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ABSTRACT The Gamma distribution based generalized linear model (GaGLM) is a kind of statistical
model feasible for the positive value of a non-stationary stochastic system, in which the location and the
scale are regressed by the corresponding explanatory variables. This paper theoretically investigates the
asymptotic properties of maximum likelihood estimates (MLE) of GaGLM, which can benefit the further
interval estimates, hypothesis tests and stochastic control design. First, the score function and the Fisher
informationmatrix forGaGLMare derived. Then, the Lyapunov condition is derived to ensure the asymptotic
normality of the score function normalized by the Fisher information matrix. Based on this condition, the
asymptotic normality of the MLE of GaGLM is proven. Finally, a numerical example is given to testify
the asymptotic properties obtained in the research. The numerical results indicate that the MLE of GaGLM
converged to a normal distribution as the number of sample measurements increased.

INDEX TERMS Gamma distribution, Gamma regression, consistency and asymptotic normality, central
limit theorem, maximum likelihood estimator.

I. INTRODUCTION
The generalized linear model (GLM) expands the general
linear model so that a dependent variable is linearly related
to the factors and covariates via a specified link function [1].
Moreover, the model allows the dependent variable to keep
the attribute of actually applied data, such as integer literal,
positive and asymmetric, not belong to a normal distribution.
It covers widely used statistical models, such as logistic
regression models for binary distributed responses, Poisson
regressionmodels for count data andGamma regressionmod-
els for positive real data.

As a family of moderate skewness and continuous phe-
nomena distributions, the Gamma distribution is a useful
model in many areas of statistics when the normal distri-
bution is not appropriate. In the Gamma distribution-based
approach, the system output Z can be assumed to be a subject
Z ∼ Ga(α, β), where Ga(α, β) is a Gamma distribution with
the shape parameter α and the rate parameter β governing
its probability density function shape. This distribution was
first introduced [2] and subsequently studied in detail [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

In some special cases, the Gamma distribution reduces to the
exponential distribution as α = 1 and β = 1/λ for λ > 0,
the Erlang distribution as α = n and the χ2 distribution as
α = n/2 and β = 1/2.
Because of the flexibility of the relationship to many

other distributions, the Gamma distribution can be a suitable
alternative for modelling such kinds of the positive-valued
dependent variable. The Gamma distribution-based mod-
els have been applied in many areas, such as medical
science [4], [5], biology [6], economics [7], [8], forest sci-
ence [9] and education [10]. Considering the ubiquitous het-
eroscedasticity of actually applied data, as a member of the
well-knownGLM, the Gamma distribution based generalized
linear model (GaGLM) is more widely used when α and β are
both dependent variables. However, it should be noted that the
GaGLM does not belong to the exponential family of distri-
butions based GLM [11]. Therefore, a baseable asymptotic
theory for GaGLM is established.
This research investigates the theoretical aspects of max-

imum likelihood estimator (MLE) for GaGLM. Because
GaGLM is a model with two equations (4) being respec-
tively parameterized for α and β, the estimation pro-
cedure could be relatively complex. In statistics, several
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expectation-maximization (EM) type algorithms have been
developed for the Gamma distribution inference, where
β was assumed to be a latent variable [12]. However,
those algorithms were developed by fixing β as constant.
If β is parameterized as regression models, the EM algorithm
would be extremely computationally involved. Thus, instead
of using EM algorithms for latent variable, MLE for GaGLM
by using the Fisher scoring algorithm is performed [13].
To this end, the score function and the Fisher information
matrix are derived for GaGLM. Furthermore, we obtain the
condition to assure the positive definiteness of the Fisher
information matrix.

The consistency and the asymptotic normality explaining
the efficiency of the estimators have been widely investi-
gated in system identification and statistics [14], [15]. The
consistency of MLE for GaGLM can be proved by using
the same approach for GLM [15]. To verify the asymptotic
normality of MLE, the asymptotic normality of the normal-
ized score function is necessary. GLM was developed for
the exponential family, whose moment generating functions
are exponential functions of the sufficient statistics. Based
on the uniform moment generating function, the asymp-
totic normality of the normalized score function was proved
for GLM.

To investigate asymptotic properties of MLE for parame-
ters occurring in GaGLM, we need to prove the consistency
and asymptotic normality of MLE by central limit theo-
rems. Compared with commonly used Lindeberg condition,
Lyapunov condition is stronger in proving asymptotic
properties. First, we derived the score functions normal-
ized by the Fisher information matrix for the Lyapunov
condition, which ensure the asymptotic normality of the
normalized score functions [16]. Based on this result,
the asymptotic normality of MLE for GaGLM is finally
proved. These results can dramatically facilitate the hypoth-
esis testing, the construction of interval estimates, and
stochastic control design for the non-stationary stochastic
system [17], [18].

The rest of this paper is organized as follows. The con-
cept of GaGLM and maximum likelihood estimation are
introduced in Section II. Section III gives the assumptions of
asymptotic properties of the MLE in GaGLM, including the
proof of related lemmas and theorems. Results of a simulation
study are reported in Section IV. Concluding comments are
presented in Section V.

II. PROBLEM STATEMENT
In this section, we briefly review GaGLM, including its
structure and numerical method of MLE.

A. MODEL AND ESTIMATION
Suppose that we observe realizations of a positive real ran-
dom variable Z , and we believe that Z has a specified positive
continuous distribution.

Let Dn = {(Zi, xi, yi), i = 1, . . . , n} be independent
random vectors defined on the probability space (�,F ,P).

For each i = 1, . . . , n, the response variable Zi is generated
from the following process:

Zi ∼ Ga(αi, βi), (1)

where Ga(αi, βi) denotes the Gamma distribution with posi-
tive shape parameter αi and rate parameter βi. The probability
density function is

f (Zi|αi, βi) =


β
αi
i

0 (αi)
zαi−1i e−βizi , when z > 0

0, when z ≤ 0,

where 0(·) is the Gamma function. The mean and variance of
the random variable Zi are given by

E(Zi) =
αi

βi
(2)

and

Var(Zi) =
αi

β2i
. (3)

Then, we can develop GaGLM by regressing explainatory
variable ωi = (xT

i , y
T
i )

T with xi ∈ Rp to αi and yi ∈ Rq

to βi as follows: {
αi = exp(xT

i a)

βi = exp(yT
i b),

(4)

where a = (a1, . . . , ap)T and b = (b1, . . . , bq)T denote
the regression parameter vectors for αi and βi respectively,

and •T denotes the transpose of •. Further, θ = (aT, bT)T

is any parameter in an admissible set Kθ ⊂ Rp+q. For the
observations z1, z2, . . . , zn, the log-likelihood l(θ ) derived
from the GaGLM can be written as

ln(θ ) =
n∑
i=1

log(f (Zi|ωi, θ ))

=

n∑
i=1

(
αi logβi − log0(αi)+ αi log zi

− log zi − βizi
)

=

n∑
i=1

(
ex

T
i ayT

i b− log0(ex
T
i a)

+ex
T
i a log zi − log zi − ey

T
i bzi

)
, (5)

where log denotes the natural logarithm. Then, θ can be
estimated by

θ̂ = argmax ln(θ ). (6)

According to (5), the first three order derivative of ln(θ ) with
respect to θ is continuous and finite for all θ ∈ Kθ . This
condition ensures the existence of the Taylor expansion, the
finite variance of the derivatives of ln(θ ). Thus, MLE can
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be obtained by the scoring method [19], in which the score
function can be obtained by

sn(θ ) =
∂ln(θ )
∂θ

=

(
sTa (θ ), s

T
b (θ )

)T

=

[
∂ln(θ )

∂aT
∂ln(θ )

∂bT

]T
, (7)

and the Fisher information matrix can be obtained by

Fn(θ ) = −E
[
∂ln(θ )
∂θ

∂ln(θ )

∂θT

]

= −E


∂ln(θ )
∂a

∂ln(θ )

∂aT
∂ln(θ )
∂a

∂ln(θ )

∂bT

∂ln(θ )
∂b

∂ln(θ )

∂aT
∂ln(θ )
∂b

∂ln(θ )

∂bT

 . (8)

With the score function and the Fisher information matrix, (6)
can be iteratively solved by using the generalized Newton-
Raphson (NR) method, so-called Fisher’s scoring (FS) algo-
rithm [19] as the following

θ̂ (new) = θ̂ (old) + F−1n (̂θ (old))sn (̂θ (old)). (9)

In what follows, the score function and the Fisher informa-
tion matrix are derived for GaGLM. Furthermore, the condi-
tion that ensures the positive definiteness of Fn(θ ) obtained
in Corollary 1.

In statistics, the asymptotic properties, mainly including
the consistency and asymptotic normality, are often used to
evaluate the efficiency of estimators [20]. Another important
role of sn(θ ) and Fn(θ ) is to prove the asymptotic properties.
If the first three order derivates of ln(θ ) with respect of
θ exist, the consistency, i.e. θ̂ converging in probability to
the true coefficients θ0, can be proved under a generalized
framework [21]. However, the asymptotic convergence of the
covariance matrix for GaGLM cannot be proved by using the
generalized approach in [21]. To tackle this problem, we first
prove the asymptotic normality of the normalized score func-
tion F−T/2

n (θ )sn(θ ) motivated by [15]. Note that [15] dealt
with the exponential family-based models, whose moment
generating function is the exponential function of the suffi-
cient statistics. [15] used such moment generating function
to prove the asymptotic normality of the normalized score
function. However, there is not an asymptotic theory of MLE
to Gamma distribution, where the approach in [15] cannot
be extended to the GaGLM. Furthermore, the elements con-
structing F−T/2

n (θ )sn(θ ) cannot be expected to be identically
distributed. Therefore, by investigating the Lyapunov con-
dition and Taylor expansion, we can prove the asymptotic
normality ofGaGLM’sMLE. In what follows, we first derive
the score function and the Fisher information matrix of MLE
of GaGLM.

III. SCORE FUNCTION AND FISHER INFORMATION
MATRIX FOR GaGLM
For deriving the score function and the Fisher informa-
tion matrix, the log-likelihood function of θ is formulated
from (6). The score function (7) can be represented as follows.
Lemma 1 (Component-Wise Score Function for GaGLM):

The two components of the score function (7) are obtained by

sa(θ ) =
∂ln(θ )
∂a

= (s1(θ ), . . . , sp(θ ))T

=

n∑
i=1

(logβi − ψ0(αi)+ log zi) xi

=

n∑
i=1

(αi logβi − ψ0(αi)αi + αi log zi) xi (10)

and

sb(θ ) =
∂ln(θ )
∂b
=
∑n

i=1 (αi − βizi) yi, (11)

whereψ0(α) =
0′(α)
0(α) is digamma function, which can be seen

in Equation (20).
Proof Lemma 1: The following derivatives can be directly

derived from (4). 
∂αi

∂a
= αixi

∂βi

∂b
= βiyi.

(12)

Then, derivatives of the log-likelihood function (4) are
straightforwardly obtained. �
The Fisher information matrix will be derived via the

Hessian matrix follows
We define Hessian matrixHn(θ ) as follows to establish the

Fisher information matrix Fn(θ ) shown below.

Hn(θ ) =


∂ln(θ )
∂a

∂ln(θ )

∂aT
∂ln(θ )
∂a

∂ln(θ )

∂bT

∂ln(θ )
∂b

∂ln(θ )

∂aT
∂ln(θ )
∂b

∂ln(θ )

∂bT


:=

[
hp,p(θ ) hp,q(θ )
hq,p(θ ) hq,q(θ )

]
, (13)

with entries:

hp,p(θ ) =
∂2ln(θ )

∂a∂aT

=

n∑
i=1

αi
[
logβi + log zi − ψ0(αi)− αiψ1(αi)

]
xixT

i

(14)

where ψ1(α) = ψ ′(α) is trigamma function, which can be
seen in Equation (21).

hq,q(θ ) =
∂2ln(θ )

∂b∂bT

= −

n∑
i=1

βiziyiy
T
i (15)

14388 VOLUME 10, 2022



B. Wang et al.: Consistency and Asymptotic Normality of Maximum Likelihood Estimator in GaGLM

and

hp,q(θ ) = hT
q,p(θ ) =

∂2ln(θ )

∂a∂bT

=

n∑
i=1

αixiyT
i (16)

Now set

Hn(θ ) = −H(θ ). (17)

In order to derive the Fisher information matrix and prove
asymptotic normality, the following Lemmas 2 and 3 are
necessary.
Lemma 2: If Z ∼ Ga(α, β) then

E(logZ ) = ψ0(α)− logβ (18)

and

E(logk Z ) ≤ C(α, β, k), k = 1, 2, . . . , n (19)

where C is positive constant depending on α, β and k , and
k > 0 is any finite positive integer.
Proof Lemma 2: Before the proof of this lemma,we should

recall the Euler’s gamma function 0(α) and digamma func-
tion ψ0(α) for α > 0 defined as

ψ0(α) =
0′(α)
0(α)

, with 0(α) =
∫
∞

0
uα−1e−u du. (20)

For basic properties of these functions see [22].
Polygamma functionsψn, such as trigamma, tetragamma and
pentagamma functions when n = 1, 2, 3, are defined to be
n-order derivatives of ψ0 function, that is,

ψn(α) = ψ
(n)
0 (α), n = 1, 2, . . . (21)

The following integral and series representations are valid
for z > 0 and n = 1, 2, 3, . . .:

(−1)n−1ψn(α) =
∫
∞

0

tne−αt

1− e−t
dt

= n!
∞∑
k=0

1
(α + k)n+1

(α > 0), (22)

which are monotonically increasing and continuous function
in α > 0 [23]. Then, We can get 0(k)(α)

0(α) by polygamma
functions with k = 1, 2, . . . , n. When n = 1, we can get

ψ1(α) = ψ ′0(α)

=

(
0′(α)
0(α)

)′
=
0′′(α)
0(α)

−

(
0′(α)
0(α)

)2

=
0′′(α)
0(α)

− ψ2
0 (α),

then

0′′(α)
0(α)

= ψ1(α)+ ψ2
0 (α). (23)

When n = 2, we can get

ψ2(α) = ψ ′1(α)

=

(
0′′(α)
0(α)

)′
− (ψ2

0 (α))
′

=
0′′′(α)
0(α)

−
0′′(α)0′(α)
02(α)

− 2ψ0(α)ψ ′(α)

=
0′′′(α)
0(α)

−

(
ψ1(α)+ ψ2

0 (α)
)
ψ0(α)− 2ψ0(α)ψ1(α)

=
0′′′(α)
0(α)

− ψ3
0 (α)− 3ψ0(α)ψ1(α).

In the following,

0′′′(α)
0(α)

= ψ2(α)+ ψ3
0 (α)+ 3ψ0(α)ψ1(α) (24)

Continuous derivative of (20) function as (23) and (24),
we can get 0(k)(α)

0(α) function.

0(k)(α)
0(α)

= fk0 (ψ0(α), ψ1(α), ψ2(α), . . . , ψk−1(α)) , (25)

where fk0 (ψ0(α), ψ1(α), ψ2(α), . . . , ψk−1(α)) is a finite j-
order polynomial combination function of theψi(α) functions
with i < k and j ≤ k .
Let Z ∼ Ga(α, β), we have∫

∞

0

1
0(α)

βαzα−1e−βzdz = 1. (26)

Multiply at each side of equation (26) by 0(α), we can get

0(α) =
∫
∞

0
βαzα−1e−βzdz. (27)

Then, take the k-order derivative with respect to α of both
sides, that

0(k)(α) =
∑k

i=0 C
i
k

∫
∞

0 βαzα−1e−βz logk−i β logi zdz. (28)

Divided by 0(α) at both sides of (28), we obtain

0(k)(α)
0(α)

=

k∑
i=0

C i
k

∫
∞

0

1
0(α)

βαzα−1e−βz logk−i β logi zdz

=

k∑
i=0

C i
k log

k−i βE(logi Z ). (29)

For k = 1,

ψ0(α) =
∫
∞

0

1
0(α)

βα logβzα−1e−βzdz

+

∫
∞

0

1
0(α)

βαzα−1 log ze−βzdz

= logβ + E(logZ ) (30)

then

E(logZ ) = ψ0(α)− logβ. (31)

Let fk (•) denote finite j-order polynomial of logβ
by j ≤ k and linear combination of E(logi Z ) with
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i = 1, 2, . . . , k−1 function. Combining (25) and (27), we can
get

E(logk Z ) =
0(k)(α)
0(α)

+ fk
(
logβ,E(logZ ),E(log2 Z ), . . . ,

E(logk−1 Z )
)

= fk
(
logβ,E(logZ ),E(log2 Z ), . . . ,
E(logk−1 Z )

)
+fk0 (ψ0(α), ψ1(α), ψ2(α), . . . , ψk−1(α))

≤ C(α, β, k) (32)

�
Lemma 3: If Z ∼ Ga(α, β), the kth moment of Z is limited

as

EZ k ≤ C(α, β, k), k = 1, 2, . . . , n (33)

where C is positive constant depending on α, β and k , and
k > 0 is any finite positive integer.
Proof Lemma 3:

EZ k =
∫
∞

0

1
0(α)

βαzk+α−1e−βzdz

=

∫
∞

0

0(k + α)
0(α)

β−k

0(k + α)
βk+αzk+α−1e−βzdz

=
0(k + α)β−k

0(α)

∫
∞

0

1
0(k + α)

βk+αzk+α−1e−βzdz

=
0(k + α)β−k

0(α)
≤ C(α, β, k) (34)

�
Theorem 1 (Fisher Information Matrix for GaGLM): The

components of the Fisher information matrix are obtained as
follows:

E
[
∂ln(θ )
∂a

∂ln(θ )

∂aT

]
=

n∑
i=1

(αi logβi − ψ0(αi)αi

+αi log zi) xixT
i (35)

E
[
∂ln(θ )
∂b

∂ln(θ )

∂bT

]
=

n∑
i=1

αiyiy
T
i (36)

E
[
∂ln(θ )
∂a

∂ln(θ )

∂bT

]
= −

n∑
i=1

αixiyT
i (37)

Proof Theorem 1: Under the assumptions of mild general
regularity, we have Fn(θ ) = EHn(θ ) by [24], and Fn(θ ) is
positive semi-definite matrix [25]. Thus, using Lemmas 1, 2,
equations (8) and (13), the Fisher information matrix can be
straightforward computed as follows

Fn(θ ) = EHn(θ )

= −

[
Ehp,p(θ ) Ehp,q(θ )
Ehq,p(θ ) Ehq,q(θ )

]
:=

[
f p,p(θ ) f p,q(θ )
f q,p(θ ) f q,q(θ )

]
.

According to (18) in lemma 2, they are expressed respectively
as follows

f p,p = −E
[
hp,p(θ )

]
= −E

[ n∑
i=1

αi
(
logβi+log zi−ψ0(αi)−αiψ1(αi)

)
xixT

i

]

=

n∑
i=1

α2i ψ1(αi)xixT
i , (38)

f q,q = −E
[
hq,q(θ )

]
= −E

n∑
i=1

βiziyiy
T
i

=

n∑
i=1

αiyiy
T
i (39)

and

f p,q(θ ) = f T
q,p(θ ) = −E

[
hp,q(θ )

]
= −E

n∑
i=1

αixiyT
i

= −

n∑
i=1

αixiyT
i . (40)

Then, we can get

Fn(θ ) =
n∑
i=1

[
α2i ψ1(αi) −αi
−αi αi

] [
xixT

i xiyT
i

yix
T
i yiy

T
i

]

=

n∑
i=1

αi

[
αiψ1(αi) −1
−1 1

] [
xi
yi

] [
xT
i yT

i

]
. (41)

�
Corollary 1 (Definiteness of Fisher Information Matrix

for GaGLM): If
∑n

i=1 ωiω
T
i is of full rank, with ωi =

(xT
i , y

T
i )

T denoted in Section II, the Fisher information matrix
Fn(θ ) is positive-definite.
Proof Corollary 1: To prove the positive character of the

Fisher information matrix, we need derive the range of
αψ1(α). From the equation (22) as n = 1, we can get
following inequality

ψ1(α) =
∞∑
k=0

1
(α + k)2

>

∞∑
k=0

1
(α + k)(α + k + 1)

=

∞∑
k=0

(
1

α + k
−

1
α + k + 1

)
=

1
α
−

1
α + 1

+
1

α + 1
−

1
α + 2

+
1

α + 2
− . . .

=
1
α
. (42)
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Then, we can get

αi

∣∣∣∣αiψ1(αi) −1
−1 1

∣∣∣∣ = αi(αiψ1(αi)− 1) > 0. (43)

If
∑n

i=1 ωiω
T
i is of full rank, the Fisher information matrix

Fn(θ ) is positive-definite.
�

IV. ASYMPTOTIC THEORY FOR THE MAXIMUM
LIKELIHOOD ESTIMATOR IN GaGLM
Under the mild assumptions, the asymptotic properties of the
MLE was proved in GLM for canonical link functions [15].
These asymptotic conditions can be applied to prove similar
results for GaGLM as well as noncanonical.
To normalize the score function, we introduce the Cholesky

square root matrix for positive definite matrix F, such that
F1/2(F1/2)T = F. We set F1/2 denotes the unique lower
triangular matrix with positive diagonal elements. For con-
venience, set FT/2

:= (F1/2)T, F−1/2 := (F1/2)−1 and
F−T/2

:= (FT/2)−1. For convenience, we drop the argument
θ0 in sn(θ0), sni(θ0), Fn(θ0) Eθ0 etc. and write sn, sni, Fn,
E etc. Ci for i = 1, 2, . . . will further denote constants,
with or without subindices. The same C’s represent different
constants in different formula.

Let ‖·‖ denote the spectral norm of square matrices. The
spectral norm of a real-valued matrix F is given by

‖F‖ =
(
λmax(FFT)

)1/2
= sup
‖u‖2=1

‖Fu‖2 , (44)

where ‖·‖2 denotes the L2− norm of vectors. The maxi-
mal (minimal) eigenvalue of a square matrix Fwill be further
denoted by λmax(F) (λmin(F)). For ε > 0, a neighborhood of
the unknown true parameter θ0 can denote by

Nn(ε) =
{
θ :

∥∥∥FT/2
n · (θ − θ0)

∥∥∥ ≤ ε} . (45)

In this paper, let’s make the following assumptions.

(A1)

λmin(Fn) ≥
n
C
∀ n ≥ 1, (46)

where C is a positive constant.
(A2) {xn, n ≥ 1} ⊂ Kx ,{yn, n ≥ 1} ⊂ Ky, where Kx ⊂ Rp

and Ky ⊂ Rq are compact sets.
(A3) Kθ ⊂ Rp+q is an open set, and θ0 is an interior point

of the set Kθ .

Furthermore, Assumption (A1) means that λmin(Fn) and
n are the same order infinity, which is used to prove
Lemmas 4 and 5. Assumption (A2) implies what we deal with
are compact regressors. If θ lies on the boundary of parameter
space Kθ , the statements of Theorem 2 do not valid anymore.
Based on the assumptions above, we need to prove two

preliminary Lemmas 4 and 5 for asymptotic properties of
MLE θ̂ first.

Lemma 4: Under the assumptions (A1)-(A3), there is

F−T/2
n sn

D
−→ NP(0, Ip+q) as n→∞, (47)

where NP(0, Ip+q) is a (p+ q)-dimensional normal distribu-
tion with mean vector 0 and covariance matrix Ip+q.
Proof Lemma 4: Derived fromCramer-Wald [20], we only

need to prove that a linear combination uTF−1/2n sn converges
in distribution to N (0,uTu) for any vector u ∈ Rp+q(u 6= 0).
Without loss of generality, we set ‖u‖ = 1. Then, let

sn(θ ) =
(
sTa (θ ), s

T
b (θ )

)T

=
(
s1(θ ), . . . , sp(θ ), sp+1(θ ), . . . , sp+q(θ )

)T
, (48)

where

sr (θ ) :=
∂ln(θ )
∂ar

=

n∑
i=1

sr,i(θ )

with

sr,i(θ ) = (αi logβi − ψ0(αi)αi + αi log zi) xir (49)

for r = 1, . . . , p, and ψ0(·) is digamma function (seen in
Equation (20)).

sp+r (θ ) :=
∂ln(θ )
∂br

=

n∑
i=1

sp+r,i(θ )

with

sp+r,i(θ ) = (αi − βizi) yir (50)

for r = 1, . . . , q.
Now observe that sn can be written as a sum of independent

random vectors, namely

sn =
n∑
i=1

sni, (51)

where sni = (s1,i, . . . , sp,i, sp+1,i, . . . , sp+q,i)T with sr,i :=
sr,i(θ0) defined in (49) and (50) for r = 1, 2, . . . , p + q
and i = 1, . . . , n, respectively. Further, define indepen-
dent random variables ξin by ξin := uTF−1/2n sni. Since
E(ξin) = 0 and Var(

∑n
i=1 ξin) = 1, it is enough to show that

the Lyapunov condition is satisfied, i.e.

Ls :=
n∑
i=1

E|ξin|s
n→∞
−−−→ 0, ∃ s > 2. (52)

Let s = 3 (see p. 393, e.g., Hoffmann [26]). Noticing that∥∥∥F−1/2n

∥∥∥2 = 1/λmin(F), it follows from (A1) that

L3 ≤
n∑
i=1

E
(∥∥∥uT

∥∥∥3 ∥∥∥F−1/2n

∥∥∥3 ‖sni‖3)

≤
C
n3/2

n∑
i=1

E ‖sni‖3

≤
C
√
n

max
i=1,...,n

E ‖sni‖3 . (53)
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Using an extension of the cr -inequality given by

E

∣∣∣∣∣
n∑
i=1

ζi

∣∣∣∣∣
k

≤ nk−1
n∑
i=1

E |ζi|k (k > 1, k ∈ R), (54)

to n arbitrary random variables ζ1, . . . , ζn (see p.58, e.g.,
Petrov [27]) yields that

E ‖sni‖3 ≤ (p+ q)2
(
E|s1,i|3 + E|s2,i|3 + . . .+ E|sp+q,i|3

)
≤ C

(
E|s1,i|3 + E|s2,i|3 + . . .+ E|sp+q,i|3

)
.

(55)

Thus, it remains to establish that maxi=1,...,n E|sp,i| is uni-
formly bounded in n for r = 1, . . . , p+q. This will be shown
for case r = 1, . . . , p and r = p+1, . . . , p+q. The remaining
cases can be treated similarly. Without loss of generality, set
r = p and r = p + q respectively. Using Lemma 2 and
formula (54), we have

max
i=1,...,n

E|sp,i|3

= max
i=1,...,n

E
∣∣xip (αi logβi − ψ0(αi)αi + αi logZi)

∣∣3
= max

i=1,...,n
E
(
|xip|3

∣∣αi logβi − ψ0(αi)αi + αi logZi
∣∣3)

≤ C max
x∈Kx ,y∈Ky

‖x‖3
[
E
∣∣∣exp(xTa)yTb

∣∣∣3
+ E

∣∣∣ψ0(exp(xTa)) exp(xTa)
∣∣∣3

+ E
∣∣∣exp(xTa) logZi

∣∣∣3]
≤ C1(θ0)+ C2(θ0) max

x∈Kx ,y∈Ky
E |logZi|3

≤ C1(θ0)+ C2(θ0) max
x∈Kx ,y∈Ky

√
E(log6 Zi)

≤ C3(θ0), (56)

where Zi ∼ Ga(αi, βi) for i = 1, . . . , n and Z ∼

Ga(exp(xTa), exp(yTb)), and

max
i=1,...,n

E|sp+q,i|3

= max
i=1,...,n

E
(
yiq(αi − βiZi)

)
≤ max

i=1,...,n
E
(
|yiq|3 · |αi − βiZi|3

)
≤ max

x∈Kx ,y∈Ky
‖y‖3 E| exp(xT

i a)− exp(yT
i b)Zi|

3

≤ C max
x∈Kx ,y∈Ky

‖y‖3
(
E| exp(xT

i a)|
3
+ E| exp(yT

i b)Zi|
3
)

≤ C1(θ0)+ C2(θ0) max
x∈Kx ,y∈Ky

EY 3
i

≤ C3(θ0). (57)

We can get

L3
n→∞
−−−→ 0, (58)

then

F−T/2
n sn

D
−→ NP(0, Ip+q) (59)

�
Lemma 5: Under the assumptions (A1)-(A3)

max
θ∈Nn(ε)

∥∥Vn(θ )− Ip+q
∥∥ P
−→ 0, ∀ ε > 0, (60)

where Vn(θ ) := F−1/2n Hn(θ )F
−T/2
n for n = 1, 2, . . .

Proof Lemma 5: We have a.s.∥∥Vn(θ )− Ip+q
∥∥ = ∥∥∥F−1/2n (Hn(θ )− Fn)F−T/2

n

∥∥∥
≤

1
λmin(Fn)

‖Hn(θ )− Fn‖

≤
C
n
‖Hn(θ )− Fn‖ (61)

Thus, conditions

max
θ∈Nn(ε)

∥∥∥∥1n (Hn(θ )− EHn(θ ))

∥∥∥∥ p
−→ 0 (62)

and

max
θ∈Nn(ε)

∥∥∥∥1n (EHn(θ )− Fn)
∥∥∥∥ p
−→ 0 (63)

imply (60).
To prove (62), it is sufficient to establish that the (j, k)-

element of the random matrix (Hn(θ )− EHn(θ )) /n con-
verges to zero in probability, i.e.

max
θ∈Nn(ε)

∣∣∣∣hj,k (θ )− Ehj,k (θ )n

∣∣∣∣ p
−→ 0 (64)

There are three different types of entries (14), (15) and (16)
in the Hessian matrix. We will show the convergence of
formula (64) in the cases of 1 ≤ j, k ≤ p. It is similar to treat
the remaining cases. In order to avoid generality, let j = p
and k = p, then

max
θ∈Nn(ε)

1
n

∣∣hp,p(θ )− Ehp,p(θ )∣∣ p
−→ 0. (65)

We have the following bounds:

max
θ∈Nn(ε)

1
n

∣∣hp,p(θ )− Ehp,p(θ )∣∣
= max
θ∈Nn(ε)

1
n

∣∣∣∣∣
n∑
i=1

xipxipex
T
i a(log(Zi)− E log(Zi))

∣∣∣∣∣
≤ max
θ∈Nn(ε)

max
x∈Kx ,y∈Ky

C
n∑
i=1

∣∣∣∣ log(Zi)− E log(Zi)
n

∣∣∣∣
= max
θ∈Nn(ε)

max
x∈Kx ,y∈Ky

CGn (66)

From the law of large numbers and standard arguments,
we can get Gn → 0 in probability as n → ∞. It remains to
show

max
θ∈Nn(ε)

∣∣∣∣1n (fp,p(θ )− fp,p(θ0))
∣∣∣∣

14392 VOLUME 10, 2022



B. Wang et al.: Consistency and Asymptotic Normality of Maximum Likelihood Estimator in GaGLM

TABLE 1. Average estimate, standard deviation, estimated MSE, MAE and p-value of â0, â1, â2, b̂1 and b̂2 for a GaGLM model on the basis of
100 replications.

= max
θ∈Nn(ε)

∣∣∣∣∣1n
n∑
i=1

xipxip
(
e2x

T
i aψ1(ex

T
i a)

−e2x
T
i a0ψ1(ex

T
i a0 )

)∣∣∣
≤ max
θ∈Nn(ε)

1
n

n∑
i=1

∣∣xipxip∣∣ · ∣∣∣e2xT
i aψ1(ex

T
i a)

−e2x
T
i a0ψ1(ex

T
i a0 )

∣∣∣
≤
C
n

n∑
i=1

∣∣xipxip∣∣ max
θ∈Nn(ε)

max
x∈Kx ,y∈Ky

∣∣∣e2xTaψ1(ex
Ta)

−e2x
Ta0ψ1(ex

Ta0 )
∣∣∣

≤ C1 max
θ∈Nn(ε)

max
x∈Kx ,y∈Ky

∣∣∣e2xTaψ1(ex
Ta)

−e2x
Ta0ψ1(ex

Ta0 )
∣∣∣

=: CG2n (67)

The continuity in θ of the function
maxx∈Kx ,y∈Ky

∣∣∣e2xTaψ1(ex
Ta)− e2x

Ta0ψ1(ex
Ta0 )

∣∣∣ with value
zero at θ = θ0 yields that G2n converges to 0 in probability
as n→∞.

�

Theorem 2: Under the assumptions (A1)-(A3), the asymp-
totic normality of θ̂ can be obtained as the following

FT/2
n · (̂θ − θ0)

D
−→ NP(0, Ip+q) (68)

Proof Theorem 2: With the mean value theorem, we have

sn (̂θ − θ0) = Fn(θ0 + τ (̂θ − θ0)) · (̂θ − θ0) (69)

for 0 < τ < 1 and sn (̂θ ) = 0. By pre-multiplying FT/2
n and

integrating with respect to τ on [0, 1], we have

F−1/2n sn =
[∫ 1

0
Vn(θ0 + τ (̂θ − θ0))dτ

]
· FT/2

n (̂θ − θ0)

(70)

Meanwhile, Lemma 5 implies that∫ 1

0
Vn(θ0 + τ (̂θ − θ0))dτ

p
−→ Ip+q (71)

By using Lemma 4 and the continuous mapping theo-
rem [28], the asymptotic normality of θ̂ can be proved.

�

V. SIMULATION STUDY
In this section, we will provide some simulation experiments
to illustrate our asymptotic theory and stability results.
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FIGURE 1. Normal QQ-plots of centered and normalized ML estimators for a GaGLM model based on 100 replications.

A. FISHER’s SCORING METHOD
The FS method is an efficient iterative algorithm for attempt-
ing to find the roots of a function sn(θ ) by choosing a starting
value θ̂ (0). The method for the score function is finding an
iterative solution to the likelihood equations. As themodifica-
tion of theNRmethod, the FS algorithm is an iterativemethod
for finding the roots of a differentiable function that generates
a sequence of estimates which usually come increasingly
close to the optimal solution. The iteration is

θ̂ (j+1) = θ̂ (j) + F−1n (̂θ (j))sn (̂θ (j)), (72)

which is the jth iteration of the FS algorithm based on the
observed Fisher information (OFI) matrix for estimating the
parameters in the GaGLM.

B. RESULTS FOR ASYMPTOTIC THEORY
The numerical simulation based on Theorem 2was conducted
for the verification of the asymptotic properties of MLE
of GaGLM. To this end, the coefficients of GaGLM were
estimated from various data sets independently generated by
the same system. Then, the distributions of the estimated
coefficients were compared with the normal distributions.
Such experiments were repeated for different numbers of
measurements n sized as {50, 100, 200, 500, 1000, 2000}.
In this way, the relation between the convergence and n can
be investigated.

A simple model with intercept and covariate 1, x1, x2,
y1 and y2 were considered for the linear predictors ηi(θ )

′s,
i.e., ηαi(θ ) = a0 + a1xi1 + a2xi2 and ηβi(θ ) = b1yi1 + b2yi2
for i = 1, . . . , n. The values of the covariate x1, x2, y1 and
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FIGURE 2. Box plots of estimated coefficients θ̂ .

y2 were chosen equally spaced between −1 and 1. Further,
for distinguishing the effects of different size parameters on
the results, we examined set a0 = −1, a1 = 1, a2 = 3,
b1 = 1 and b2 = 3. Since we are also interested in
the case when GaGLM does not satisfactorily fit the count
regression data. For each combination of sample size n,
setting, we simulated 100 samples of responses Zi’s, i.e.,
Zi ∼ Ga(exp(a0 + a1xi1 + a2xi2), exp(b1yi1 + b2yi2)) for
i = 1, . . . , n.
Henze-Zirkler test [29]was used for normality test of â0,

â1, â2, b̂1 and b̂2 respectively, in which p-value larger
than 0.05 indicates the data fitting well to normal distribu-
tions. We computed the average estimate, the estimated mean
squared error (MSE) and the mean absolute error (MAE) to
indicate the convergence status with the increase of sample
numbers in 100 replications for each considered case, shown
in Table 1. Simulation results reveal that the average estimate
of each parameter close to the true value roughly as the
sample size n increases. With n increase, the truncation error
in the iterative process affects the estimation accuracy. The
MSE and MAE decrease strictly as the number of samples
increasing, demonstrate similar patterns.

We also test the normality of each parameter with esti-
mating result by 100 replications. Due to the same range of
randomly generated samples, when the number of samples
is limited, i.e. n = 50, 100 and 200, the estimation of the
smaller parameters will be affected by the bigger parameters.
As the number of samples increases, when the number of
samples reaches n = 2000, the estimated value tends to be
stable and presents a normal distribution.

A normal quantile-quantile (QQ) plots for the empiri-
cal distribution of multi-normal components are illustrated

in figure 1. When the sample size is n = 50 and 100, there
are more outliers in the multivariate normal QQ plots. When
the sample size increases to n = 200 and 500, the QQ plots
tend to be stable, when n = 1000 and 2000, the QQ plots are
normally distributed.

Figure 2 illustrates the convergence of parameters estima-
tion by different size of samples. With the increase of sam-
ples, the mean value of each estimated parameter gradually
approaches the real value, and the fluctuation range grad-
ually decreases, that is, the variance decreases. Therefore,
it indicates that the parameter estimation value converges
to the actual value, and the maximum likelihood estimate is
consistent. Among them, it can be seen from the figure that
due to the difference in parameter size, the bigger parameter is
easier to converge to the real value, which has the significance
of estimation.

VI. CONCLUSION
GaGLM is a kind of generalized regression model for inves-
tigating positive real data. This research obtained several the-
oretical results of MLE for GaGLM. The score function and
Fisher information matrix were derived. Then, the Lyapunov
conditions were obtained to ensure the asymptotic normality
of the score function normalized by the Fisher information
matrix. Consequently, the asymptotic normality of MLE for
GaGLM was proved.

In the derivation process, we also discussed the range
of the logarithmic k-order expectation E(logk Z ) when
Z obey theGamma distribution. Andwe proved the inequality
holds on the trigamma function ψ1 that αψ1(α) > 1 where
α > 0. Moreover, the simulation study illustrates that the
normal approximation is satisfactory for moderate and large
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sample sizes. Finally, with the established asymptotic theory,
we can further benefit interval estimates [30], hypothesis
tests [31]and stochastic control design [32]in a theoretical
basis.
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