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ABSTRACT In this work, a non-binary low density parity check (LDPC) coded high dimensional multiple
input multiple output (MIMO) scheme with partial mapping for high order modulation is proposed. For
the proposed scheme, when M -ary quadrature amplitude modulation (QAM) is employed, then non-binary
LDPC code constructed over Galois field with order

√
M is used for partial mapping, where

√
M is an integer.

At the receiver side, a real-valued expectation propagation (REP) based detection algorithm is used to couple
with the non-binary decoder seamlessly. Meanwhile, the symbol-wise a-priori information returned by the
non-binary decoder is used to aid the REP detection. Furthermore, a symbol-wise extrinsic information
transfer (SEXIT) chart based iterative optimization algorithm is used to optimize the concatenated non-
binary LDPC code. This work proposed to model the a-priori information of non-zero codes/symbols
of detector/decoder as the output of a cyclic-symmetric additive white Gaussian noise (AWGN) channel
and a simplified method based on interpolation is proposed to calculate the component-EXIT chart of the
REP-detector for massive MIMO. The proposed method can facilitate the optimization and avoid a large
amount of simulations. Both SEXIT chart based analysis and numerical simulation results demonstrate the
validity of the above idea.

INDEX TERMS Massive MIMO, partial mapping, non-binary LDPC, real-valued expectation propagation,
iterative optimization.

I. INTRODUCTION
In fifth generation (5G) and beyond mobile communication
systems, massive multiple-input multiple-output (MIMO)
and high order modulation are considered as two necessary
technologies to improve the system throughput and spec-
tral efficiency in enhance mobile broadband (eMBB) sce-
nario [1], [2]. The key issue in the design of open loopMIMO
system is to develop a low complexity and high performance
detection algorithm especially for high dimensional MIMO
and/or high order modulation [3].

Non-binary low density parity check (NB-LDPC) codes
show great advantages over their binary counterparts due

The associate editor coordinating the review of this manuscript and
approving it for publication was Li Zhang.

to their better performance under non-binary channel and
easier to decouple with high order modulation. In [4], 256-ary
LDPC over Galois field (GF(256)-LDPC) is employed in
MIMO system with two antennas and 16-ary quadrature
amplitude modulation (16QAM). It achieves near capacity
performance with joint detection algorithm but the computa-
tional complexity of both detector and decoder are extremely
high. As a result, this scheme is impractical for more than
four antennas since the Galois field (GF) becomes very large.
In [5], standard belief propagation (SBP) based detection
algorithm under factor graph framework is proposed and
exhibits near optimal performance for MIMO system with up
to eight antennas and binary phase shift keying (BPSK) mod-
ulation. However, it is also impractical for massive MIMO
system since it is essentially a high complexity chip-wise
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maximum a-posteriori (MAP) detection. In [6], Gaussian
approximation-based message passing (GAMP) algorithm is
proposed as a simplified version of SBP. By approximating
the exchanged message with Gaussian distribution, the infor-
mation updating of GAMP is operatedwith linear complexity.
Moreover, in [7] and [8] non-binary LDPC code is combined
with the GAMP algorithm to enhance the front-end detector
in iterative detection and decoding (IDD) manner. But there
is still room for improvement in terms of performance and
complexity.

In [9], expectation propagation (EP) algorithm is pro-
posed to further reduce the computational complexity of
the MIMO variable node (VN) decoder and exhibits great
advantage over classical minimum mean square error with
successive interference cancelation (MMSE-SIC) detection
algorithm [10] and Gaussian tree approximation with suc-
cessive interference cancelation (GTA-SIC) algorithm [11].
Furthermore, some modified EP algorithms are applied to
massive MIMO systems and achieve either performance
gain or complexity reduction [12]–[17]. The state-of-the-
art scheme in [18] employs non-uniform priors distributed
according to the channel decoder output to improve the
EP-based iterative receiver for high order modulation sys-
tem. However, only a regular-(3,6) LDPC code over GF(2)
is used.

In this paper, we proposed a low-order non-binary LDPC
coded massive MIMO scheme with partial mapping for
high order modulation. At the receiver side, a real-valued
EP (REP) based IDD scheme is employed to couple with
non-binary LDPC decoder seamlessly [19]. The difference
between our scheme and that in [4] lies in that the later aims
to obtain capacity approaching performance at the cost of
higher complexity, while the former to achieve a trade-off
between complexity and performance. Compared with [7],
[8] and [18], we employ the REP-based detection algo-
rithm instead of GAMP/EP at the receiver side. Furthermore,
symbol-wise extrinsic information transfer (SEXIT) chart
based iterative optimization algorithm is used to optimize
the concatenated non-binary LDPC code. In our previ-
ous work [19], it is proposed to model the a-priori log-
likelihood-ratio (LLR) information of non-zero code-symbol
as the output of a cyclic-symmetric additive white Gaussian
noise (AWGN) channel and a simplified method based on
interpolation is proposed to calculate the component-EXIT
chart of the REP-detector for massive MIMO. This full
paper gives a full exposition of the method to model the
a-priori LLRs of non-zero codes/symbols. In addition, the bit
error ratio (BER) performance comparison between EP-IDD
and proposed REP-IDD is also considered. Furthermore, the
detailed method to carry out the iterative optimization algo-
rithm omitted in [19] is also given. For notation clarity, let
In denotes a n × n identity matrix. Let NR(xi;m, σ 2) ,

1
√
2πσ

exp
(
− 0.5(xi − m)2/σ 2

)
denote a Gaussian probabil-

ity density function (PDF), which implies that xi is a real-
valued Gaussian random variable with mean-value m and
variance σ 2.

The paper is organized as follows. Section II is
about the real-valued system model. Section III intro-
duces the REP-based detection algorithm and the PDF evolu-
tion of the output LLRs of REP-detector’s VNs. Section IV is
about the system optimization with SEXIT and the proposed
method to calculate the component EXIT. Section V is the
simulation results. We conclude in Section VI.

FIGURE 1. System model of non-binary LDPC coded MIMO spatial
multiplexing with partial mapping.

II. SYSTEM MODEL
A. SYMBOL-INTERLEAVED CODED MODULATION WITH
PARTIAL MAPPING FOR SPATIAL MULTIPLEXING MIMO
Consider a non-binary LDPC coded massive MIMO system
with Nt transmit antennas and with Nr receive antennas.
Orthogonal frequency division multiplexing (OFDM) is used
for data transmission. It is assumed that the transmitter
and the receiver are perfectly synchronized and all channel
coefficients are perfectly known at the receiver side but not
known at the transmitter. As shown in Fig. 1, input binary
information bits are converted to q-ary information sequence
u = [u1, u2, . . . , uKs ], ui ∈ GF(q) each representing p =
log 2q input bits. The output code word of rate R = Ks/Ns
GF(q)-LDPC encoder is denoted as v′ = [v′1, v

′

2, . . . , v
′
Ns ],

where v′i ∈ GF(q). After interleaved, the output sequence
is expressed as v = [v1, v2, . . . , vNs ]. Define a real-valued
symbol set, i.e., q-ary pulse amplitude modulation (q-PAM)
A = {x|x = ±|2l − 1|1, 1 ≤ l ≤ q

2 ,1 =
√

3
2(q2−1)

}. X is
defined as the mapping from GF(q) toA, i.e., X : GF(q)→
A. M -ary square QAM constellation � is employed, � =
{xl |xl = xI + jxQ}, where xI ∈ A and xQ ∈ A denote
the in-phase component and quadrature respectively. In this
work, partial mapping 2 that maps two GF(q)-LDPC code
symbols onto a QAM constellation point is employed [21].
This is expressed as 2 :

(
GF(q),GF(q)

)
→ (xI , xQ). The

layer mapping andOFDM following partial mapping are used
as convention although not shown in Fig. 1. The frequency
domain symbol at the k-th transmit antenna is denoted as xk ,
where xk ∈ �, and � is the QAM constellation. Let xc ∈
�Nt×1 denote the transmitted symbol vector over all transmit
antennas. At the receiver side, the corresponding received
baseband signal vector yc ∈ C

Nr×1 is

yc = Hcxc + nc, (1)
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where Hc ∈ C
Nr×Nt denotes the complex-valued channel

coefficient matrix, whose elements are obtained from an inde-
pendent identically distributed (i.i.d) complex Gaussian dis-
tribution with zero mean and unit variance, nc ∈ CNr×1 is the
noise vector whose entries are modeled as i.i.dCN (0,N0INr ),
and Es = E[‖xc‖2] is the average energy of transmitted
symbol-vector. The average bit signal-to-noise-ratio Eb/N0
is expressed as follows,(

Eb
N0

)
dB
=

(
Es
N0

)
dB
+ 10log10

(
Nr

NtRcm

)
, (2)

where Rc denotes the channel coding rate and m = log2M
denotes the number of bits corresponding to each constella-
tion point. N0 = 2σ 2

n is the single side power spectral density
of noise.

B. REAL-VALUED EXPRESSION FOR MASSIVE MIMO
SYSTEM
To perform the real-valued expectation propagation based
detection, the complex-valued model (1) should be converted
into a real-valued expression as follows,

y = Hx+ n, (3)

where H ∈ R2Nr×2Nt , y ∈ R2Nr×1, x ∈ A2Nt×1, n ∈
R2Nr×1 and n ∼ N (0, σ 2

n I2Nr ). Equivalently, we have y =[
Re(yc)
Im(yc)

]
, H =

[
Re(Hc) −Im(Hc)
Im(Hc) Re(Hc)

]
, x =

[
Re(xc)
Im(xc)

]
, and

n =
[
Re(nc)
Im(nc)

]
.

C. REP-IDD STRUCTURED RECEIVER
At the receiver side, as shown in Fig. 1, the REP-basedMIMO
detector computes the a-posteriori probability information
with respect to the transmitted code-word v based on the
channel receive vector y and channel matrix H . After inter-
leaved, this information is used for non-binary LDPC decod-
ing. In contrast to [18], non-binary LDPC instead of binary
code is used to couple with the REP-detector seamlessly.
The output extrinsic LLR information of non-binary LDPC
decoder is delivered to the REP-detector as a-priori infor-
mation to further improve its performance, which is referred
to as REP-IDD. REP-IDD structured receiver contains three
types of iterations. The first one is the iteration within the
REP-detector, denoted as inner-iteration (or REP-iteration),
the second one is the iteration within the non-binary LDPC
decoder, denoted as LDPC-iteration, and the third one is
the iteration between REP-detector and non-binary LDPC
decoder, denoted as outer-iteration. In order to analyze and
optimize the IDD system, the a-priori LLR of REP-detector
or non-binary LDPC decoder is modeled as a multivari-
ate Gaussian distribution, which is the output of a cyclic-
symmetric AWGN channel, where the mean-value vector
and variance matrix of that multivariate Gaussian distribution
evolved as the iteration proceed.

III. PROPOSED REAL-VALUED EXPECTATION
PROPAGATION BASED DETECTION
For the real-valued system model in (3), the a-posteriori
probability of the transmitted signal vector is expressed as

p(x|y,H) =
p(y|x,H)pa(x)

p(y)

∝ NR(y;Hx,Rn)
2Nt∏
i=1

pa(xi), (4)

whereRn = σ
2
n INr . For non-IDD system, a-priori pa(xi) con-

forms to non-informative uniform distribution [20]. For IDD
system in this work, a-priori pa(xi) can improve the detec-
tion performance when the system works above an critical
signal-to-noise-ratio (SNR), which is called threshold SNR.
The discrete a-priori returned by the LDPC decoder can be
expressed as p(`)a (xi) =

∑
θ∈A piδ(xi − θ ), where superscript

` denotes the `-th outer iteration and
∑

i pi = 1. How-
ever, the computation of marginal p(xi|y,H) of (4) directly
is impractical when Nt and/or the size of A is large since
it is needed to sum over all possible values of all variables
except xi. EP and the proposed REP algorithm in this work,
are aim at finding a feasible Gaussian approximation q(x)
to the a-posteriori distribution (4) by replacing each non-
Gaussian distributed pa(xi) with a continuous Gaussian dis-
tribution t (`)i (xi) ∼ NR

(
xi;m

(`)
i , v

(`)
i

)
, where parameters m(`)

i

and v(`)i are updated iteratively within the EP inner iteration.
As a result, the multivariate Gaussian distribution q(x) is
expressed as,

q(x) = NR(x;µq,6q)

∝ NR(y;Hx,Rn)
2Nt∏
i=1

t (`)i (xi)

∝ NR
(
x; (HTR−1n H)

−1
HTR−1n y, (HTR−1n H)

−1
)

· exp(xTm−
1
2
xTVx)

∝ NR

(
x;
(
HTR−1n H

)−1
HTR−1n y,

(
HTR−1n H

)−1)
·NR

(
x,V−1m,V−1

)
, (5)

where V = diag(1/v1, 1/v2, . . . , 1/v2Nt ) and m =

[m1/v1,m2/v2, . . . ,m2Nt /v2Nt ]
T . As a result, the mean value

vector µq and covariance matrix 6q are given by,

6q = (HTR−1n H+ V)−1, (6)

and

µq = 6q(HTR−1n y+m). (7)

EP algorithm tries to find the closest multivariate Gaussian
distribution q(x) to the a-posteriori distribution p(x|H, y)
where the closest is in terms of the Kullback-Leibler
divergence,

q(x) = argmin
q(x)

D
(
p(x|H, y)||q(x)

)
. (8)
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Let qi(xi) denote themarginal distribution of q(x), then q(x) =∏2Nt
i=1 qi(xi). The optimization solution of (8) is obtained by

matching the first and second moments of p(x|H, y) and q(x)
respectively. It is performed as

E

(
qi(xi)

t (`)i (xi)
p(`)a (xi)

)
= E

(
qi(xi)

t (`)i (xi)
t (`+1)i (xi)

)
, (9)

Var

(
qi(xi)

t (`)i (xi)
p(`)a (xi)

)
= Var

(
qi(xi)

t (`)i (xi)
t (`+1)i (xi)

)
. (10)

EP algorithm is used to find the best factors ti(xi) of q(x) in (5)
one by one and to refine them through successive iterations.
The IDD structured receiver with EP as front-end detector,
i.e., EP-IDD, is summarized as follows.

Initialization: y, H, Rn = σ 2
n I2Nt , m

(0)
i = 0, v(0)i = 0.5,

for 1 ≤ i ≤ 2Nt .
Step 1: Compute 6(`)

q and µ(`)
q according to (6) and (7).

Eqi(xi) (xi) = (µ(`)
q )i = µi and Varqi(xi) (xi) = (6(`)

q )i,i = 6i.
Step 2: Update t (`)i (xi) for i = 1, 2, . . . , 2Nt one by one as

follows,
(1) Compute the first and second moments of the cav-

ity distribution q∼i(xi) =
qi(xi)
t (`)i (xi)

. Let me = Eq∼i (xi) and

γe = Varq∼i (xi), then γe =
(
1/6i − 1/v(`)i

)−1
, me =

γe

(
µi/6i − m

(`)
i /v

(`)
i

)
.

(2) Compute the mean value µnew(xi) and variance
σ 2,new(xi) of xi with distribution q∼i(xi)p

(`)
a (xi).

(3) Compute the mean value m(`+1)
i and variance v(`+1)i of

t (`+1)i (xi) according to (9) and (10), as follows

v(`+1)i =

(
1

σ 2,new(xi)
−

1
γe

)−1
,

m(`+1)
i = v(`+1)i

(
µnew(xi)
σ 2,new(xi)

−
me
γe

)
.

Step 3: Compute the extrinsic information qe(xi) from
EP-detector to non-binary LDPC decoder. Indeed, qe(xi) =
q∼i(xi), the output extrinsic information of xi with Gaussian
distribution with mean me and variance γe.
Step 4: With qe(xi) as a-priori, non-binary decoder

computes extrinsic information, which is delivered to the
EP-detector as a-priori information p(`+1)a (xi) for the next
round out-iteration.

step 5: Repeat Step 1 to Step 4 for a certain number of
iterations.

As can be seen from Step 1 of the Algorithm above,
to obtain the initial marginal distribution of all xi, it is nec-
essary to perform matrix inverse operations as in (6) and (7).
However, for massive MIMO system, this is unexpected
due to complexity consideration. To overcome this problem,
expectation propagation algorithm based on graphical model,
referred to as REP-IDD, can be used instead of the above
EP-IDD version.

A. PROPOSED REAL-VALUED EP ALGORITHM BASED ON
FACTOR GRAPH
The REP-based detector, as shown in Fig. 2, has 2Nr function
nodes (FNs) corresponding to the received component-wise
real-valued signals, and 2Nt variable nodes (VNs) corre-
sponding to the transmitted component-wise modulation
symbols. The edge between yj and xi, 1 ≤ i ≤ 2Nt , 1 ≤
j ≤ 2Nr , indicates that the j-th FN receives all the transmitted
signals of all users due to MIMO system is full connected
factor graph. The reliability information exchanged between
VN xi and FN yj are modeled as continuous Gaussian distri-
butions, denoted as pyj→xi (xi) ∼ NR(xi;myj→xi , σ

2
yj→xi ) and

pxi→yj (xi) ∼ NR(xi;mxi→yj , σ
2
xi→yj ), respectively.

FIGURE 2. Factor graph of REP-detector, (a) VN messsage updating, (b) FN
message updating.

The REP-IDD algorithm is summarized as follows.
Step 1: Message passing from VNs to FNs
(1) Calculate the a-posteriori probability of all VN xi

for 1 ≤ i ≤ 2Nt , denoted as β̃xi , this is carried out as the
following procedures.
• Compute the product of 2Nr input Gaussian distributed
message of VN xi, denoted as γxi ∼ NR(xi;mγ , σ 2

γ ),
as shown in Fig. 2(a). According to the product rule of
Gaussian distributions [22], we have

σ 2
γ =

 ∑
j′∈N (i)

1
σ 2
yj′→xi

−1, (11)

mγ = σ 2
γ

∑
j′∈N (i)

myj′→xi

σ 2
yj′→xi

, (12)
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where N (i) denotes the set of FNs neighboring
to VN xi.

• Calculate the a-posteriori probability of VN xi for all i.

p̂(xi) =
1
η
pei→xi (xi)NR

(
xi;mγ , σ 2

γ

)
, (13)

where η =
∑

xi∈A pei→xi (xi)NR
(
xi;mγ , σ 2

γ

)
is a nor-

malization factor such that
∑

xi∈A p̂(xi) = 1.
• Approximate the a-posteriori probability p̂xi by a
continuous Gaussian distribution, denoted as β̃xi ∼
NR
(
xi;mβ , σ 2

β

)
. We resort to the moment matching as

in [23], we have

mβ =
∑
xi∈A

xip̂(xi), (14)

σ 2
β =

∑
xi∈A

x2i p̂(xi)− m
2
β . (15)

(2) Calculate the extrinsic information from VN to FN.
According to expectation propagation principle, the extrinsic
information in terms of probability from VN xi to FN yj,

denoted as pxi→yj (xi) ∼ NR
(
xi;mxi→yj , σ

2
xi→yj

)
, is expressed

as

pxi→yj
(xi) ∝

β̃
(n)
xi (xi)

pyj→xi (xi)
. (16)

And we have

σ 2
xi→yj =

(
1

σ 2
β

−
1

σ 2
yj→xi

)−1
, (17)

mxi→yj = σ
2
xi→yj

(
mβ
σ 2
β

−
myj→xi

σ 2
yj→xi

)
. (18)

Step 2: Message passing from FNs to VNs
Similarly, as shown in Fig. 2(b), the extrinsic informa-

tion in terms of probability from FN yj to VN xi can
also be approximated as Gaussian distribution, denoted as
pyj→xi (xi) ∼ NR

(
xi;myj→xi , σ

2
yj→xi

)
. According to (3),

we have

myj→xi = (yj −
∑

i′∈N (j)\i

hji′mxi′→yj )/hj,i, (19)

σ 2
yj→xi = (

∑
i′∈N (j)\i

h2j,i′σ
2
xi′→yj + σ

2
n )/h

2
j,i, (20)

where N (j)\i denotes the set of VNs neighboring to FN yj
with xi excluded.

Step 3: Calculate the extrinsic information from
REP-detector to non-binary LDPC decoder

For α ∈ GF(q) and xi ∈ A, the extrinsic probability
information is calculated as

L
(
xi = X (α)

)
= ln

p(xi = X (α)
)

p(xi = X (0)
)

= −

(
X (α)− mγ

)2
2σ 2
γ

+

(
X (0)− mγ

)2
2σ 2
γ

(21)

Step 1 and Step 2 are performed for a prefixed number
of iterations, referred to as inner iteration, and then jump to
Step 3. For non-binary LDPC coded system, the exponential
operation in (21) can be avoided since we need to convert
the probability information to LLR information delivered to
LDPC decoder as a-priori information. The rest of REP-IDD
is the same as the aforementioned EP-IDD.

FIGURE 3. The PDF evolution of the output LLRs of the VND as the
number of REP-iteration increases.

B. THE PROBABILITY DENSITY FUNCTION OF THE
OUTPUT LLR-VECTOR RANDOM VARIABLE OF
REP DETECTOR
For discrete random variable xi ∈ A defined in
Section II-A and α ∈ GF(q) = {0, 1, . . . , q− 1}, X is bijec-
tive mapping fromGF(q) toA. The LLR value of xi is defined

as L
(
xi = X (α)

)
= ln

p
(
xi=X (α)

)
p
(
xi=X (0)

) as in (21). Then the corre-

sponding LLR-vector random variable can be expressed as
Lxi =

[
L
(
xi = X (1)

)
,L
(
xi = X (2)

)
, . . . ,L

(
xi = X (q−1)

)]
since L

(
xi = X (0)

)
= 0 by definition. For example, assume

that 16QAM and GF(4)-LDPC are employed, Nt = Nr = 4,
we set the first of theNt layer-data to all-zero codeword, while
the remaining Nt − 1 layers with random selected codeword
over GF(4). The output 3-dimensional LLR-vector random
variable of VN xi is denoted as Lxi =

[
L
(
xi = X (1)

)
,L
(
xi =

X (2)
)
,L
(
xi = X (3)

)]
. Let fd (Lxi ) denote the PDF of the

d-th dimension of Lxi , 1 ≤ d ≤ 3. Fig. 3 shows that
the first dimensional PDF f1(Lxi ) is approximately Gaussian
distribution as the number of inner iterations increases under
REP-based detector. The second and third dimensional PDFs
have the similar shape as f1(Lxi ), so we omit it. Meanwhile,
it implies that 5 iterations are sufficient for the REP-detector
to converge for 4× 4 MIMO system.

IV. SEXIT CHART BASED ANALYSIS AND OPTIMIZATION
Extrinsic information transfer chart (EXIT) tool has attracted
great attention in the design of LDPC codes in wireless
systems [25]–[28]. In this section, symbol-wise extrinsic
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information transfer (SEXIT) chart [24], [29]–[32] is
employed to optimized the concatenated non-binary LDPC
code to further improve the system performance when
IDD-aided receiver is used. Before we proceed to the com-
putation of SEXIT, it is needed to give a description of the
method to model the a-priori information and the method to
evaluation the average mutual information (AMI) [33].

A. MODEL THE a-priori LLR AS q− 1 DIMENSIONAL
GAUSSIAN DISTRIBUTION
Let e denote a q−1 dimensional column vector whose entries
are all 1. As pointed out by [30], [34], if vi = 0 ∈ GF(q), the
a-priori LLR La ∈ Rq−1 of vi is modeled as a q− 1 dimen-
sional Gaussian distribution with only one parameter σ . The
mean value vector mL ∈ R

q−1 and covariance matrix RL ∈

R(q−1)×(q−1) of La are written as

mL = −
σ 2

2
e =


−σ 2/2
−σ 2/2
...

−σ 2/2

 , (22)

and

RL =
σ 2

2
eeT +

σ 2

2
Iq−1 =


σ 2 σ 2/2 · · · σ 2

σ 2/2 σ 2
· · · σ 2/2

... σ 2/2
. . . σ 2/2

σ 2/2 σ 2/2 · · · σ 2

 .
(23)

Therefore, the a-priori LLR La is generated as

La = mL + R
1
2
L z, (24)

where z ∈ Rq−1 is a Gaussian random vector with z ∼
N (0, Iq−1). In this section, the above method is extended
from non-binary code symbol to modulation symbol. Fur-
thermore, since the transmitted codes/symbols are random
selected from GF(q) or q-PAM, not always equal to zero.
We proposed to model the a-priori LLR of vi = α ∈ GF(q)
and xi = X (α) according to Proposition 1 and Proposi-
tion 2 respectively.
Proposition 1: Let La = [l1, l2, . . . , lq−1]T denote the

a-priori LLR of vi = 0 ∈ GF(q). For β ∈ GF(q), lβ =
ln p(vi=β)

p(vi=0)
. If xi = α is transmitted, the corresponding a-priori

LLR L can be expressed as

L = L+αa ,


l1+α − lα
l2+α − lα

...

lq−2+α − lα

 , (25)

where the subscripts of l in (25) are operated in GF(q).
Proof: As shown in Lemma 17 of [30], the output LLR

l = [l1, . . . , lq−1]T of cyclic-symmetric AWGN channel is

permutation-invariant. we have

P(L = l|vi = α) = P(L = l+α|vi = 0). (26)

Furthermore, since in this work the LLR is defined as lβ =
ln p(vi=β)

p(vi=0)
, then

l+α = LLR([LLR−1(l)]+α)

= LLR





el0∑
j

elj

...

elβ∑
j

elj

...

elq−2∑
j

elj



+α


= LLR





el0+α∑
j

elj

...
elβ+α∑
j

elj

...

elq−2+α∑
j

elj





=



l0+α − l0+α
...

lβ+α − l0+α
...

lq−1+α − l0+α

 . (27)

where LLR function denotes the conversion from
LLR-vector to probability-vector and LLR−1 is the inverse
operation. After eliminating the first row of (27), we get (25).
Therefore, we can model the a-priori LLR of vi 6= 0 as the
output of a cyclic-symmetric AWGN channel according to
Proposition 1 since they have the same AMI as vi = 0.
Proposition 2: Let La = [l1, l2, . . . , lq−1]T denote the

a-priori LLR of xi = X (0), when vi = α ∈ GF(q),
the corresponding a-priori LLR of xi = X (vi) can also be
modeled as (25).

Proof: Since the mapping X from GF(q) to A is bijec-
tive, then the mutual information I (La, vi) = I (La, xi) and
I (L, vi) = I (L, xi), where xi = X (vi). So it is reasonable to
model the a-priori LLR of xi as (25).

B. EVALUATE THE SYMBOL-WISE AMI VIA SAMPLING
AVERAGE
It is seems difficult to obtain the symbol-wise AMI between
the transmitted signal and the corresponding output extrinsic
information analytically since a underlying q−1 dimensional
integration is a must [35]. Fortunately, this can be solved
by an approximate method borrowed from [30], [36]. The-
orem 1 in [36] and Theorem 2 in [30] give some explanations
of how to evaluate the AMI for arbitrary transmitted signal
xi ∈ A\X (0).
Theorem 1: For an APP (a-posteriori probability) detector,

let y denote the channel observation, La
\i and L

e
i denote the

input a-prioriwith Lai excluded and output extrinsic LLR of a
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FIGURE 4. Comparison between the AMI I and the rebuilded AMI T.

component detector/decoder respectively. Then the extrinsic
LLR Lei at the output of a component detector/decoder is
a sufficient statistic of the channel observation y and the
a-priori La

\i. It can also be expressed as, for an element g ∈
GF(q) and a random variable xi ∈ A, p

(
xi = X (g)|Lei

)
=

p
(
xi = X (g)|y,La

\i

)
.

Theorem 2: The symbol-wise AMI between transmitted
symbol X ∈ A and its corresponding extrinsic LLR L is

IE (X ,L) =
1
Ns

Ns∑
i=1

I (xi,Lei ) =
1
Ns

Ns∑
i=1

I (vi,Lei )

=
1
qNs

Ns∑
i=1

q−1∑
α=0

∫
Lei

p(Lei |vi = α)logq
p(Lei |vi=α)

p(Lei )
dLei

≈ H (vi)+
1
Ns

Ns∑
i=1

q−1∑
α=0

p
(
vi|y,La\i

)
· logqp

(
vi|y,La\i

)
. (28)

where H (vi) = −
∑q−1
α=0 p (vi = α) logqp (vi = α) denotes

the q-ary entropy function, 0 ≤ H (vi) = H (xi) ≤ 1,
q is the order of the GF. Since X : GF(q) ↔ A, then
I (vi,Lei ) = I (xi,Lei ). With this definition, H (vi) = 1 when vi
takes {0, 1, . . . , q− 1} with equal probabilities. p

(
vi|y,La\i

)

is extrinsic information in probability manner at the output of
the detector or decoder.

The methods described above are checked by numerical
simulations as shown in Fig. 4. For σ ∈ [0 : 0.01 : 7],
Gaussian distributed samples of La is generated according
to (24). Then formula (28) is used to evaluate the AMI.
The obtained AMI I = JM (σ ) is a monotonic increasing
function of σ . As a result, σ = J−1M (I ) is well defined. For
non-zero codes/symbols, we proposed to model the a-priori
LLR of xi 6= X (0) according to (25) and to evaluate the
AMI according to (28). In this method, the obtained AMI is
referred to as rebuilded AMI, denoted as T = 0(I ). Fig. 4
shows the difference between I and T . Furthermore, we found
the gap between T and I is negligible as the length Ns of
codeword increases and Ns > 960 symbols is sufficient for
both GF(4) and GF(8) codes. In the rest of this paper, such as
subsection E, we employ JM function to build the relationship
between parameter σ and the corresponding AMI.

C. JOINT FACTOR GRAPH OF NON-BINARY LDPC CODED
MIMO
As shown in Fig. 5(a), yj and xi denote the FNs and VNs
of the REP-detector respectively, for 1 ≤ i ≤ 2Nt and
1 ≤ j ≤ 2Nr . vi and cj, 1 ≤ i ≤ Ns, 1 ≤ j ≤ Ns(1 − R),
denote the variable node decoders (VNDs) and check node
decoders (CNDs) of the non-binary LDPC decoder. Note that
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FIGURE 5. Factor graph of non-binary LDPC coded MIMO, (a) Joint factor graph (JFG), (b) Two modules of the JFG.

ei, 1 ≤ i ≤ 2Nt , denote equality nodes (ENs) that force all
variable nodes involved to be equal, by which the analysis
will be more convenient. For MIMO system, there are 2Nt
FNs ( 2Nr VNs ) connected to each VN (FN). For non-binary
LDPC code, the definition of degree profile is the same as
its binary counterpart. Let λ = [λ2, λ3, . . . , λDv ] and ρ =
[ρ2, ρ3, . . . , ρDc ] denote the variable node and check node
degree distributions respectively, where Dv and Dc denote
the maximum degree of VND and CND respectively. Then
the degree distribution pair (λ, ρ) gives a description of an
ensemble of non-binary LDPC codes, and the code rate is [37]

Rc = 1−

∑Dc
h=2 ρh/h∑Dv
p=2 λp/p

. (29)

As shown in Fig. 5(b), the joint factor graph of the IDD
receiver is partitioned into two modules. Module I contains
the REP-detector (FNs and VNs), ENs and LDPC’s VNDs
while module II contains LDPC’s CNDs only. Let I (1)E =

f1(I
(1)
A ,Eb/N0) denote the component SEXIT chart of mod-

ule I and I (II)E = f2(I
(II)
A ) denote the component SEXIT of

module II.

D. PROPOSED SIMPLIFIED METHOD TO OBTAIN THE
FUNCTIONAL RELATIONSHIP BETWEEN Is AND Iv FOR
REP-DETECTOR
In order to obtain the component SEXIT I (1)E =

f1(I
(1)
A ,Eb/N0), we must compute the functional relationship

of IS with respect to IV . This key step was carried out
by numerical simulations for each Eb/N0 with interval of
0.1dB within the considered SNR region as in [38]. Take
a closer look at the dashed lines in Fig. 6 (also the Fig. 5

FIGURE 6. Comparison of the proposed method and traditional method
in [38], where the blue dash curves are the traditional method while the
red solid curves denote the proposed one. Both methods under
Nt = Nr = 64 MIMO and 16QAM.

in [38]), we found that those AMI curves are parallel with
each other approximately and increase with Eb/N0. In this
work, we proposed a simplified method to obtain that but
with the lower complexity. For example, for a reasonable
low Eb/N0 = γ1 chosen empirically, the AMI curve of IS
with respect to IV is obtained by numerical simulation, and
denoted as a close-form polynomial function IS = φ1(IV , γ1)
by curve fitting. Similarly, the AMI curve for a sufficient high
Eb/N0 = γN is obtained the same as above, and denoted as
IS = φN (IV , γN ). As a result, the average gap between these
two curves is defined as

1 =
1
L

L∑
i=1

(
φN (IVi , γN )− φ1(IVi , γ1)

)
. (30)
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where L denotes the number of samples of IV , and we choose
L = 100 in our simulation. IVi = i/L denote the discrete
samples of IV for 1 ≤ i ≤ L. Therefore, for 2 ≤ ε ≤ N − 1,
ε is an integer, we have the following functional relationship
of IS with respective to Iv by interpolation, denoted as

IS = φε(IV , γε)

≈ φ1(IV , γ1)+ (ε − 1)1. (31)

Fig. 6 shows the comparison results between the proposed
method (solid lines) and the existing method (dash lines)
in [38] for GF(4)-LDPC coded MIMO system with Nt =
Nr = 64 and 16QAM, where γ1 = 4.5dB, γ33 = 7.7dB
and 1 = 0.0035. It is shown that the proposed simplified
method gives a good approximation of the traditional numer-
ical simulation results, and thus has about the same perfor-
mance. Meanwhile, this method can avoid massive numerical
simulations.

FIGURE 7. An illustration of the passed messages within model I.

E. COMPUTATION OF THE SEXIT OF MODEL I
After the functional relationship between IS and IV is
obtained, the computation of the SEXIT of model I becomes
feasible. The followings give a detailed descriptions of the
computation procedures according to Fig. 7.

(a) Along each edge of LDPC VND vi, the input a-priori
LLR is modeled as a Gaussian distributed vector according
to (25) with σ = J−1M (I (I )A ).
(b) The output LLR of LDPC VND vi with degree p is

modeled as a Gaussian distributed vector with parameter
σ ′ =

√
pσ , and the corresponding mutual information is

I = JM (σ ′).
(c) ei is equality node which implies Iv = I . Therefore,

Iv = JM
(
√
pJ−1M (I (I )A )

)
.

(d) The relationship between IS and IV can be obtained
as (31).

(e) LDPC VND vi with degree p receives p − 1 LLRs
corresponding to I (I )A and extrinsic LLR corresponding to IS
from ei. Therefore, the AMI between the transmitted symbol
xi and the output LLR is expressed as

3p(IA) = 3(IA, p)

= JM
(√

(p− 1)
(
J−1M (IA)

)2
+
(
J−1M (IS )

)2)
= JM (

√
W + T 2). (32)

where

W = (p− 1)
(
J−1M (I (I)A )

)2
, (33)

T = J−1M

(
φ1(IV , γ1)+ (ε − 1)1

)
. (34)

According to the semantics of factor graph as in [39], by aver-
aging the output mutual information of LDPC-VND with
degree distribution λp in edge perspective, the relationship
between I (I)E and I (I)A is written as

I (I)E = f1
(
I (I)A
)
=

∑
p

λp3p(IA). (35)

FIGURE 8. An illustration of the passed message within model II.

F. COMPUTATION OF SEXIT OF MODEL II
In Fig. 8, LDPC CND cj with degree h receives h− 1 inputs
LLR, each of which is modeled as q−1 Gaussian distribution
according to (25) with σ = J−1M (I (II)A ). Then the output
LLRs is obtain by numerical simulation. The conversion from
LLR-vector to probability-vector can be found in [30], [41].
The corresponding AMI is calculated by (28), denoted as

I (II)E

(
I (II)A , h

)
= 9h(I

(II)
A ). (36)

By averaging the output mutual information of LDPC-
CND with degree distribution ρh in edge perspective, the
relationship between I (II)E and I (II)A is written as

I (II)E = f2
(
I (II)A

)
=

∑
h

ρh9h
(
I (II)A

)
. (37)

G. ITERATIVE OPTIMIZATION
The aim of the optimization is to find a near-optimal LDPC
degree profile, denoted as (λ, ρ) pair, conforms to f1(I

(1)
A ) >

f −12 (I (1)A ) for all I (1)A ∈ [0, 1) with the lowest Eb/N0. Maxi-
mize the code rate in (29) is not easy, we resort to an iterative
optimization algorithm similar to [38] to obtain our results.

1) OPTIMIZE THE VARIABLE NODE DEGREE DISTRIBUTION
WITH FIXED CHECK NODE DEGREE DISTRIBUTION
As shown in Fig. 9(a), for a specific Ia ∈ [0, 1), then r =
f1(Ia) and t = f −12 (Ia). To meet the convergence condition,
the SEXIT of model I must be positioned above the SEXIT
of model II, i.e., r > t . As a result, the optimization of the
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variable node degree distribution λ with ρ fixed is converted
to the following linear programming problem,

min −
∑Dv

p=2

(
λp/p

)
s.t. f1

(
I (I )A

)
> f −12

(
I (I )A

)
for I (I )A ∈ [0, 1)

λp ≥ 0 for 2 ≤ p ≤ Dv∑Dv

p=2
λp = 1 (38)

Note that3p(·) in (32) is monotonic increase function and the
check node degree distribution ρ is fixed, then f −12 (I ) is well
defined and calculated [40].

FIGURE 9. Illustration of the convergence constrains by SEXIT,
(a) optimize λ with ρ fixed, (b) optimize ρ with λ fixed.

2) OPTIMIZE THE CHECK NODE DEGREE DISTRIBUTION
WITH FIXED VARIABLE NODE DEGREE DISTRIBUTION
As shown in Fig. 9(b), for I (II)A = Ia ∈ [0, 1), t = f2(Ia) and
r = f −11 (Ia). To meet the convergence condition, the SEXIT
of model I must be positioned on the left of the SEXIT of
model II, i.e., r < t . As a result, the optimization of the check
node degree distribution ρ with λ fixed is converted to the
following linear programming problem,

min
∑Dc

h=2
(ρh/h )

s.t. f2
(
I (II )A

)
> f −11

(
I (II )A

)
for I (II )A ∈ [0, 1]

ρh ≥ 0 for 2 ≤ h ≤ Dc∑Dc

h=2
ρh = 1 (39)

Similarly,9h(·) in (36) are monotonic increase functions and
the variable node degree distribution λ is fixed, then f −11 (I )
is well defined and calculated.

The iterative optimization method in this paper is summa-
rized as Algorithm 1.

V. SIMULATION RESULTS AND DISCUSSION
A. BER SIMULATION RESULTS
According to the simplifiedmethod and iterative optimization
algorithmmentioned above, we obtain code 1 and code 2 over
GF(4) for 16QAM systems respectively, and code 3 over
GF(8) for 64QAM system. The parameters of these three
codes are listed in Table 1. For all codes in this work, the non-
zero elements of their parity check matrices are selected ran-
domly from the corresponding non-zero elements of GF(q).

Algorithm 1: SEXIT Chart Based Iterative Optimization
Algorithm for NB-LDPC Coded MIMO
Input: Target code rate RT , sufficiently low initial code

rate 0 < Rc < RT < 1, sufficient high Eb/N0,
maximum variable node degree Dv, maximum
check node degree Dc, the prefix number of
optimization iterations N_iter = 3;

Output: degree distribution pair (λ, ρ), code rate R;
Initialize λ3 = 1.0, ρj = 1.0, where j = b3/(1− Rc)c;
for n = 1 : Niter
Step 1: With ρ = [ρ2, ρ3, . . . , ρDc ] fixed, optimize

λ = [λ2, λ3, . . . , λDv ] using (38).
Step 2: With λ = [λ2, λ3, . . . , λDv ] fixed, optimize

ρ = [ρ2, ρ3, . . . , ρDc ] using (39).
Step 3: calculate the code rate R, if |R− RT | ≤ 0.05,

jump to step Return, otherwise ε = ε − 1,
Eb/N0 = Eb/N0 − 0.1 and jump to step 1.

end for
Return degree profile pair(λ, ρ), code rate R and
threshold SNR Eb/N0.

For comparison purpose, an irregular GF(2)-LDPC code
with the same degree distribution as World Interoperability
for Microwave Access (WiMax) LPDC code, i.e., λ(x) =
0.2895x + 0.3158x2 + 0.3947x5 and ρ(x) = 0.6316x5 +
0.3684x6, is constructed with code-length Nb = 19200 bits
and code-rate 0.5.

TABLE 1. Three degree distribution pairs of non-binary LDPC codes.

In Fig. 10, the BER simulation results of GF(4)-LDPC
coded MIMO with Nr = Nt = 4 and 16QAM are shown.
With fixed number of inner iterations, i.e., Inner = 5,
when the number of out iterations increase, i.e., from Out =
5 to Out = 10, the BER performance of both EP-IDD
and REP-IDD are improved. There is about 0.2dB perfor-
mance gap between the REP-IDD and standard EP-IDD at
low Eb/N0. While this performance gap vanishes at high
Eb/N0. In this perspective, the proposed REP-IDD has neg-
ligible performance loss over standard EP-IDD. In addition,
the proposed REP-IDD outperforms the state-of-art CLSIC-
LMMSE in [41] about 2dB in terms of BER performance
when both schemes with regular-(3,6) GF(4)-LDPC, and
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FIGURE 10. BER performance comparison for 4× 4 MIMO with 16QAM.

FIGURE 11. BER performance comparison for 64× 64 MIMO with 16QAM
and 64QAM respectively.

outperforms the GF(2)-LDPC (WiMax degree profile) coded
one with EP-IDD about 1.3dB. Furthermore, when the
optimized irregular GF(4)-LDPC code (code 1) instead of
regular-(3,6) GF(4)-LDPC code is employed, the REP-IDD
obtains 0.5dB performance gain over standard EP-IDD with
regular-(3,6) GF(4)-LDPC code. Fig. 11 is about the simu-
lation results of non-binary LDPC coded MIMO with Nr =
Nt = 64, where GF(4) and GF(8)-LDPC code are employed
for 16QAM and 64QAM respectively. For 16QAM system,
with Out = 8 and Inner = 10, at the BER level of 1e-4,
REP-IDD performs about 0.3dB worse than EP-IDD when
both cases employ regular-(3,6) GF(4)-LDPC. When the
optimized irregular GF(4)-LDPC code (code 2) is employed
instead of regular-(3,6) G(4)-LDPC, the REP-IDD system
has further 1.1dB performance improvement, and it performs
about 0.8dB better than EP-IDD which employs regular-
(3,6) GF(8)-LDPC code. For 64QAM system, the BER
performance gap between REP-IDD and EP-IDD becomes
larger, about 1.4dB when both cases with regular-(3,6)
GF(8)-LDPC. When the optimized irregular GF(8)-LDPC
code (code 3) is employed, the REP-IDD has further 3.6dB
performance improvement and it outperforms the EP-IDD

with regular-(3,6) GF(8)-LDPC code about 2.2dB. Since
CLSIC-LMMSE is unfeasible for massive MIMO system,
so we omit the comparison with it. In summary, optimiz-
ing the concatenated non-binary LDPC code, not only com-
pensates the performance loss between the REP-IDD and
EP-IDD, but also brings additional performance gain. All the
above simulation results verified the effective of the proposed
idea.

B. COMPLEXITY COMPARISON
The proposed REP has about the same complexity as its
complex-valued version in [23]. Themain difference between
the proposed REP-detector based on factor graph and
EP-detector lies in the method to calculate the a-posteriori
probabilities of VNs. For EP-detector, all symbol-wise
a-posteriori probabilities are calculated at once according
to (6) and (7) with computational complexity O(N 3

t ). While
for REP-detector, the computational complexity is domi-
nated by (11) and (12) with complexity of O(Nt ). Therefore,
for all Nt VNs, the computational complexity is O(N 2

t ).
In this perspective, REP-detector has a great advantage over
EP-detector. When binary code is used in high order QAM
system with soft demodulation, the conversion of symbol-
wise LLR to bit-wise LLR is very expensive with maximum
likelihood algorithm, which also leads to information loss.
The proposed scheme in this work can avoid this prob-
lem. With forward-backward algorithm, both the non-binary
LDPC and binary LDPC need (3Dc − 2)q(q − 1) addition
and (3Dc − 2)q2 multiplication operations at each CND,
which dominate the computational complexity. q is the order
of GF, and a GF(q) code symbol corresponding to log2 q
bits. Fig. 12 shows the number of addition and multiplica-
tion operations needed for GF(4) and GF(8)-LDPC CND
respectively. If more advanced non-binary LDPC decoding
algorithm is employed [42]–[46], the decoding complexity of
GF(8)-LDPC can be further reduced but is out of the scope of
this work.

FIGURE 12. Complexity comparison among GF(8), GF(4) and
GF(2)-LDPC CND.

VI. CONCLUSION
In this work, we proposed a non-binary LDPC coded mas-
sive MIMO scheme with high order modulation and partial
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mapping which is combined with REP algorithm seamlessly.
For REP-detector and non-binary LDPC decoder, the a-priori
LLR of non-zero code is modeled as an transformation of
multivariate Gaussian distributed random vector, which is
the output of cyclic-symmetric AWGN channel with all-
zero codeword input. This method is robust and effective
according to the simulation results in this work. A simplified
method borrowed from [36] (Theorem 2) is employed to
evaluate the output AMI, which is obtained by averaging the
samples of corresponding extrinsic probability information
of component-detector/decoder. Furthermore, the proposed
curve-fitting and interpolation based analysis method facil-
itate the computation of the component EXIT greatly. All
above methods pave the way for optimization of the IDD
receiver based on SEXIT. Both semi-analytical method based
on SEXIT and numerical results illustrated the validity of
the proposed iterative optimization algorithm and prominent
performance gain achieved.
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