple robots to
establish a chain form from the beginning position to the end
position by combining the A*(A-star) algorithm. The tech-
nique performs path planning based on a static map and the
potential field technique to avoid collisions with obstacles.
Huang et al. [49] applied a combination of the potential field
technique and model predictive control (MPC), instead of
the gradient descent technique, for optimal path planning and
vehicle control. However, the potential field-based techniques
do not consider speed planning, which is a significant factor
in autonomous driving, owing to limitations of the convoy
line length, long-distance communication, and incremental
time delay in the traditional configuration of vehicle platoons
can cause instability. According to Gao et al. [50], distributed
graph and potential field offer an effective approach to multi-
lane convoy control. The formation changes its strategy using
a distributed graph algorithm to enhance adaptability, obsta-
cle avoidance capability, and stability in various traffic con-
ditions. The potential field approach is applied to build the
traffic field model, measure the driving environment risk,
and enhance the obstacle avoidance capability to complete
motion planning. A double-layer controller for distributed
vehicle control is implemented. The higher layer is in charge
of path planning and speed planning, and the associated
layer formation is a graph model for the road map, with
the consideration of obstacles. The lower layer is a tracking
control layer that performs lateral and longitudinal control.
This layer uses vehicle kinematics to conduct speed control
and path tracking for the vehicles. Validated in a simulation
environment, the results show efficiency of the proposed
method, which possesses better capacity and stability while
considering unknown vehicle numbers that can communicate
with each other locally.

III. CAPABILITIES OF A SUCCESSFUL FOLLOWER VEHICLE
According to our literature search, a successful follower vehi-
cle requires the following capabilities.
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A. FOLLOW THE LEADER VEHICLE
The first requirement of a successful follower vehicle is the
ability to track and trail the leader vehicle. There can be a
desert of vast plain land without any obstacles and traffic
rules. The most rudimentary follower vehicle needs to follow
the leader vehicle in situations with no obstacles in the path
and no traffic rules.

An example of such a simple follower robot can be toy
robots following or tracking a colorful ball [51]. In 1998,
Sony Corporation [52] developed a toy dog named AIBO,
which can track pink or yellow balls. No hard rules like road
boundaries, traffic signals, and fear of major accidents exist
in their demonstration.

B. FOLLOW THE LEADER VEHICLE IN INTERSECTIONS
Even a naive autonomous vehicle should be able to follow
another vehicle in a straight path with a zero steering angle.
A robust autonomous vehicle should not fail to follow the
leader vehicle in intersections. The follower vehicle needs
to stay within the road while turning in the intersection.
Moreover, a long follower vehicle needs a certain maneuver
for turning.

When a vehicle convoy transverses along a path in a city,
it is expected to encounter traffic lights, which can cause
the follower vehicle to lose the leader vehicle. As such, the
follower vehicle needs to be able to join the convoy after sep-
aration. Several researchers have developed robust follower
techniques and applied them in simulation environments [53]
or real-world conditions [54].

C. COLLISION AVOIDANCE CAPABILITY
Many researchers have prescribed a separate collision avoid-
ance module for an autonomous system [55], [56]. A follower
module can fail to consider details of the road, other vehicles,
landmarks, and pedestrians, leading to potential accidents.
A dedicated emergency module can help the vehicle to avoid
many undesired incidents [54].

D. PEDESTRIAN AVOIDANCE CAPABILITY
An autonomous vehicle needs to detect pedestrians and other
moving obstacles. As an example, the autonomous vehicle
needs to detect and wait when a pedestrian crosses a road.
Another scenario is when a person stands on the side of a
road for a long time, the autonomous vehicle needs to detect
and avoid the pedestrian [57].

E. CONSIDERATION OF STANDING
AND MOVING VEHICLES
An autonomous vehicle needs to travel through different
types of roads. One possible scenario is the detection and
understanding the condition of a vehicle near the corner of
a road. Since there is a possibility for a parked vehicle to
appear at the corner of a road, the autonomous vehicle needs
to know whether another vehicle is moving or otherwise. If it
is a slow-moving vehicle, the autonomous vehicle also needs

FIGURE 7. Negotiation between vehicles at an intersection: An
autonomous follower truck needs to detect other vehicles at an
intersection and negotiate with them (Photograph taken during a project
demonstration with the Australian Army).

FIGURE 8. Driving on a dirt road: An autonomous convoy needs the
capability of operating on not just quality tarred roads but also dirt roads
without markings (Photograph taken during a project demonstration with
the Australian Army).

to detect the movement of that vehicle for planning its own
maneuverability [54], [58].

F. ABLE TO NEGOTIATE IN INTERSECTION
The negotiation capability of an autonomous vehicle at an
intersection is critical. Based on the position of other vehicles,
the autonomous vehicle needs to decide. However, negoti-
ating at the intersection is the task of the leader vehicle.
A follower vehicle does not need to negotiate at an intersec-
tion unless it is separated from the leader vehicle by traffic
signals [59], [60]. Fig. 7 presents a scenario of an intersection,
where an autonomous truck needs to negotiate with another
vehicle.

G. ABIDING ROAD CONVENTION
An autonomous follower vehicle needs to obey road conven-
tions of a country. Depending on the regulations of a country,
vehicles travel either on the left or right lanes. As such,
an autonomous vehicle needs to consider vehicles coming in
the opposite direction. Road conventions are also required
while overtaking other vehicles or allowing overtaking by
other vehicles [61], [62].

H. IDENTIFYING OVERTAKING VEHICLES
When a convoy of vehicle transverses along a road, its speed
can be slow and a vehicle may want to overtake the convoy.
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The message pertaining to existence of such a vehicle has to
be conveyed from the follower vehicle to the leader vehicle.
Moreover, all follower vehicles should not confuse the over-
taking vehicle as an obstacle [54], [63]. In addition, heavy
autonomous vehicles do not change lanes frequently. So,
the convoy of autonomous vehicles needs to consider the
overtaking vehicle can appear either from the left or right
lane.

I. LENGTH OF A VEHICLE CONVOY
A vehicle convoy can consist of many autonomous trucks.
Companies have demonstrated convoys of up to ten trucks.
When a vehicle overtakes, another vehicle from the opposite
direction can appear [54]. The vehicle convoy can face a
change with respect to the road width during the course of
traveling. The overtaking vehicle can come to the same lane
as that of the vehicle convoy. The relevant follower vehicle
should give way for the vehicle to enter the lane. The over-
taking vehicle can start another attempt later. As such, the
follower vehicle needs to keep communicatingwith the leader
vehicle with respect to maneuverability of the overtaking
vehicle. The follower vehicle can adjust and maintain an
appropriate distancewhen the overtaking attempt commences
again.

J. SENSING THE ROAD PROPERLY
An autonomous vehicle needs to sensorise a road properly.
When a road has multiple lanes, the autonomous vehicle
needs to detect the available lanes. The algorithm and sensor
systems have to be robust enough to detect the road scene
under varying weather conditions, presence of other vehicles
and pedestrians, or occlusions that can degrade detectability
of the road conditions [64].

K. DRIVING ON DIRT ROADS
A vehicle convoy can be useful for sending goods to rural and
remote locations, which may not have painted roads. In many
contested conditions, autonomous trucks need to travel on dirt
roads or mountainous tracks [65]. The implementation of a
robust autonomous convoys in such conditions is beneficial.
Fig. 8 depicts an autonomous convoy travelling on a dirt road.

L. NIGHT OPERATIONS
A robust autonomous vehicle needs the path following capa-
bility, even in the absence of light. Night operations can be
under lit or unlit conditions [54]. As such, night operations
of an autonomous vehicle need the assistance of information
from multiple sensors. Choi et al. collected GPS, LiDAR,
stereo, thermal image, and RGB stereo images to produce
a combined data set for night operations of autonomous
vehicles [66].

M. DYNAMIC REROUTING
Typically, an autonomous vehicle performs a rough path
planning before starting its journey. Due to obstacles and
potential hazards, the vehicle needs to dynamically change

FIGURE 9. Proof of autonomy by lifting hands by a driver (who takes over
vehicle control only during emergencies) while the military truck moves
on a dirt road (Photograph taken during a project demonstration with the
Australian Army).

its routes when the initially planned path is unavailable [67].
The capability of dynamic routing, which is the process of
selecting an optimal path given the current traffic conditions,
is therefore crucial in autonomous convoying.

N. CONSIDERATION OF THE VEHICLE LENGTH
Research studies on autonomous cars attempt to narrow the
vehicle length, since the driving seat is not required. However,
in autonomous convoying with trucks, the vehicle length is a
key concern [68] because maneuverability, speed limits on
intersections, and overtaking considerations are different.

O. BOTH FORWARD AND BACKWARD MOVEMENTS
A follower vehicle may need to perform a backward move-
ment in unforeseen situations. Any blockade on the road can
cause the entire autonomous convoy to move in the back-
ward direction until the leader vehicle reaches a previous
intersection. Many goods loading and unloading spots are
located at the end of a road. Backward driving is different for
long vehicles due to the jack-knife effect [69]. This backward
movement capability needs to avoid collision with objects,
pedestrians, and other vehicles. Therefore, a follower vehicle
needs the ability to move in a backward direction on straight
roads, bent roads, intersections, and other conditions robustly,
efficiently, and safely.
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P. ROBUST COMMUNICATION
A robust and secure short-range communication capability
among autonomous vehicles is important. Communication
should not be affected by other vehicles or any malicious
intrusions. Ucar et al. [70] proposed a visible-light hybrid
communication-based platoon using the front light of the
follower vehicle and the tail light of the leader vehicle. The
IEEE 802.11p radio frequency communication technology is
also adopted, in order to produce a secure communication
system.

Q. PROOF OF AUTONOMY
As autonomous convoying is in its infancy, companies keep
a driver at the driving seat of the follower vehicles. This
scenario raises the question whether the follower vehicles
can move autonomously. As shown in Fig. 9, drivers raise
their hands from the steering wheel to prove that the follower
vehicle moves autonomously. The driver’s duty is to take over
control of the vehicle during emergencies [54].

IV. R&D ON AUTONOMOUS TRUCK CONVOYING IN
DIFFERENT INDUSTRIES
According to our literature search, the following industries
are significantly contributing towards R&D on autonomy and
autonomous convoying of trucks.

A. AUTONOMOUS MOBILITY APPLIQUÉ SYSTEM (AMAS)
BY LOCKHEED MARTIN
The AMAS Leader-Follower mode links a large fleet of vehi-
cles together as a cohesive convoy. As a result, the follower
vehicles can operate without a person in the driver’s seat [54].
Lockheed Martin conducted a military user assessment in
Carolina in the summer of 2014, and demonstrated driver-
assist capabilities in December 2015. The recent solution
can perform leader-follower convoying with consideration of
moving obstacles and presence of small cars in the middle.
These capabilities have been evaluated in both urban and rural
environments and low-light conditions. As indicated in the
AMAS report, current challenges include barriers and obsta-
cles, rights of way, dynamic re-routing, 4-way intersections,
pedestrian traffic, emergency braking, and negotiation in a
traffic circle.

Although Lockheed Martin has achieved great progress
in convoy autonomy, there exists some confusion in their
demonstrations. Negotiation with pedestrians and other vehi-
cles in intersections is still challenging for humans. Humans
struggle to decide which vehicle should go first. However,
autonomous vehicles can solve this issue through communi-
cations. When a human dummy approaches, the truck can
move on the other side of the road, or the truck can wait
until the dummy crosses the road. Lockheed Martin has not
disclosed any clear margin between these two decisions.

B. LOCOMATION
A Missouri-based truck company, namely Locomation, has
started a multi-year program on human-guided autonomous

FIGURE 10. A follower truck follows the leader truck in leader-follower
autonomy. The requirement of a driver is reduced by almost 50% and the
fuel cost is reduced by 8%. The reason of reduction on fuel consumption
is a lower air drag in the follower truck. This picture is drawn according to
the description of the Locomation convoy in [71].

convoying. According to the American TruckingAssociation,
in 2018, trucks transported 11.5billion tons of freight and
made nearly 800 billion USD in revenue. The demand for
autonomous convoying technologies has increased due to
COVID-19. Locomation announced that they are working
with Wilson Logistics to transport cargo using autonomous
trucks, e.g., covering more than 400 miles between Oregon
and Idaho in each journey [71]. The company has investigated
the use of autonomous follower trucks to deliver goods with
less human involvement. This solution also minimizes air
drag and optimizes fuel efficiency [72]. Fig. 10 presents an
air-drag minimization scenario.

Vehicles share data on steering angle, acceleration, speed,
and the degree of brake and throttle applied. Locomation
trucks use an intricate system of radar, lidar, and cameras
to observe the surroundings. To avoid blind spots, the trucks
are well-equipped with a range of sensors. A place behind
the driver’s seat is suggested for the driver of a follower
truck to rest and sleep after activating autonomous operations.
Currently, a driver sits on the driver’s seat when automa-
tion is enabled. In the future, drivers can leave the seat to
take a rest. According to Avi Geller, the CEO of Maven
Machines, a comprehensive management system for the fleet
is required, as the vehicles are becoming more sophisticated.
In the next five years, the driver assistance features may
eventually become standard in industries. Locomation has
received about 5.5 million USD of funding from different
sources. A plan to add the third truck is in place. If they can
add the third truck, the driver requirement can be reduced to
about 33%. Locomation currently evaluates their autonomous
convoying system at the Transport Research Center in Perry.

Many economic issues related to autonomous truck con-
voying need to be considered. As an example, issues such as
whether the driver of the follower truck should be paid during
his/her rest period, equal payment for both active and inactive
drivers, etc. need to be addressed.

The steps of achieving semi-autonomy are as follows:

• Two drivers sit in different trucks. They start the jour-
ney, cross the surrounding urban/busy area with manual
driving.

• Then, one truck takes the lead and the other follows.
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• Truck drivers can change rules. Trucks can interchange
their position, and the leader truck driver can take a rest
while the follower truck driver takes over the driving
duty.

C. EUROPEAN TRUCK MANUFACTURERS
Volvo is currently evaluating autonomous garbage collection
trucks in urban environments [73]. In addition, multiple man-
ufacturers, which include Iveco, MAN, Scania, Volvo Group,
DAF, andDaimler [74], have established plans to demonstrate
multi-brand autonomous truck convoying on European roads
from 2018 to 2022.

D. GOOGLE
A Google spinoff, i.e., Waymo, made use of autonomous
trucks to deliver goods to the data centres of Google inAtlanta
in 2018 [75]. Currently, they are planning to extend their
services to Texas and Mexico, due to commercial potentials.
The company conducts test and evaluation in Huston, Dallas,
and El Paso. In Mexico, the company perform tests in the
southern part of the country. In June 2019, Waymo engaged
13 robotic experts, including Boris Sofman, former CEO and
co-founder of Anki, to provide expertise to the company.

E. NATIONAL ROBOTICS ENGINEERING CENTER (NREC)
AT CARNEGIE MELLON UNIVERSITY
NREC provides innovative robotic solutions [76]. Recently
the center is working on a cargo unmanned ground vehicle.
Several capabilities on unmanned ground vehicles have been
established, as follows:

1) Vehicles must have instantaneously switching capabil-
ity among normal, remote, and autonomous driving.

2) Vehicles must be aware of other moving vehicles, vehi-
cles in a convoy, and moving pedestrians.

3) Vehicles should drive safely in varying conditions
including the presence of smoke, dust, snow, and rain.

4) Vehicles must navigate robustly with respect to any
visual degradation of the path caused by a previous
vehicle or any previous event.

5) Vehicles must be capable of operating in different envi-
ronments, such as open country, mountains, villages,
and cities.

An autonomous vehicle requires a good perception capa-
bility pertaining to visual objects and their speed. Several
planning mechanisms are also necessary, namely:

1) Local planning: generating a short-term trajectory
based on recent information to help the autonomous
vehicle in lane-following and obstacle avoidance;

2) Global planning: computing the shortest path based on
the available global map;

3) Speed planning: setting the autonomous vehicle speed
based on the road condition and visibility.

4) Traffic planning: interactingwith traffic and othermov-
ing obstacles near the road.

FIGURE 11. Road area, vehicle, and obstacles are merged into a single
map (drawn according to the information from NREC [76]). White and
green regions represent previously and newly re-explore areas in the
map, respectively. An existing map for initial path planning, is required
and recent changes of information in the map are helpful in obstacle
avoidance and rerouting.

5) Learning: applying machine learning to improve
performance.

A local map containing information on previously estab-
lished areas and newly explored areas is crucial. Fig. 11
depicts a visualization on sensor and map fusion. In Fig 11,
the green areas of the map is newly explored regions through
sensors, which are merged with previously recorded areas in
the map.

F. BAE SYSTEMS
According to a recent report, key vendors in military
autonomy are BAE Systems, Elbit Systems, Lockheed
Martin, Northrop Grumman, Polaris Industries, and RUAG
Group [77]. BAE System is one of the top companies in
the business of land artilleries. The company has demon-
strated autonomous battlefield unmanned ground vehicles to
the Australian Army. However, documents on autonomous
convoying capabilities developed by BAE Systems are
unavailable publicly.

G. MILITARY RESEARCH IN AUTONOMOUS CONVOYING
Many research areas started with initial sponsorships for
defense and exploration purposes. As an example, Shannon’s
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theory and related techniques were heavily sponsored by the
space exploration industry in the 1960s. The benefits of these
research studies have now been extended to many current
compression algorithms [78]. Similarly, while R&D on air-
plane was initiated by military forces in its early stage [79],
air travelling now brings benefits to everyone.

In 2018, the US Army planned to deploy seventy
self-driving trucks for supply chain activities, with human
supervision in 2020 and full autonomy by 2022 [80].
A human driver is engaged to operate the leader vehicle,
while unmanned follower trucks should not lose the leader
vehicle in the absence of a clear vision due to rain, snowfall,
dust, etc. While humans are very good at driving in such
situations, the use of computer vision for autonomous driving
is still in its infancy which can fail to act properly in noisy
environments. In contested environments, the follower trucks
need to consider shell holes, rocks, trees, rubble etc., as well
as to recognise animals, pedestrians, and other vehicles.

The US Army is confident in the development of com-
puter vision. The technology can remove manpower from
becoming the front-line troops, therefore maximising safety
of soldiers. The US Army planned to investigate ten Oshkosh
M1075 PLS (Palletized Loading System) trucks and con-
vert 60 more vehicles to self-driving vehicles by 2020 [80].

Note that the leader-follower convoy concept of the US
Armay is not in a full autonomy setting. Full autonomy in
a convoy of vehicles is expected in 2022. The experiments
from 2020 to 2021 are based on the leader-follower combi-
nation, where humans are present in the driver seat to handle
emergencies. While identifying an optimal path or a moving
direction is not difficult, travellingwith robust obstacle avoid-
ance capabilities is a great challenge. Autonomous vehicles
are not free from accidents, but their performance can be
better than humans in the future.

Autonomous vehicles in cities rely on the use of GPS for
navigation. Due to hostile terrains or network jammers that
can block the reception of GPS signals [80], military research
studies utilise an internal navigation system (INS). The INS
consists of an accelerometer, gyroscope, and computer algo-
rithms. These algorithms face higher uncertainty [81] when
traveling a long distance. Therefore, military robots need
to calibrate their estimations from landmarks. Humans also
do similar calibrations when travelling without GPS sig-
nals. By observing a landmark, humans become certain with
respect to distance travelled thus far and the remaining jour-
ney. The crucial part of off-road autonomous vehicle naviga-
tion is the combined outputs from radar, camera, and lidar.
GPS signals serve as a support means, whenever available.
The computer algorithms in a leader vehicle are used to
detect landmarks and compute the locations and dimensions
of landmarks. Information on landmarks is transmitted to
follower vehicles. A good INS system can reduce the required
number of landmarks. The INS system in US Army vehicles
is very accurate, which has only ten centimeters of error
after traveling 100 meters. As such, only few calibrations
are required, and the number of required landmarks is also

low [82]. The combination of INS and landmarks allows
a follower vehicle to follow the path taken by the leader
vehicle, even after one month. This raises a question on the
requirement of a human driver. According to the US Army, a
human driver is still needed to handle situations with barriers
and bushes that can cause safety issues.

V. ADVANCED AUTONOMOUS CONVOYING METHODS
While humans are good at controlling vehicles, approxi-
mately 90% of road casualties are due to human errors. More-
over, recent advancement in technology has brought higher
capabilities that surpass human capabilities. Machines can
sense a large number of information, and take collaborative
decisions within seconds [83]–[85]. Therefore, researchers
introduce advanced methods by combining a range of sensors
and computational intelligence to develop new autonomous
driving technologies.

A. MULTI-AGENT COLLABORATION
Multi-agent-based solutions are important in tackling prob-
lems that need collaborative effort. In Fig. 12, two players
(denoted by red squares) collaborate to capture (i.e., occupy)
the blue square that can change its location dynamically. Grey
regions denote walls. Squares canmove only in black regions.
Capturing the blue square by one player (one red square) is
difficult. An efficient collaborative strategy by two players
can reduce the number of movements required to occupy the
blue square.

Recently a collaborative Artificial Intelligence (AI) model
was applied to bring the grandmaster level performance in
the game StarCraft II [86]. StarCraft II is an online strategy
game. Players need to build a troop of soldiers, construct
buildings, and fight with opponents. In the game, the AI
agent learns by imitating human players. When a human
defeats the AI agent, the strategy of the human is learned [87].
Multi-agent collaboration is based on the consideration of
uncertainties associated with the target. These uncertainties
vary from situation to situation [88]. It is possible to derive
mathematical formulations for small games, as shown in
Fig. 12. Training of neural networks by imitating humans
is effective for complex games. However, trial and error are
not possible during real wars. Multi-agent collaboration is
possible in a small part of a war. We anticipate large-scale
multi-agent collaborations [89] in real wars when a signifi-
cant percentage of troops can operate autonomously.

As research in autonomous convoying is in its early stage,
multi-agent collaboration is yet to be investigated by com-
panies. Currently, a vehicle needs a human drive to start
and end a journey. In the future, it is expected for a vehicle
to reach its loading/unloading location autonomously. The
vehicle chooses its position in a convoy autonomously with
multi-agent collaboration strategy for successful loading/
unloading activities.

There are several futuristic academic research on
autonomous convoying based on multi-agent collaboration.
A recent paper proposed rules for automotive platoons [91].
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FIGURE 12. An example of multi-agent collaboration (redrawn from an
image in Google DeepMind [90]). The objective is for two players (red
squares) to collaborate and capture the blue square that can change its
location dynamically.

A vehicle can join a convoy either at the end or in the
middle position with different control strategies. The joining
procedure is as follows:

1) A non-member vehicle sends a joining request to the
leader vehicle.

2) If a vehicle joins a convoy at the rear position, the
leader vehicle sends back an agreement, provided that
the maximum convoy length is not reached.

3) If a vehicle joins a convoy in the middle position, e.g. in
front of vehicle Y, the leader vehicle sends an ‘‘increase
space’’ command to vehicle Y, and the new vehicle
receives an agreement

4) Changing lanes to join a convoy is a manual procedure
performed by a human driver. Upon receipt of an agree-
ment, the joining vehicle changes its lane.

5) Once the vehicle is in the correct lane, its automatic
speed controller is enabled to approach the preceding
vehicle.

6) When the vehicle is close enough to the preceding
vehicle, its automatic steering controller is enabled, and
an acknowledgment to the leader vehicle is sent; and,
finally,

7) The leader vehicle sends a ‘‘decrease space’’ command
to vehicle Y, and when the leader vehicle is informed
that spacing has returned to normal, it replies to the
acknowledgment message.

The leaving procedure is:
1) A convoy member sends a leaving request to the leader

vehicle and waits for an authorisation.
2) Upon receipt of a ‘leave’ authorization, the vehicle

increases its space from the preceding vehicle.
3) When the maximum spacing is achieved, the vehi-

cle switches both its speed and steering controller to
‘manual’ and changes its lane; and, finally

4) The vehicle sends an acknowledgment to the leader
vehicle.

Several research groups also proposed simulators for auto-
mated platooning [92], [93].

B. ROAD SEGMENTATION
A road segmentation model takes an image of a road
and provides a binary classification output for every pixel.
In the training data, the image pixels are labeled as road
and non-road. Multilabel semantic segmentation models are
employed to segment various objects in the image. Through
multilabel semantic segmentation, an estimation of both the
drivable surface and objects on that surface can be obtained.
The drivable surface includes all pixels with respect to the
road, parking spots, lane markings, crosswalks, and even rail
tracks. Objects on that surface can be other vehicles, pedes-
trians, animals, etc. With the information on the drivable
surface, an autonomous driving system constructs an occu-
pancy grid. The occupancy grid is constructed by projecting
several points of the LiDAR, or RADAR point cloud on
the visual image. The random sample consensus (RANSAC)
algorithm is a popularmethod to robustly fit a drivable surface
planemodel evenwith erroneous semantic segmentation [95].
The occupancy grid construction algorithms work well on
flat road surfaces. The occupancy grid helps an autonomous
vehicle to move with collision avoidance capability.

Researchers have also developed road segmentation algo-
rithms based on different types of input data. The most com-
mon approach is road segmentation on RGB images [96],
[97]. Recently, methods for segmenting roads with LiDAR
and RADAR data have also been developed [98]–[101].
There are several road segmentation data sets that exist in
multiple forms. Since many new road segmentation methods
yield different results, it is difficult to predict which combina-
tion works the best in the future. In a KITTI challenge [102],
the best results use both image and depth information. Several
studies indicate the presence of depth information increases
segmentation efficiency [103]–[105]. Fig. 13 presents an
example of a road segmentation method where both RGB
image and depth information are considered, in accordance
with the study in [94].

C. FUSION
Data fusion techniques can be broadly classified into three
categories [106]: (i) state estimation, (ii) data association,
and (iii) decision fusion. Data, sensors, and decisions fusions
are performed for visualization, reliability, and further pro-
cessing of information.

1) ALGORITHM AND DATA FUSION
In real-world applications, no sensor information is error-
free. Moreover, detection or classification models are subject
to errors. Assume that the first detection system has a success
probability of P(S1). As such, the probability of failure in the
ith detection system becomes:

P(Fi) = 1− P(Si). (1)
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FIGURE 13. Based on [94] , a robust road detection method that incorporate the convolutional neural networks (CNNs) can be
developed to combine camera and LiDAR images [94] (Photograph taken during a project demonstration).

Assume that two sensors or algorithms are fused together,
and they are independent of each other. Their combined
probability of failure is:

P(F1 ∩ F2) = P(F1)× P(F2). (2)

The probability of success from both systems is also in a
multiplicative form:

P(S1 ∩ S2) = P(S1)× P(S2). (3)

However, when the system is used for ensuring safety or
detecting obstacles, the outcome from one algorithm or sys-
tem is considered as the correct detection. The detection
success probability from any two sensors or algorithms can
be written as follows:

P(S1 ∪ S2) = 1− P(F1 ∩ F2). (4)

Their combination does not bring success when both of them
fail. Combining with Eqn. (2), Eqn. (4) can be written as:

P(S1 ∪ S2) = 1− P(F1)× P(F2). (5)

Therefore, the equation for getting detection success from the
fusion of N systems becomes:

P(S1 ∪ S2 . . . ∪ SN ) = 1−
N∏
i=1

P(Fi). (6)

As P(Fi) < 1, multiplying any number with P(Fi) decreases
the value, i.e., P(F1) × P(F2) is smaller than both P(F1),
and P(F2). Therefore, P(S1 ∪ S2) is greater than both P(S1),
and P(S2). We can conclude that the probability of success
increases with fusion of sensors or algorithms. Moreover, one
sensor or computation utility may not work at a certain time.
The presence of multiple sensors or algorithms can provide
information that allows a greater degree of autonomy in such
situations.

Besides detections, algorithms provide prediction of
numeric quantities, e.g. steering angle, desired vehicle speed,

etc. The mean or median value of numeric quantities can be
utilised for further processing. While one prediction system
can easily be subject to incorrect outcome, the probabil-
ity of all prediction systems being incorrect is lower [64].
Moreover, domain experts know the input range of different
sensors. They can develop algorithms to select an optimal
sensor-algorithm combination under different situations.

2) SENSOR FUSION
Although it is possible to achieve semi-autonomy with single
image sensor, such a system may fail in the absence or fluc-
tuation of light condition [107]. Uncertainties exist in infor-
mation solicited from the environment, sensors, algorithms,
and controllers [108], [109]. Therefore, a robust autonomous
vehicle is equipped with a range of sensors to minimise
uncertainties associated with perception.

The concept of sensor fusion is developed for optimal
information processing in multisensory environments [110].
A paradigm of sensor fusion is human perception in food
tasting scenarios. Humans perceive food through our eyes,
nose, and tongue. Information from all sensors helps a human
to identify the underlying ingredients. There are several moti-
vations for sensor fusion, e.g. to accommodate partial or total
failure of sensors as well as limited coverage and precision
that cause uncertainty. Sensor fusion enables a system to
act correctly, in the event of noisy information from certain
sensors.

Sensor fusion allows the creation of an internal map
that contains various detected objects with different confi-
dence levels. Different sensors have different resolutions and
ranges, and they cover different regions. As such, sensor
fusion brings benefits pertaining to accurate position, ori-
entation, and situational awareness [111]. There are three
general types of sensor fusion: competitive, complementary,
and cooperative. In competitive sensor fusion, each sensor
derives an independent measurement. A decision is taken
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based on individual outputs. Competitive sensor fusion brings
higher accuracy. In complementary sensor fusion, sensors
are combined to provide a more complete definition [112],
e.g. images from two cameras can be combined to have a
better area coverage. In cooperative sensor fusion, multiple
sensors derive combined information that cannot be achieved
from using just single or fewer sensors, e.g. understanding 3D
structures from multiple image sensors [113]–[115].

Sensor fusion is becoming popular in autonomous driv-
ing [116]. An autonomous vehicle uses several sensors, which
include camera, radar, LiDAR, odometer, global positioning
system (GPS), infrared (IR) devices. Information from a
camera is usually useful in the presence of light. However,
a change in lighting condition or any painting on the road can
cause errors when the detection algorithm relies on images
only. Radar and LiDAR are useful in detecting objects under
dim conditions. However, it is difficult to classify objects
based on radar and LiDAR signals. An internal map and
odometer information can potentially help recognise nearby
landmarks, even in the absence of light. The combined infor-
mation from sensors reduces uncertainties of the perceived
environment and improves the confidence of autonomous
driving [117]–[120].

Sensor fusion can be used to build an occupancy map by
combining signals from different sensors, e.g. in indoor nav-
igation [121]. The first stage of building an occupancy map
is to transform and combine data. A 2D image from a cam-
era is different from radar or LiDAR data [122]. Therefore,
transformation from the image coordinate to robot coordinate
through mapping is required [122]. The second stage is com-
bining the information to enhance robustness. Information
from various sources (e.g. image sensor, radar, sonar, etc.) is
combined using competitive, complementary, or cooperative
sensor fusion methods. Algorithms are applied to the com-
bined data for safe navigation. Indeed, sensor fusion makes
the information more reliable and reduces the chance of a
collision or failure [123]. Obstacles in the occupancy map is
generally made larger, in order to prevent potential collisions
by autonomous agents [122].

Sensor fusion is a growing field in military applications.
The market of military sensor fusion is predicted to grow
to 756 million by 2029 [124]. Indeed, sensor fusion has
been deployed in various military equipment in several coun-
tries, which is useful in target detection, combat vehicles,
enemy identification, weapon systems, etc. Combining GPS
data with information from an odometer, magnetic compass,
gyroscope, and map results in a more accurate occupancy
map [125]. Both the position and orientation information of
an equipment is required when navigating under dim con-
ditions. Identifying the positions of other moveable objects
is important in autonomous convoying, e.g. other vehicles,
peoples, enemies, or animals in specific locations. Currently,
leading companies that develop military sensor fusion tech-
nologies are General Dynamics, Esterline Technologies,
Safran Group, BAE Systems, Lockheed Martin Corporation,
Honeywell International, and Kongsberg Gruppen [126].

D. FUEL AND SPACE EFFICIENCY
Fuel and space efficiency can potentially be achieved through
a carful platooning strategy. Recently, Locomation demon-
strated that minimization of air drag can lead to higher fuel
efficiency. Researchers have also proposed several advanced
techniques for efficient air drag control [127]–[129] and
road space utilisation [130]–[133]. Both fuel and space
efficiency can also be achieved through efficient traffic
signaling [134]–[136]. It is envisaged that extensive research
from industries to improve fuel and space efficiency will
emerge in the near future.

E. MODULAR VS END-TO-END APPROACHES
There are two popular approaches to autonomous driv-
ing [137], [138]: modular and end-to-end methods. Fig. 14
presents an end-to-end approach. Autonomous vehicles use
multiple sensors for ensuring a successful operation, e.g.
infrared (IR) sensor, LiDAR, RADAR, ultrasonic, odometer,
camera, etc. Besides sensors, autonomous vehicles have ded-
icated short range communication (DSRC), internal naviga-
tion system (INS), map, and global positioning system (GPS)
to improve sensing of the environment.

The modular approach is widely applied in indus-
tries [139], with the advantage of ease of implementa-
tion [140]. An accident can occur due to a fault in a sensor
or an algorithm. The algorithm may work with one or more
faulty sensors. Several algorithms are applied for autonomous
driving in the modular approach, e.g. algorithms for traf-
fic signal detection [141], pedestrian detection [142], road
segmentation [143], steering angle prediction [144], speed
prediction [145], and path planning [146]. When the sensor
readings and recent predictions are recorded, it becomes
easy to investigate and improve the performance of different
modules.

The end-to-end approach can potentially bring good
performance with sufficient samples and proper training
methodology [147]. Many researchers anticipate that the end-
to-end approach will become better with the advancement
in AI [148].

F. FUTURE OPPORTUNITIES FROM AI
AI is a fast-growing research domain, and an immense
improvement in AI methodologies can be observed in the
last decade [149]–[151]. AI provide smart solutions to many
existing problems, which has brought new research dimen-
sions [152]–[154]. With the help of AI, a novice user can
develop prediction models. The advent of transfer learning
models yield good performance with reduced computation
loads and smaller data sets [155]. Recent advancements in
DeepFake have caused difficulty in distinguishing real and
fake video clips by humans. Successful autonomous driving
requiresmany calibrations [156], [157], e.g. slight differences
between the odometer reading and the actual distance traveled
by a vehicle normally exist [158], [159]. In this case, fusing
sensor information or adjusting sensor readings requires cal-
ibrations [160]. Neural networks have been used as a useful
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FIGURE 14. Sensor fusion with an artificial intelligence (AI) model for end-to-end
autonomous driving, where the AI model receives information from different sensors
and predicts the relevant outputs.

method for such calibrations [161], which benefit R&D in
autonomous convoying.

VI. CONCLUSION
Autonomous convoying is a rapidly growing research field to
date. Convoying with a fleet of autonomous vehicles requires
the consideration of many aspects. This survey has provided
important information on autonomous convoys to facilitate
future R&D activities. We have analyzed current methods
and techniques associated with autonomous convoying, cov-
ering tracking and control mechanisms, characteristics of a
good follower vehicle and related real-world scenarios. This
literature also has presented current R&D initiatives of dif-
ferent industries and future possibilities. As the technology
of autonomous convoying is in still its early stage, many
research activities are funded by the military at this moment.
Successful implementation of a fully autonomous convoy can
potentially enable transporting goods to remote places with-
out human involvement. Indeed, it is envisaged that logistic
and supply chain activities to help people in rural and remote
locations with greater efficiency without endangering life
become possible through realization of autonomous convoy-
ing in the future.
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