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ABSTRACT This study presents a voltage restoration control (VRC) based on battery energy storage
system (BESS), which can be used for both supporting power source and voltage compensation. Voltage
restoration is an important task for the power control of microgrid during utility disturbances. One of the
disturbances is caused by short circuit on power line of the microgrid, which may lead to voltage sag and
even blackout of the microgrid system. To tackle this problem, the recurrent wavelet petri fuzzy neural
network (RWPFNN) controller is proposed in this study for the VRC of BESS to provide fast control
response to mitigate the transient impact. Moreover, to examine the compliance with the requirements of low
voltage ride through (LVRT) of the photovoltaic (PV) plant and investigate the performance of the proposed
VRC, the microgrid built in Cimei Island in Penghu Archipelago, Taiwan, is investigated. Furthermore,
the PV system, the wind turbine generator (WTG) system and the BESS are connected to the same point
of common coupling (PCC) with separated step-up transformers in the microgrid. In addition, the diesel
generators provide the main power sources and form the isolated microgrid system. Through the hardware
in the loop (HIL) mechanism, which is built using OPAL-RT real-time simulator, with two floating-point
digital signal processors (DSPs), the effectiveness of proposed intelligent controllers can be verified and
demonstrated.

INDEX TERMS Battery energy storage system, low voltage ride through, microgrid, recurrent wavelet petri
fuzzy neural network, voltage restoration control.

ABBREVIATIONS TABLE
Abbreviation Meaning.
RERs Renewable energy resources.
PV Photovoltaic plant.
WTG Wind turbine generator.
BESS Battery energy storage system.
LVRT Low voltage ride through.
VRC Voltage restoration control.
DESs Distributed energy sources.
STATCOM Static synchronous compensator.
SDBR Series dynamic braking resistor.
DGs Distributed generators.
PI Proportional-integral.
DVR Dynamic voltage restorer.
PCC Point of common coupling.
VPPs Virtual power plants.
NNs Neural networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lasantha Meegahapola .

FNNs Fuzzy neural networks.
PN Petri net.
WFNN Wavelet fuzzy neural network.
WPFNN Wavelet petri fuzzy neural network.
RFNN Recurrent fuzzy neural network.
RWFNN Recurrent wavelet fuzzy neural network.
RWPFNN Recurrent wavelet petri fuzzy neural net-

work.
HIL Hardware in the loop.
DSPs Digital signal processors.
PWM Pulse width modulation.
SOGI-PLL Second-order generalized integrator.
MPPT Maximum power point tracking.
SPWM Sinusoidal PWM.
PMSG Permanent magnet synchronous generator.
BP Backpropagation.
SPI Serial peripheral interface.
FPGA Field Programmable Gate Array.
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IAE Integral absolute error.
MAE Maximum absolute error.
FCL Fault current limiter.

I. INTRODUCTION
To fight the climate change requires the actions includ-
ing greenhouse gas emissions reduction, energy efficiency
improvement, renewable energy portfolios, and policies
aimed at slowing climate change to keep the global warming
under 2 degrees Celsius. One of the most effective way is to
promote the penetration level of the RERs, such as PV plant,
WTG and BESS. Owing to its ability to integrate various
kinds of RERs, the microgrid system has gotten increasing
attention recently as means toward a greener future all over
the world [1], [2]. However, some technical challenges are
necessarily taken into consideration, for instance, voltage
regulation, reliable operation during short-circuit faults, and
reactive power management [3]–[5].

The proposed voltage restoration strategy has two compo-
nents: one is the regulatory grid code, which is the require-
ments of LVRT to support grid operations, and the other is
the VRC during voltage sags. The LVRT requirements have
been applied to WTGs, and recently PVs are also required to
fulfill these grid codes [6], [7]. E.ON-Netz, a power company
of Germany, is the first to issue LVRT requirements for
DESs, in which the DESs have to remain on grid and inject
reactive power into the grid during grid faults [8]. Though
the published requirements are for the DESs connected to the
high-voltage system, these requirements can also be applied
to the medium or low-voltage systems. When the voltage
drops below the limit curve of the E.ON grid requirements,
the DESs must inject additional reactive current into the grid
amounting to 2% of the rated current for each 1% of the volt-
age drop to support grid voltage recovery [9], [10]. Certainly,
the injection of reactive current of 100% of the rated current is
necessary when the voltage drops below 50% of the nominal
voltage. Since the proposed control strategy is developed
to control the power of the grid-connected PV system to
satisfy the most stringent grid requirements, the E.ON LVRT
requirements will be used in this study to determine the ratio
of the required reactive current during grid faults.

In terms of voltage restoration during voltage sags, the
unbalanced grid voltage sags will worsen the performance of
microgrid, especially load tripping and degradation of grid-
connected devices. In order to overcome these disadvantages,
many advanced techniques have been proposed for minimiz-
ing network disturbances during grid faults. A STATCOM
combined with a small SDBR was studied in [11] to enhance
the stability of a wind farm composed of a fixed-speed WTG
system. In recent years, load sharing among DGs for voltage
restoration became popular inspired by the idea of coop-
erative control with DGs in multi-DG microgrid [12]–[14].
In [12], the active and reactive droop control were used to
maintain active and reactive power sharing among parallel
DGs in the primary control, then PI regulators were used

to control reactive power and voltage with the references
obtained from the dynamic consensus algorithm. Moreover,
some researches have been implemented with DVR in the
past decade to mitigate voltage disturbances and sags includ-
ing three-phase voltage unbalance and short circuit [15]–[18].
To restore the PCC voltage and protect the DVR itself for
voltage disturbances, a multifunctional DVR control strategy
with current limitation has been proposed in [15]. In [16],
an innovative designed DVR has been developed by using
the PI controller method in dq0 coordination to attest the
mitigation of power quality disturbance in secondary dis-
tribution transformer networks due to voltage variation and
voltage unbalance. In [17], the effectiveness of the DVR to
mitigate voltage disturbances in a hybrid PV-wind systemwas
demonstrated. Furthermore, an inverter-based DVR topology
by using the adaptive noise canceling technique for both volt-
age compensation and harmonic mitigation was investigated
in [18]. In addition, the control of DVR for fast detection
and corresponding compensation plays a significant role,
and several studies have been done on the relative aspects
to improve the performance of DVR. A pseudo-derivative-
feedback based voltage controller was implemented in [19]
for more effective operation of DVR under voltage distur-
bances. In [20], the DVR using a PI controller based gradient
adaptive-variable step-size least mean square control algo-
rithm was proposed to make the control robust and assure
better control performance.

Due to the intermittent nature of solar and wind energy,
the grid-connected PV and WTG system with BESS have
been in use for many demand-related issues to mitigate the
intermittency of renewable energy and to support the reactive
power [21], [22]. Moreover, the BESS can maintain seamless
operation even for the most severe voltage-sag conditions.
Thus, the grid-connected BESS can guarantee high avail-
ability and flexibility of a power system [23]. Besides the
above benefits of the grid-connected BESS, the novel benefits
of the BESS for the microgrid are the peak demand man-
agement and voltage sags mitigation by supplying different
amounts of active and reactive power for the support of
frequency and voltage [24], [25]. Owing to the charging and
discharging characteristics of BESS, several works have been
done on using the BESS as agents for power management
in recent years. The BESS is adopted as battery ancillary
services in [26] to provide a good utilization of renewables
and maintain the desired DC-link voltage. In [27], a clus-
tering algorithm was applied to cluster batteries with similar
power demand and capacity into VPPs in order to reduce the
line currents and power losses in the microgrid. From the
above literature, it is found that the recent research works are
focused on DVR and voltage regulation by utilizing BESS in
microgrid, while BESS gets more and more attentions since
it has been an essential part in a microgrid. Nevertheless, all
the voltage regulator, voltage variance regulator, or reactive
power regulator mentioned above adopted PI-based control
mechanism for the voltage restoration. However, the control
performance of the PI control system will be degraded in the
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microgrid owing to the nonlinearities and uncertainties of the
controlled plants in the microgrid.

It is well known that a combination of NNs and fuzzy logic
possesses the advantages of artificial learning in modeling
the system dynamics and the benefits of fuzzy reasoning in
handling uncertain information. The combined FNNs have
been demonstrated being effective in different control appli-
cations [28], [29]. Moreover, the PN has been developed into
a powerful and effective tool for the concurrent, distributed,
parallel, asynchronous, and uncertain information process-
ing systems owing to its analytical and graphical capabili-
ties [30]. Recently, the WFNN has successfully increased the
convergence speed and enhanced the computational precise-
ness with the time-frequency characteristics of wavelet [31].
Furthermore, the WPFNN control combining the merits of
the stability of petri network and the time-frequency char-
acteristics of wavelet was proposed in [32] for wind power
applications. In addition, some research studies have success-
fully combined the recurrent structure with FNN andWFNN,
that is, the RFNN and RWFNN, in the applications of various
fields [33], [34]. In this study a RWPFNN, in which the
outputs of wavelet-petri layer are multiplied by the outputs
of the FNN with recurrent structure in the outputs of rule
layer, is proposed to improve the control performance of the
controlled plants.

The microgrid model of Cimei Island [35]–[37] is devised
to emulate the operation of a microgrid system in this study.
Two control strategies are designed to fulfill the voltage
regulation during grid faults: the control of PV to satisfy the
requirements of LVRT support according to the grid codes;
the control of BESS to implement VRC while sags happen.
In the PV control strategy, the E.ON grid requirements are
applied for the injection of reactive current when the voltage
drops. Moreover, in the BESS control strategy, the active and
reactive power provision schemes are developed to emulate
the voltage restoration of a microgird. Furthermore, in order
to test the performance of the voltage restoration, two dif-
ferent short-circuit fault conditions are designed. In addition,
to improve the control performance of the voltage restora-
tion, a RWPFNN controller is developed. Since the proposed
RWPFNN comprises both the WPFNN and recurrent struc-
ture, the transient control performance of VRC in a micro-
gird can be much improved. Additionally, this article is the
extended study of [37], in which the voltage stabilization
control methods are investigated for stabilizing grid transition
from the grid-connected mode to the islanded mode. In this
study, further research for enhancing the function of micro-
grid with voltage restoration strategy during grid faults in
Cimei Island microgrid is proposed. The major contributions
of the proposed voltage restoration strategy using intelligent
control are: (1) the reactive power control and VRC of BESS
use the same controller and coordinate transformation to
reduce the design complexity; (2) the fast voltage restora-
tion during grid faults by using VRC of BESS can provide
smooth operation of the microgrid system; (3) the RWPFNN
controller is proposed to improve the voltage restoration and

active power control performance of BESS; (4) the voltage
restoration strategy and the proposed RWPFNN controller are
successfully implemented in a DSP-based microgrid power
system built with OPAL-RT real-time simulator.

The rest of this study is organized as follows: the control
strategies of microgrid for the PV and BESS are presented in
Section II. The network structure, online learning algorithm
and the convergence analysis of the proposed RWPFNN are
derived in Section III. To verify the performance of the pro-
posed controllers, the HIL mechanism, which is built using
OPAL-RT real-time simulator OP4510, is developedwith two
floating-point DSPs the Texas Instruments TMS320F28335
for the LVRT control and VRC, respectively, and some com-
prehensive case studies in the Cimei Island microgrid are
investigated in Section IV. Finally, some conclusions are pre-
sented in Section V.

II. CONTROL STRATEGY OF MICROGRID
Cimei Island is situated at the southernmost tip of the Penghu
Archipelago, which lies in the Taiwan Strait. To promote
the penetration rate of renewable energy and storage system,
Taiwan Power Company (Taipower) has implemented an iso-
lated microgrid in Cimei Island [35]–[37]. The single-line
diagram of Cimei Island is shown in Fig. 1 including two
diesel generators, a 355-kWp PV system, a 1000-kWh BESS
and a wind farm with 305-kW WTG system. Moreover, the
diesel generators provide the main power sources and form
the grid-connected power system. The PV system, BESS
and the WTG system are connected to the same PCC with
separated step-up transformers on Bus 1. For the promotion
of usage for the renewable energy and storage system, only
1 diesel generator is switched-on generally. Since the BESS
system would play an important role to support and stabilize
the microgrid operation, the control strategy is focused on the
voltage restoration for the active and reactive control during
faults. On the other hand, the PV system is responsible for the
LVRT control to meet the requirements of voltage support.

Figure 2 displays the active and reactive power control
structure of PV system. In Fig. 2, P∗m and P are the active
power command and active power; Q∗m and Q are the reac-
tive power command and reactive power; P∗LVRT and Q∗LVRT
are the required active and reactive power command during
LVRT; va, vb and vc are three-phase voltages; ia, ib and
ic are three-phase currents; I∗d and I∗q are dq-axis current
commands; i∗a, i

∗
b and i∗c are three-phase current commands

of the DC/AC inverter for current controlled PWM; θi is
synchronous angle obtained from the phase-lock loop based
on SOGI-PLL; v+a , v

+

b and v+c are positive phase-sequence
three-phase voltage. Moreover, P∗m can be obtained from
MPPT control algorithm of the PV system. When the voltage
sag on Bus 1 shown in Fig. 1 exceeds 10%, which triggers
the grid fault signal, then P∗LVRT becomes the active power
command and Q∗LVRT is the reactive power command, which
is obtained according to the E.ON grid requirements [9],
[10]. Furthermore, the PV controller performs the voltage sag
detection and power calculation by using the grid voltages
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FIGURE 1. Single-line diagram of cimei Island power system.

FIGURE 2. Active/reactive power control structure of PV system.

and currents. Then, the closed-loop control of the active and
reactive power are achieved. After the coordinate transforma-
tion and three-phase current control, the PWMcontrol signals
are delivered to the three-phase inverter for the active and
reactive power control. The required compensation reactive
power command Q∗LVRT is a function of the voltage sag Vsag
and can be expressed as:

Q∗LVRT =


0, Vsag < 0.1
Qmax , Vsag > 0.5
200Vsag%Qmax , 0.1 ≤ Vsag ≤ 0.5

(1)

where Qmax equals to the maximum power capacity of PV
system and Vsag is the voltage sag at the PCC reflected to
low voltage side of the transformer. Since there is no LVRT
requirement to clearly specify the voltage reduction ratio
under the condition of unbalance three-phase voltage, the

voltage sag Vsag at the PCC can be evaluated as follows [38]:

Vsag = 1−

∣∣∣V+p ∣∣∣
Vbase

pu (2)∣∣∣V+p ∣∣∣ = √1
3

(
v+2a + v

+2
b + v

+2
c

)
(3)

where V+p represents the peak value of the positive sequence
of three-phase voltage and Vbase is the peak value of the
nominal phase voltage of PV system, which equals 310 V in
this study. Accordingly, equation (2) can also be applied to
voltage reduction ratio for the balance three-phase voltage.

The active/reactive power control and VRC structure of
BESS system is shown in Fig. 3. P∗BS and PBS are the active
power command and active power; Q∗BS and QBS are the
reactive power command and reactive power; vao, vbo and
vco are three-phase voltages; iao, ibo and ico are three-phase
currents; I∗dm, I

∗
qm and Ido, Iqo are dq-axis current commands
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FIGURE 3. Active/reactive power control and VRC structure of BESS.

and dq-axis currents; V ∗dm and V ∗qm are dq-axis SPWM volt-
age commands of the DC/AC inverter; θi is synchronous
angle obtained from the PLL; u∗a, u

∗
b and u∗c are three-

phase voltage commands of the DC/AC inverter for SPWM;
VPCC is the instantaneous voltage at the PCC reflected to
low voltage side of the transformer. In order to restore the
VPCC as quickly as possible, the direct voltage control is
necessary instead of indirect control. Therefore, when the
voltage sag on Bus 1 shown in Fig. 1 exceeds 10%, the VRC
will be triggered and the voltage control is ON. Then, the
command becomes V ∗ref , i.e., the peak value of the nominal
phase voltage of 310 V, for the voltage restoration. On the
other hand, since VPCC will increase abruptly when the grid
recovers from the grid faults, the voltage control is OFF
and the command becomes Q∗BS when VPCC is higher than
1.03 pu. In Fig. 3, the control system processes the active
and reactive power calculations by using the grid voltages and
currents. After that, the closed-loop control of active/reactive
power or voltage are performed. The control objective is
to regulate the quantity (active power, reactive power and
voltage) to follow the control command. Moreover, besides
the proposed RWPFNN controller, both conventional PI con-
troller and FNN controller are implemented in this study
for the comparison of the control performance. Furthermore,
to simplify the implementation of control strategy, the PI
controller with fixed parameters is adopted for the inner-loop
current controller. The control error and fluctuation would be
compensated by the outer-loop controller, i.e., the PI, FNN,
or proposed RWPFNN controller. The algorithm of the VRC
is shown in Fig. 4.

The active/reactive power control structure ofWTG system
is shown in Fig. 5. An AC/DC converter with current con-
trolled PWM is considered as the first stage and responsible

FIGURE 4. VRC algorithm of BESS during gird faults.

for transferring the power energy from the WTG terminal
to the DC bus. The second stage is a DC/AC inverter and
designed to dispatch the power from the DC bus to the three-
phase microgrid system. In the first stage, Pm is pole number
of the PMSG; V ∗dc and Vdc are the DC bus voltage command
and regulated DC bus voltage; θm and θe are the rotor shaft
position and flux position; ias, ibs and ics are sensed phase
currents; I∗ds and I

∗
qs are dq-axis current commands; i∗as, i

∗
bs

and i∗cs are three-phase current commands of the AC/DC
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FIGURE 5. Active/reactive power control structure of WTG system.

converter. For the DC/AC inverter, it is used for active and
reactive power control. P∗WTG and PWTG are the active power
command and active power; Q∗WTG and QWTG are the reactive
power command and reactive power; vaw, vbw and vcw are
three-phase voltages; iaw, ibw and icw are three-phase currents;
I∗dw, I

∗
qw and Idw, Iqw are dq-axis current commands and dq-

axis currents; V ∗dw and V ∗qw are the dq-axis SPWM voltage
commands of the DC/AC inverter; θi is synchronous angle
obtained from the PLL;u∗aw, u

∗
bw and u∗cw are three-phase

voltage commands of the DC/AC inverter for SPWM. The
controllers of the WTG system are modeled in the OP4510
as shown in Fig. 5. Moreover, the function of LVRT is not
considered in the control of the WTG in this study.

III. RWPFNN CONTROLLER
Voltage restoration by using the BESS is important to
the microgrid operation during grid faults. To improve
the transient control performance of VRC in a micro-
grid, the intelligent RWPFNN controller is designed to
replace the PI controller or FNN controller in the BESS as
shown in Fig. 3. The proposed RWPFNN is constructed by a
five-layer network as depicted in Fig. 6, which comprises the
input layer (layer i), membership layer (layer j), wavelet layer
and petri layer (layer k), rule layer with recurrent structure
(layer l), and output layer (layer o). The online backpropa-
gation learning algorithm is applied to perform the parame-
ters adaptation. In this way, the controller can maintain the
robust and stable real-time control performance under the
disturbances of the microgrid. The signal propagation and
the fundamental function for each layer of the RWPFNN are
illustrated in the following.

A. NETWORK STRUCTURE OF RWPFNN
The signal propagation and the basic function in each layer
of the RWPFNN are described as follows:

1) LAYER 1: INPUT LAYER
There are two inputs in this layer, the input and the output can
be defined as:

net1i (N ) = x1i (4)

y1i (N ) = f 1i (net
1
i (N )) = net1i (N ), i = 1, 2 (5)

where x1i and y
1
i (N ) are the input and output of the ith neuron,

N is the iteration index. In this study, e1(N ) = e represents
the error between reference command and the response. Thus,
P∗BS − PBS and Q∗BS − QBS represent the errors between
the reference active/reactive power and instantaneous out-
put active/reactive power of controller for the BESS in nor-
mal operation, respectively. On the other hand, the error
between the reference voltage and instantaneous voltage of
PCC would be V ∗ref − VPCC accordingly. Then e2(N ) = ė is
the derivative of error and define x11 as e while x12 as ė.

2) LAYER 2: MEMBERSHIP LAYER
The Gaussian function is adopted as the membership function
to realize the fuzzification operation in each node of this layer.
The input and output node of this layer are described below:

net2j (N ) = −
(x2i − m

2
j )

2

(σ 2
j )

2
(6)

y2j (N ) = f 2j (net
2
j (N )) = exp(net2j (N )), j = 1, 2, . . . , 6

(7)

where y2j (N ) represents output of jth neuron in the member-
ship layer; m2

j (N ), σ 2
j (N ) are the mean, standard deviation

of Gaussian function in the jth term associated with the input
layer, respectively.
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FIGURE 6. Structure of RWPFNN.

3) LAYER 3: WAVELET AND PETRI LAYER
The wavelet function in this layer can be expressed as

φ3ik (N ) =
1√∣∣σ 3
ik

∣∣
[
1−

(x1i (N )− m3
ik )

2

(σ 3
ik )

2

]

exp

[
−
(x1i (N )− m3

ik )
2

2(σ 3
ik )

2

]
, k = 1, 2, ..., 9 (8)

ψ3
k (N ) =

∑
w3
ikφ

3
ik (x) (9)

where φ3ik (N ) is the kth term of wavelet function output
associated with the ith neuron, ψ3

k (N ) is the summation of
the kth term of wavelet function output, and w3

ik is the weight
of wavelet layer.

Since the PN has been proven powerful for modeling and
analysis of complex system, a properly designed transition
function can aid the system to process the urgent events such
as grid faults in order to fulfill requirements [30]. In this layer,
the transition of node starts when the token is created in the
input place. Then, it is controlled to activate or cancel the
transition through the following equations:

t3p (N ) =

{
1, ψ3

k (N ) ≥ dth
0, ψ3

k (N ) < dth
th = 1, 2, . . . , 9 (10)

dth =


α exp(−βV )
1+ exp(−βV )

, reference command ≥ 0

α −
α exp(−βV )
1+ exp(−βV )

, reference command < 0

(11)

where t3p (N ) is the transition state, dth is the threshold value
which is determined by the function V=(e + ė)/2, α and β
are positive constants. Once the error e and the derivative
of error ė have the trend to increase, the threshold value is
lower causing the transition easier to happen; otherwise the

threshold value tends to become higher trying to prevent the
transition. When the transition is activated, the token can
be moved from the input place to the output place. Hence,
the relationship between input and output can be given as
follows.

net3p (N ) =

{
ψ3
k (N ), t3p (N ) = 1

0, t3p (N ) = 0
(12)

y3p(N ) = f 3p (net
3
p (N )) = net3p (N ), p = 1, 2, . . . , 9 (13)

where y3p(N ) is the output of pth neuron.

4) LAYER 4: RECURRENT AND RULE LAYER
The first part of this layer is to multiply the outputs of layer
2, y2j . For the neuron y

4
jl(N ), the output can be expressed as

y4jl(N ) =
∏

j
w4
jly

2
j , l = 1, 2, . . . , 9 (14)

wherew4
jl is the weight between the jth neuron in themember-

ship layer and the lth neuron in the rule layer, which is set to
be 1 in this study. Then, y4jl(N ) is multiplied with its recurrent
part and the output of layer 3 y3p(N ) as follows:

net4l (N ) = y4jly
3
pw

4
r y

4
l (N − 1) (15)

y4l (N ) = f 4l (net
4
l (N )) = net4l (N ) (16)

where y4l (N ) is the output of lth neuron in the rule layer.
Since a recurrent structure is able to store the previous data
of the network by capturing the past dynamic behavior of
the system, it will enhance the computational strength and
the generalization ability of RWPFNN and hence is more
appropriate in dealing with the control of non-linear complex
systems [33], [34].
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5) LAYER 5: OUTPUT LAYER
In the output layer, the defuzzification is implemented with

net5o (N ) =
∑9

l=1
w5
loy

4
l (N ), o = 1 (17)

y5o(N ) = f 5o (net
5
o (N )) = net5o (N ) (18)

wherew5
lo is theweight between layer 4 and layer 5, and y

5
o(N )

is the output of RWPFNN. In this study, y5o(N ) = I∗qm is used
for the active power control and y5o(N ) = I∗dm is used for the
reactive power/voltage control.

B. ONLINE LEARNING ALGORITHM FOR RWPFNN
The online BP learning algorithm is based on the supervised
gradient descent method to update the connected weights
and the network parameters in the RWPFNN adaptively. For
the reactive power control of BESS in normal operation, the
objective function E(N ) can be defined as

E(N ) =
1
2

(
Q∗BS (N )− QBS (N )

)2
=

1
2
e(N )2 (19)

where e(N ), which isQ∗BS (N )−QBS (N ), represents the track-
ing error in the learning process of the RWPFNN controller
for each discrete time N , with Q∗BS and QBS represent the ref-
erence reactive power and the instantaneous output reactive
power. In layer 5, the error term to be propagated is given by

δ5o = −
∂E

∂y5o(N )
= −

∂E
∂QBS

∂QBS
∂y5o(N )

(20)

The weight w5
lo(N ) between the rule layer and output layer

can be updated by the following amount.

1w5
lo = −ηlo

∂E

∂w5
lo

= −ηlo
∂E

∂y5o(N )
∂y5o(N )

∂w5
lo(N )

= ηloδ
5
oy

4
l (21)

w5
lo(N + 1) = w5

lo(N )+1w5
lo (22)

where ηlo is the learning rate.
Two error terms are necessary to be propagated in layer 4,

as listed in (23) and (24) as follows:

δ4l = −
∂E

∂y4l (N )
= −

[
∂E

∂y5o(N )

]
∂y5o(N )

∂y4l (N )
= δ5ow

5
lo (23)

δ4jl = −
∂E

∂y4jl(N )
= −

[
∂E

∂y5o(N )
∂y5o(N )

∂y4l (N )

]
∂y4l (N )

∂y4jl(N )
= δ4l y

3
p

(24)

By adopting the chain rule, the connective weight 1w4
r

for recurrent feedback can be computed by the following
equation:

1w4
r = −ηr

∂E
∂w4

r

= −ηr

[
∂E

∂y5o(N )
∂y5o(N )

∂y4l (N )

]
∂y4l (N )

∂w4
r (N )

= ηrδ
4
l y

3
py

4
jly

4
l (N − 1) (25)

w4
r (N + 1) = w4

r (N )+1w
4
r (26)

The error term to be propagated in layer 3 can be expressed
as:

δ3k = −
∂E

∂y3p(N )

= −

[
∂E

∂y5o(N )
∂y5o(N )

∂y4l (N )

]
∂y4l (N )

∂y3p(N )
= δ4l y

4
jlw

4
r y

4
l (N − 1)

(27)

Accordingly, the weightw3
ik (N ) can be updated by the follow-

ing amount:

1w3
ik = −ηik

∂E

∂w3
ik

= −ηik
∂E

∂y5o(N )
∂y5o(N )

∂y4l (N )

∂y4l (N )

∂y3p(N )

∂y3p(N )

∂w3
ik (N )

= ηikδ
3
kϕ

3
ik

(28)

where ηik is the learning rate of weightw3
ik (N ). Therefore, the

weight w3
ik (N ) can be updated with:

w3
ik (N + 1) = w3

ik (N )+1w3
ik (29)

In layer 2, the error term needs to be propagated as:

δ2j = −
∂E

∂net2j

= −

[
∂E

∂y5o(N )
∂y5o(N )

∂y4jl(N )

]
∂y4jl(N )

∂y2j (N )

∂y2j (N )

∂net2j (N )
=

∑
jl
δ4jly

4
jl

(30)

The mean of the Gaussian function m2
j is calculated in the

following:

1m2
j = −ηm

∂E

∂m2
j

= −ηm

[
∂E

∂y5o(N )
∂y5o(N )

∂net2j (N )

]
∂net2j (N )

∂m2
j (N )

= ηmδ
2
j

2(x2i − m
2
j )(

σ 2
j

)3 (31)

where ηm is the learning-rate factor of the mean of the
Gaussian function. The standard deviation of the Gaussian
function σ 2

j can be calculated as below:

1σ 2
j = −ησ

∂E

∂σ 2
j

= −ησ

[
∂E

∂y5o(N )
∂y5o(N )

∂net2j (N )

]
∂net2j (N )

∂σ 2
j (N )

= ησ δ
2
j

2(x2i − m
2
j )

2(
σ 2
j

)3 (32)

where ησ is the learning-rate factor of the standard deviation
of the Gaussian function. The means and standard deviations
of the Gaussian function are updated as follows:

m2
j (N + 1) = m2

j (N )+1m2
j (33)

σ 2
j (N + 1) = σ 2

j (N )+1σ 2
j (34)

VOLUME 10, 2022 12517



F.-J. Lin et al.: Voltage Restoration Control for Microgrid With Recurrent Wavelet Petri Fuzzy Neural Network

FIGURE 7. Experimental setup.

Owing to the uncertainties in the microgrid system, the
exact Jacobian calculation, which is ∂QBS/∂y5o(N ), is difficult
to determine accurately. To solve this problem and speed up
the online updating of weights, the error adaptation law pro-
posed in [38] is adopted in this study to replace the Jacobian
term with:

δ5o
∼= e+ ė (35)

where ė is the derivative of error e. In addition, to guarantee
the convergence of the proposed RWPFNN controller, spe-
cific learning-rate factors for the training of the parameters
of the RWPFNN are designed in the Appendix to guarantee
the convergence of the tracking errors.

IV. DESIGN AND EXPERIMENTATION
The experimental setup of the proposed control strategies
is shown in Fig. 7. The test platform includes the HIL
mechanism built with OPAL-RT real-time simulator OP4510
and RT-LAB environment, an oscilloscope, a host computer,
peripheral circuits and two DSP TMS320F28335 control
boards. There are two 16-channel digital-to-analog converter
modules (OP5330), one 16-channel analog-to-digital con-
verter module (OP5340), and one 32-channel digital sig-
nal conditioning module (OP5353) in the OP4510. The
PI, FNN, and proposed RWPFNN controllers of BESS are
realized using the C language on the Texas Instruments
TMS320F28335 DSP and the observation signals are trans-
ferred to the oscilloscope with the SPI. Moreover, 2, 6, 9,
9, 9, 1 nodes are designed in the input layer, membership
layer, wavelet layer, Petri layer, rule layer, and output layer,
respectively, of the RWPFNN. The structure of OPAL-RT
and peripherals are shown in Fig. 8. The entire Cimei Island
microgrid except the PV and BESS controllers is modeled
in the host and transferred to the OP4510 with Ethernet. The
controllers of the PV and BESS are modeled in two dedicated
DSPs. Furthermore, as shown in Fig. 8, the microgrid with
the inverters of the PV and BESS are modeled in FPGA of
the OP4510, and the PV, battery, WTG modules with the
diesel generators are modeled in the CPU of the OP4510. For
the following three test cases shown in IV.A, IV.B and IV.C,
the simulation time steps of OP4510 FPGA are 9.3 × 10−7,
8.55×10−7 and 9.3×10−7 s, respectively, and the simulation

FIGURE 8. Structure of OPAL-RT and peripherals.

time steps of the OP4510 CPU are both 3.125 × 10−5 s.
In addition, the sampling time of the control algorithms of
the PV and BESS is 1 ms and the switching frequency of the
PWM is 16 kHz for both the inverters of the PV and BESS.
Additionally, the flowchart of the proposed RWPFNN con-
troller for the reactive power/voltage restoration and active
power control of BESS is provided in Fig. 9 and described as
follows:

1) RWPFNN Input Layer: The analog three-phase voltages
vao, vbo and vco and the three-phase currents iao, ibo and
ico of the microgrid are measured for the power calculation
and synchronization. Then, the tracking error e1(N ) = e is
generated and sent to the proposed RWPFNN controller. The
input variables of the proposed RWPFNN are e and ė; the
node outputs are y1i (N ) and sent to the membership layer.

2) RWPFNN Membership Layer: The Gaussian functions
are adopted to implement the fuzzification operation and the
outputs are y2j (N ). Then, the outputs y2j (N ) are sent to the
recurrent and rule layer..

3) RWPFNN Wavelet and Petri Layer: The wavelet layer
includes k wavelet functions. The input variables of this layer
are e and ė. Then, the node outputs ψ3

k (N ) are obtained by
performing the summation and multiplying operations and
sent to the PN. When the transition is activated, the token
can be moved from the input place to the output place. The
outputs are y3p(N ) and sent to the recurrent and rule layer.

4) RWPFNN Recurrent and Rule Layer: This layer con-
tains the recurrent and rule layers. The nodes of the rule layer
multiply the output signals from the membership layer, the
wavelet and petri layer and recurrent layer. The outputs are
y4l (N ) and sent to the output layer.

5) RWPFNN Output Layer: The node performs the sum-
mation operation for the output y5o(N ). Moreover, the output
y5o(N ) of the proposed RWPFNN is the current command I∗dm
of BESS for the reactive power control/VRC and the current
command I∗qm of BESS for active power control, respectively.
6) Online Network Parameters Learning Using BP: The

online parameters learning is achieved by online tuning of
the connective weights w5

lo between the output layer and the
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FIGURE 9. Flowchart of the proposed RWPFNN controller in DSP.

rule layer, the recurrent connectiveweightsw4
r , the connective

weights w3
ik in the wavelet and petri layer, and the mean m2

j
and standard deviations σ 2

j of the membership functions in
the membership layer using the BP algorithm.

All the PI, FNN and RWPFNN controllers are coded in
the current control loop with 1ms sampling time. Since the
clock rate of the adopted DSP TMS320F28335 is 150MHz,
the operation cycles and execution time of the PI, FNN and
RWPFNN controllers are 179 cycles (1.1933µs), 1612 cycles
(10.7467 µs) and 15214 cycles (101.4267 µs), respectively.
Though the proposed RWPFNN controller is more compli-
cated than both PI and FNN, the execution time is still within
the 1ms sampling time of the current control loop with the
same hardware environment.

To evaluate the control performance of the mentioned con-
trollers, the IAE index and the response time during the grid
faults, and the MAE index after the restoration of the grid
faults are listed in (36), (37) and (38) as follows:

IAE =
∫ t4

t1
|e(t)| dt (36)

Response time = t2− t1 (37)

MAE = (|e(t)|), t ∈ [t3, t5] (38)

where the time parameters of performance measurings can be
found in Table 1.

TABLE 1. Time parameters of performance measurings.

Due to the short-circuit current of the diesel generator is
rising rapidly, which may exceed the maximum short-circuit
capacity of the diesel generator, a three-phase FCL circuit is
adopted to limit the excess current in this study. FCLs are
proper means for reducing fault current level in the micro-
grid system. Considering that a large inductor can present
extremely large impedance to system with high frequency
component, the inductive FCLs, compared with its resistive
counterpart, are very effective in restricting the rising speed
of the short-circuit current of the diesel generator which
may cause major damage during the grid faults [39]–[41].
Therefore, a three-phase inductive FCL is connected in series
with the diesel generator and the microgrid system as shown
in Fig. 10. In the simulation, the FCL impedances, ZFCL , are
obtained via trial and error considering the requirements of
maximum capacity of the diesel generator and the system
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FIGURE 10. Single-line diagram of diesel generator with FCL.

stability. The result is:

ZFCL = 0.05�+ 0.05 mH (39)

As shown in Fig. 10, the FCL is disconnected from the system
in normal operation. On the other hand, the FCL is connected
in series with the power line and diesel generator during grid
faults in order to reduce the fault current from exceeding the
maximum capacity of the diesel generator and enhance the
stability of the microgrid system.

In the following, Case A and Case B two test cases at
heavy load and light load with grid fault for the Cimei Island
microgrid are designed to consider the effect of parameter
uncertainties and external disturbances on the control perfor-
mance of the microgrid and examine the transient responses
of the PI, FNN and proposed RWPFNN controllers for the
VRC of BESS and the compliance with the E.ON standard of
the LVRT for the PV. Moreover, Case C is designed to further
investigate the effect of variations in power output of PV and
wind turbine on performance.

A. FAULT OCCURS AT HEAVY LOAD WITH BESS IN
DISCHARGING MODE
In Case A, the PV, WTG and BESS all output power to
supply the loads. A three-phase short-circuit and grounding
fault occurs in c1 of the microgrid as shown in Fig. 1 caus-
ing the voltage sag with 16.15% drop at the PCC. The
resistance of grounding fault is set to be 8.63 �. In the
beginning, the microgrid is in normal operation with No.
1 diesel generator (G1) operating with loads 956.34 kW and
314.31 kVar. The PV system outputs 300 kW and the WTG
outputs 305 kW. The control command for the BESS is in
the discharging mode with 300 kW as shown in Figs. 11,
12 and 13. In this way, the diesel generator would provide
51.34 kW and 341.31 kVar to support the operation of the
microgrid. Due to the three-phase short-circuit and grounding
fault at 0.4 s, the microgrid is facing voltage sag and the PV
system, WTG system and BESS should maintain the same
output power. Meanwhile, the PV system and BESS have
captured the voltage sag exceeding 10%, and then output the
reactive power to meet the LVRT requirements and execute
VRC, respectively. At the same time, the diesel generator will
increase or decrease its active and reactive power outputs to
balance the load. Afterwards, the fault is removed at 0.6 s,
the microgrid restores to the normal operation. The voltage
responses of voltage sag without LVRT and VRC and volt-
age restoration with LVRT and VRC of the PI, FNN and
proposed RWPFNN controllers are in Figs. 11(a), 12(a) and

TABLE 2. Performance measurings of various controllers on voltage
restoration and active power control at heavy load.

13(a). All three controllers can achieve the nominal phase
voltage of 310 V owing to the reactive power outputs of
the BESS. The active and reactive power outputs of the PV
system with PI, FNN and RWPFNN controllers are shown
in Figs. 11(b), 12(b) and 13(b). According to the E.ON
standard of 16.15% drop, the reactive power outputs of PV
system should be above 90.37 kVar. Owing to the VRC, the
required reactive power outputs of PV of all the controllers
are well below 90.37 kVar, which are compensated with
the reactive power output of BESS. Moreover, thanks to the
fast transient response of RWPFNN controller of BESS, the
required reactive power output of PV is the smallest among
three controllers. Furthermore, the active and reactive power
outputs of BESS of the PI, FNN and RWPFNN controllers
are shown in Figs. 11(c), 12(c) and 13(c). The control com-
mands and signals of the BESS are shown in Figs. 11(d),
12(d) and 13(d), respectively. From the experimental results,
though good transient voltage response can be obtained by
using the PI controller, the voltage error is large and will
degrade the voltage restoration performance of the microgrid
system. On the other hand, owing to the parallel computation
and online learning capabilities of FNN, the voltage error is
reduced comparing with the PI controllers. In addition, since
the proposed RWPFNN combines the merits of the functional
advantages of the PN, RFNN andWFNN, the voltage error is
much reduced.

The performance measurings of the PI, FNN and
RWPFNN controllers with VRC and active power control
of BESS at heavy load are compared in Table 2. From
Table 2, the IAE, the response time and the MAE of voltage
restoration of the proposed RWPFNN controller are lower
than both the PI and FNN controllers. Moreover, the IAE,
the response time and the MAE of active power control of
the proposed RWPFNN controller are still the lowest among
three controllers.

B. FAULT OCCURS AT LIGHT LOAD WITH BESS IN
CHARGING MODE
In Case B, the PV andWTG output power to supply the loads
with BESS in charging mode. A three-phase short-circuit
and grounding fault occurs in d2 of the microgrid as shown
in Fig. 1 causing the voltage sag with 26.47% drop at the
PCC. The resistance of grounding fault is set to be 13 �.
In the beginning, the microgrid is in normal operation with
No. 1 diesel generator (G1) operating with loads 680.25 kW
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FIGURE 11. Various responses of PI controller at heavy load. (a) Voltage
sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PBS and QBS of
BESS, (d) I∗qm, Iqo and I∗dm, Ido of BESS.

FIGURE 12. Various responses of FNN controller at heavy load. (a) Voltage
sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PBS and QBS of
BESS, (d) I∗qm, Iqo and I∗dm, Ido of BESS.
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FIGURE 13. Various responses of RWPFNN controller at heavy load.
(a) Voltage sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PBS
and QBS of BESS, (d) I∗qm, Iqo and I∗dm, Ido of BESS.

FIGURE 14. Various responses of PI controller at light load. (a) Voltage
sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PBS and QBS of
BESS, (d) I∗qm, Iqo and I∗dm, Ido of BESS.
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FIGURE 15. Various responses of FNN controller at light load. (a) Voltage
sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PBS and QBS of
BESS, (d) I∗qm, Iqo and I∗dm, Ido of BESS.

FIGURE 16. Various responses of RWPFNN controller at light load.
(a) Voltage sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PBS
and QBS of BESS, (d) I∗qm, Iqo and I∗dm, Ido of BESS.
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TABLE 3. Performance measurings of various controllers on voltage
restoration and active power control at light load.

and 223.51 kVar. The PV system outputs 300 kW and the
WTG outputs 305 kW. The control command for the BESS
is in the charging mode with 300 kW as shown in Figs. 14,
15 and 16. In this way, the diesel generator would provide
375.25 kW and 223.51 kVar to support the operation of the
microgrid. Due to the three-phase short-circuit and grounding
fault at 0.4 s, the microgrid is facing voltage sag with the
PV system and WTG system are required to keep the same
output power. Meanwhile, the BESS and PV system have
captured the voltage sag exceeding 10%. Then, the BESS
stops charging in order to decrease active power load of the
microgrid and supply reactive power for the VRC, and the PV
system also outputs reactive power to meet the LVRT require-
ments. Afterwards, the fault is removed at 0.6 s, the microgrid
restores to the normal operation. The voltage responses of
voltage sag without LVRT and VRC and voltage restoration
with LVRT and VRC of the PI, FNN and proposed RWPFNN
controllers are in Figs. 14(a), 15(a) and 16(a). All three
controllers can achieve the nominal phase voltage of 310 V
owing to the reactive power outputs of the BESS. The active
and reactive power outputs of the PV system with PI, FNN
and RWPFNN controllers are shown in Figs. 14(b), 15(b)
and 16(b). According to the E.ON standard of 26.47% drop,
the reactive power outputs of PV system should be above
149.58 kVar. Owing to the VRC, the required reactive power
outputs of PV are much smaller than 149.58 kVar, which
are compensated with the reactive power output of BESS.
Moreover, thanks to the fast transient response of RWPFNN
controller of BESS, the required reactive power output of
PV is the smallest among three controllers. Furthermore,
the active and reactive power outputs of BESS of the PI,
FNN and RWPFNN controllers are shown in Figs. 14(c),
15(c) and 16(c). The control commands and signals of the
BESS are shown in Figs. 14(d), 15(d) and 16(d). From the
experimental results, both the LVRT requirements of the PV
system and VRC of the BESS are fulfilled. In addition, the
proposed RWPFNN controller possesses fast response with
small voltage restoration error comparing with the PI and
FNN controllers.

The performance measurings of the three controllers with
VRC and active power control of BESS at light load are
compared in Table 3. From Table 3, the IAE, the response
time and the MAE of voltage restoration of the proposed
RWPFNN controller are lower than both the PI and FNN
controllers. Moreover, the IAE, the response time and the

TABLE 4. Performance measurings of various controllers on voltage
restoration and active power control in Case C.

MAE of active power control of the proposed RWPFNN
controller are the lowest as well.

C. FAULT OCCURS WITH VARIATIONS IN POWER OUTPUT
OF PV AND WIND TURBINE
In Case C, the PV, WTG and BESS all output power to
supply the loads with the PV system changing its output
to 330 kW (+30 kW) and the WTG system changing its
output to 275 kW (−30 kW) abruptly at 0.4 s, while the
rest of the conditions are the same as Case A to further
consider the effect of variations in power output of PV and
wind turbine on performance. A three-phase short-circuit and
grounding fault occurs in c1 of the microgrid as shown in
Fig. 1 causing the voltage sag with 16.25% drop at the PCC.
The resistance of grounding fault is set to be 8.63 �. In the
beginning, the microgrid is in normal operation with No. 1
diesel generator (G1) operating with loads 956.34 kW and
314.31 kVar. The PV system outputs 300 kW and the WTG
outputs 305 kW. The control command for the BESS is in the
discharging mode with 300 kW as shown in Figs. 17, 18 and
19. In this way, the diesel generator would provide 51.34 kW
and 341.31 kVar to support the operation of the microgrid.
Due to the three-phase short-circuit and grounding fault with
the PV system changing its output to 330 kW and the WTG
system changing its output to 275 kW abruptly at 0.4 s, the
microgrid is facing voltage sag and BESS should maintain
the same output power. Meanwhile, the PV system and BESS
have captured the voltage sag exceeding 10%, and then out-
put the reactive power to meet the LVRT requirements and
execute VRC, respectively. At the same time, the diesel gen-
erator will increase or decrease its active and reactive power
outputs to balance the load. Afterwards, the fault is removed
at 0.6 s, the microgrid restores to the normal operation. The
voltage responses of voltage sag without LVRT and VRC and
voltage restoration with LVRT and VRC of the PI, FNN and
proposed RWPFNN controllers are in Figs. 17(a), 18(a) and
19(a). All three controllers can achieve the nominal phase
voltage of 310 V owing to the reactive power outputs of
the BESS. The active and reactive power outputs of the PV
system with PI, FNN and RWPFNN controllers are shown
in Figs. 17(b), 18(b) and 19(b). According to the E.ON
standard of 16.25% drop, the reactive power outputs of PV
system should be above 94.25 kVar. Owing to the VRC, the
required reactive power outputs of PV of all the controllers
are well below 94.25 kVar, which are compensated with
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FIGURE 17. Various responses of PI controller in Case C. (a) Voltage sag
and voltage restoration of VPCC , (b) P and Q of PV, (c) PWTG and QWTG of
WTG, (d) PBS and QBS of BESS, (e) I∗qm, Iqo and I∗dm, Ido of BESS.

FIGURE 18. Various responses of FNN controller in Case C. (a) Voltage sag
and voltage restoration of VPCC , (b) P and Q of PV, (c) PWTG and QWTG of
WTG, (d) PBS and QBS of BESS, (e) I∗qm, Iqo and I∗dm, Ido of BESS.
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FIGURE 19. Various responses of RWPFNN controller in Case C. (a) Voltage
sag and voltage restoration of VPCC , (b) P and Q of PV, (c) PWTG and
QWTG of WTG, (d) PBS and QBS of BESS, (e) I∗qm, Iqo and I∗dm, Ido of BESS.

the reactive power output of BESS. Moreover, thanks to the
fast transient response of RWPFNN controller of BESS, the
required reactive power output of PV is the smallest among
three controllers. Furthermore, the active and reactive power
outputs of the WTG with PI, FNN and RWPFNN controllers
are shown in Figs. 17(c), 18(c) and 19(c). In addition, the
active and reactive power outputs of BESS of the PI, FNN
and RWPFNN controllers are shown in Figs. 17(d), 18(d) and
19(d). The control commands and signals of the BESS are
shown in Figs. 17(e), 18(e) and 19(e). From the experimental
results, both the LVRT requirements of the PV system and
VRC of the BESS are still fulfilled under the variations of
the outputs of the PV and WTG systems. Additionally, the
proposed RWPFNN controller possesses fast response with
small voltage restoration error comparing with the PI and
FNN controllers.

The performance measurings of the PI, FNN and
RWPFNN controllers with VRC and active power control
of BESS in Case C conditions are compared in Table 4.
From Table 4, the IAE, the response time and the MAE of
voltage restoration of the proposed RWPFNN controller are
significantly lower than both the PI and FNN controllers.
Moreover, the IAE, the response time and the MAE of active
power control of the proposed RWPFNN controller are still
the lowest among three controllers.

V. CONCLUSION
To provide fast response of voltage restoration during grid
faults in a microgrid, a VRC based on BESS has been
successfully developed in this study. Since the BESS can
maintain seamless operation for severe voltage-sag condi-
tions and reduce the impact of intermittent renewable energy,
the BESS has been broadly used in the microgrid system
nowadays. In this study, two control strategies have been
designed to fulfill the voltage restoration of the PCC during
grid faults. The first one is the control of PV system to
satisfy the requirements of the reactive power support of
LVRT according to the grid codes; the second one is the
control of BESS to implement the VRC when voltage sags
happen. Moreover, the RWPFNN, which combines the merits
of the functional advantages of the PN, RFNN and WFNN,
has been successfully developed and adopted in the VRC.
From the experimental results of the Cimei Island microgrid,
it has been verified that the proposed RWPFNN controller
can provide fast voltage restoration response which is very
helpful to mitigate the transient impact during grid faults of
the microgrid.

APPENDIX
To guarantee the convergence of the proposed RWPFNN
controller, specific learning-rate factors for the training of
the parameters of the RWPFNN can be obtained by using
the convergence analysis [38]. First, the error function shown
in (19) is considered as a discrete-type Lyapunov function.
Then, the variation of the Lyapunov function can be rewritten
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as follows:

1E(N ) = E(N + 1)− E(N ) (A1)

Linearized model of the Lyapunov function is obtained via
(21), (25), (28), (31) and (32) as follows [38]:

E(N + 1) = E(N )+1E(N )

∼= E(N )+
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where1w5
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4
r ,1w

3
ik ,1m

2
j , and1σ

2
j depict the variations

of the connective weights, the means and the standard devi-
ations. If the learning-rate factors of the proposed RWPFNN
are designed as:
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where ε is a small positive constant and (A3) can be reformu-
lated as follows:
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