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ABSTRACT Traditional denoising methods for seismic exploration data design a corresponding
mathematical denoisingmodel batch according to the different properties of different randomnoises, which is
a tedious and time-consuming process. To solve this problem, this paper proposes a deep convolutional neural
network denoising model based on noise estimation (MCD-DCNN). This model is primarily composed of
two modules, the noise estimation module and the denoising module. The noise estimation module uses a
multiscale convolutional neural network to better extract the characteristics of random noise in the seismic
data. To make full use of the extracted features, a dense connection method is adopted between the multiscale
convolutions in the noise estimation module. In the denoising module, we use multiscale convolutions
and dense connections to replace the original convolutional neural network and use the residual struc-
ture (ResNet) and batch normalization (BN) to improve the denoising effect and running speed of the model.
In this experiment, single trace and simple and complex profile data are used as input to simulate the real data
processing environment. Finally, we compare the denoising effects of the MCD-DCNN model proposed in
this paper with the current mainstream feed-forward denoising convolutional neural network (DnCNN) and
a fast and flexible denoising convolutional neural network (FFDNet) models. The comprehensive results
show that under the condition of a given prior noise level, the denoising performance of the FFDNet and
MCD-DCNN models are comparable. In the absence of a priori noise level, the denoising performance of
the FFDNetmodel drops sharply, while the denoising performance ofMCD-DCNN is not affected; therefore,
MCD-DCNN is more in line with actual seismic denoising.

INDEX TERMS Deep learning, seismic data denoising, noise estimate, MCD-DCNN.

I. INTRODUCTION
In the data acquisition stage of seismic exploration, large
amounts of noise are present in addition to the effective
signals due to external environmental interference. For exam-
ple, random noise is distributed in each frequency band of
the seismic signal. Because random noise is wider than the
frequency band of the effective signal, filtering can be per-
formed in the frequency domain to remove noise outside of
the effective signal frequency bandwidth. However, when the
random signal overlaps the frequency band of the effective
signal, the signal-to-noise ratio can be improved only by
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increasing the signal energy. Removing random noise in this
manner is often cumbersome and complex, and the results are
inadequate [1], [2]. With the improvement of mathematical
theory and the rapid development of computer hardware,
machine learning can be applied to perform noise removal
in seismic data.

In the traditional method of noise removal, a wavelet trans-
form uses the difference between the effective seismic signal
and the interference noise in the wavelet domain to sup-
press noise by setting different thresholds, which enhances
the effective signal [3]. In the wavelet threshold denois-
ing method, wavelet decomposition is performed on the
acquired seismic signals, and a set of wavelet coefficients
are estimated. The removal of noise is achieved through
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threshold modification, wavelet reconstruction and other
operations. Using the frequency contents in the seismic data,
Chen et al adaptively decomposed nonstationary seismic data
into empirical components through empirical wavelet trans-
form (EWT) and selected the first component to represent the
useful signal. This idea was adopted to denoise seismic data
and achieved good results [4]. Mortezanejad and Gholami
converted the seismic signal into the wavelet domain and
adjusted the threshold to denoising seismic data [5]. However,
the artificial control threshold is not efficient because of the
complex seismic signal features and large quantity of data.

Deep learning based on probability and statistics has been
widely used in computer vision processing, speech process-
ing and other fields. Deep learning methods, which can mine
the hidden features of complex data, map low-dimensional
data into high-dimensional data [6]–[8]. When deep learning
is applied to seismic signal processing, a single trace dataset
can deepen the learning network to realize global (profile)
feature extraction and suppress random noise and other inter-
ference signals in seismic data [9]. The deep learningmethods
that are used to remove noise from seismic signals have the
following problems. First, processing data in seismic explo-
ration requires extremely deep networks [10]. However, as the
network deepens, gradient disappearance and explosion prob-
lems are prone to occur. This problem can be solved by
adding a residual module to the network [11]–[13]. Second,
when a deep learning network is used to denoise seismic
data, it is necessary to conduct an artificial evaluation of the
noise in the data. However, it is very difficult to use artificial
methods to estimate the noise of seismic signals [14], [15]
because the noise frequency bandwidth and other components
of seismic data are complex [16], [17]. An unsupervised
learning neural network does not need to estimate noise, and
the features of noise are directly obtained from the train-
ing data to quickly build a network [18], [19]. In a deep
convolutional autoencoder network, the performance of the
network is optimized through sample training, to achieve
the purpose of noise removal [20], [21]. The autoencoder
network consists of an encoder and a decoder. The encoder
consists of a convolutional layer and a pooling layer, which
can map high-dimensional seismic data to low-dimensional
seismic data. The encoder is sparsely represented to obtain the
features of the effective signal and noise in seismic data. The
decoder consists of a convolutional layer and an upsampling
layer and can amplify all the extracted features and perform
signal-to-noise separation. After suppressing noise, the signal
is recombined [22]. This method can handle general random
noise; however, when dealing with complex noise, the signal
is often greatly reduced.Moreover, poor noise removal effects
occur when processing seismic data with multifrequency ran-
dom noise.

In response to the above problems, experts have improved
the denoising effect by deepening the convolutional neural
network. For example, the feed-forward denoising convo-
lutional neural network (DnCNN) based on discriminative

learning uses residual units to predict noise, output residual
data and remove noise [23], [24]. Instead of training the
input data, the DnCNN trains the residual between the input
data and the predicted data to reduce the number of calcu-
lations. Using this training method will increase the depth
of the network while maintaining the performance of the
network. However, the DnCNNhas limited flexibility, and the
learnedmodel can only target a specific noise level. The effect
of removing Gaussian noise is excellent in the DnCNN-B
model, but it is difficult to apply to seismic data contain-
ing various complex noises [25], [26]. Therefore, experts
expanded the noise level as part of the network input. For
example, Zhang et al. proposed a fast and flexible neural
network (FFDNet) to remove random noise from seismic
signals [27]. Unlike the DnCNN, the FFDNet expands the
noise level to the dimension of the input data, and then
the noise and input data are input into the CNN together.
Additionally, the input data are downsampled and output after
being upsampled. In this way, while ensuring the effect of
noise removal, the process of noise removal is more efficient.
However, when the input noise level does not match the data
noise level, the performance of the model will be greatly
reduced.

In this regard, this paper proposes a seismic data denoising
method based on a noise estimation and deep convolutional
neural network (MCD-DCNN). Different from the conven-
tional deep convolutional network denoising (DCNN) model,
the MCD-DCNN is primarily composed of two modules:
the noise estimation module and the denoising module. The
noise estimation module adopts a multiscale convolutional
model to better extract the characteristics of complex noise in
seismic data. We use dense connections between each multi-
scale convolutional layer to avoid the problem of vanishing
gradients. In addition, dense connections can make better use
of the extracted features. We use the automatically estimated
noise level as part of the input to maximize the performance
of the denoising model. In the denoising module, we also
use a multiscale convolutional model with dense connections
instead of the conventional convolutional module in the con-
volutional neural network (CNN).

II. THEORY AND PROCESS
A. MULTI-SCALE DENSELY CONNECTED NOISE
ESTIMATION MODULE
In a CNN, different convolution kernels have different recep-
tive fields, and the features of the extracted data are also
different. The large-scale convolution kernel is suitable for
extracting global information, and the small-scale convolu-
tion kernel is suitable for extracting local information. In the
noise estimation of seismic data, convolution kernels of dif-
ferent scales are used to extract the features of the data,
which results in a more comprehensive seismic data feature
extraction. The multiscale convolutional structure is shown
in Fig. 1.
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FIGURE 1. The framework of the multiscale convolutional model. The
multiscale convolutional structure contains three branches, which are
constructed using 1 × 1, 3 × 3, and 5 × 5 convolutions. Among them, the
5 × 5 convolution is replaced by two 3 × 3 convolutions, which reduces
the number of calculations.

The original data collected by seismic exploration consists
of effective signals and noise and can be expressed as:

y(t) = x(t)+ v(t) (1)

where y(t) represents the original data collected by seismic
exploration, x(t) is the effective signal component in the data,
and v(t) is the noise. The calculation of the three channels is
as follows:

y1(t) = Conv
1×1

(yin(t)) (2)

y2(t) = Conv
3×3

(Conv
1×1

(yin(t))) (3)

y3(t) = Conv
3×3

(Conv
3×3

(Conv
1×1

(yin(t)))) (4)

where yin(t) is the input seismic noise data, y1(t), y2(t) y3(t)
are the feature data extracted by the three channels and Conv
is the convolution operation. After each convolution oper-
ation, ReLU and batch normalization are used to increase
nonlinearity, prevent overfitting, and reduce the amount of
calculation. Then, the results of the 3 branch convolutions are
feature spliced, and a 1 × 1 convolution is used to compress
the number of channels and reduce the amount of network
operations. Finally, the residual structure is used to fuse the
input features after the 1 × 1 convolution with the spliced
and compressed features to restore some of the original

features [28]. The specific calculation process is as follows:

ŷ(t) = Conv
1×1

(concat(y1(t), y2(t), y3(t))) (5)

yout = yin(t)⊕ ŷ(t) (6)

where concat represents the fusion of features, and ŷ(t) is the
data result of the 1 × 1 convolution operation after feature
fusion. Eqn. 6 is equivalent to the residual calculation, where
⊕ represents the addition operation of the data, and yout is the
output of the entire structure of the multiscale convolution.
To increase the utilization of data features, a dense con-
nection method is adopted between multiscale convolutions.
The structure of the dense connection network is shown in
Fig. 2. This structure can combine the information features
of one convolutional layer with the information extracted by
the previous convolutional layer through feature splicing to
strengthen the ability of feature extraction. In addition, after
each convolution, the batch normalization layer and ReLU
are used to increase the operating efficiency and nonlinear
expression of the model. This connection method results in
a very large amount of calculations while reusing feature
information. Therefore, after each multiscale convolution, a
1× 1 convolution is used to compress the number of channels
and reduce the amount of network operations [29].

In a dense connection, the input of the i-th layer is ŷi−1,
and the output is ŷi.

ŷi = Hi([ŷ1, ŷ2, . . . ŷi−1]) (7)

where [ŷ1, ŷ2, . . . ŷi−1] are all the features in front of the con-
catenation of i layer, andHi represents the nonlinear mapping
combination of batch normalization and ReLU operations.

In general, there are two structures to estimate seismic
noise data: multiscale convolution and dense connection. The
dense connection can be regarded as the main framework
of the noise estimation module, and the multiscale convo-
lution is the basic operational unit of the module. We use
the multiscale convolution to fully extract the features of
seismic data and use the dense connections to ensure that
these features are fully utilized. This structure combination
will increase the number of calculations. Therefore, a batch
normalization and 1 × 1 convolution operation are used
after each operation. Batch normalization can maintain the
same distribution of seismic data after each operation, which
can effectively prevent overfitting. The 1 × 1 convolution
can compress the channel and speed up the training of the
model. In the noise evaluation module, we use the mean
square error (MSE) as the loss function. Assuming that the
input is noisy seismic data related to the noise level σ , our
optimization goal is represented by Eqn. 8. Finally, we use
an adaptive moment estimation (Adam) algorithm [30] to
optimize the loss function L(σ ).

L(σ ) =
1
2N

N∑
i=1

∥∥yi − ŷi∥∥2 (8)

It should be noted that the estimated noise level σ is related
to the predicted value ŷi. The predicted value ŷi is determined
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FIGURE 2. The structure of the dense connection network. A densely connected block contains a multiscale convolution structure, a batch normalization
method and an activation function. Batch normalization helps to pull the input distribution from the saturated area to the unsaturated area. This reduces
the gradient dispersion, improves the training speed, and greatly accelerates the convergence process. The ReLU is more conducive to gradient descent
and back propagation and avoids gradient explosion and disappearance problems.

FIGURE 3. The CNN framework. The structure of the CNN can be divided into five layers: input, convolutional, activation, pooling and fully connected.
In the input layer, we can improve the running speed of the network through the processes of upsampling and downsampling. The convolutional layer is
the core module of the CNN because it realizes the extraction of data features through combining local perception areas, sharing weight, and using
multiple convolution kernels, and then transfers the extracted features to higher dimensions. The activation layer increases the nonlinear output of the
network through the excitation function and improves the performance of the network. Batch normalization (BN) unifies the data to a similar distribution
range, reducing the probability of gradient explosion or disappearance. The pooling layer reduces the number of parameters and the dimensionality of
the features extracted by the network. This layer also compresses the data to reduce overfitting and improve the fault tolerance of the model. The fully
connected layer integrates the extracted features and outputs them. The convolutional, BN and activation layers are considered hidden layers.

by the weight wi and bias bi, and the specific calculation
is shown in formula 9. Therefore, the module’s evaluation
of noise is essentially the result of optimizing parameters
wi and bi.

B. DENOISING MODULE
The main purpose of the CNN that is used in seismic data
denoising is to extract the characteristics of seismic data
through the convolution operation. As the number of convo-
lutions increase, the features extracted by the network rise
from a low-dimensional space to a high-dimensional space,
and features become increasingly more abstract. The overall
performance of the networkwill also improve. Feature extrac-
tion is a process of mathematical mapping. This mapping is
related to the weight and bias terms. The mapping relation-
ship is given by Eqn. 9.

ŷi = H (
n∑
i=1

wi ∗ xi + bi) (9)

where wi is the weight term, b is the bias term. and ∗ is a
convolution operation. To increase the nonlinear ability of
the network, we add the ReLU after each convolutional layer.
The variable H in Eqn. 9 represents the nonlinear mapping.
The output of the hidden layer is used as the input of the
fully connected layer at the final part of the network. The
extracted features pass through the fully connected layer to
output denoised seismic data. The specific process is shown
in Fig. 3.

The features extracted by the CNN are used to recon-
struct denoised effective seismic data [31]. There are two
disadvantages of this process. First, the feature complexity
of the effective signal data are much greater than that of
the noise, which requires very high network performance.
Second, directly reconstructing effective signal data often
results in the loss of a large amount of characteristic infor-
mation [32]. Therefore, using the idea of noise separation,
the cost of directly predicting noise is far less than the cost
of directly predicting effective signal data [33]. The specific
structure is shown in Fig. 4.
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FIGURE 4. The D-CNN framework. The structure of the D-CNN is similar to the CNN. The only difference in the two networks is that the clean and
effective signal data of the prediction object in the D-CNN becomes the direct prediction noise in the CNN. Then, the denoised data are output by the
residual method.

FIGURE 5. The denoising module framework. In the architecture of the entire model, we refer to the model of reference [27]. The denoising model divides
the seismic data into 4 sub-data through down-sampling. The sub-data and the noise level estimated by the noise evaluation model are used as the input
of the denoising model. In order to fully extract the features of seismic data and make full use of these features, we replaced the convolutional network
in the original model with multi-scale convolution and dense connection.

Problems with the CNN, such as gradient explosion or
disappearance and network performance degradation, occur
as the network deepens. Zhang, et al proposed the DnCNN,
which uses residual learning and batch normalization to
deepen the network, increase the training speed, and improve
the performance of the network. Since the network directly
trains the noise, formula 1 can be rewritten as:

v(t) = y(t)− x(t) (10)

We use the residual data v(t) and the mean square error of
the pretrained residual data as the loss function. The output
of the model is shown in the red rectangular circle in Fig 4.

L(θ ) =
1
2N

N∑
i=1

‖R(y(t); θ )− v(t)‖2 (11)

where θ is the parameter of the denoisingmodule, whose opti-
mization satisfies the goal of the entire network, R(y(t); θ )
is the pretrained residual data, and v(t) is the residual data
related to the noise in the original data.

We improve the CNN structure in Fig. 4 by replacing
the CNN in the network with multiscale convolutions and

dense connections. The multiscale convolutions can extract
richer seismic data features, and the dense connections can
make full use of the extracted features. The denoising module
framework is shown in Fig. 5.

Regardless of how the CNN network is improved, it is
necessary to estimate the noise level in the original seismic
data. The overall process of seismic data denoising is shown
in Fig. 6. The noisy seismic data are input into the noise
estimation module. The noise estimation module outputs the
noise estimation. We splice the noise estimate with the origi-
nal seismic data and input the result into the denoisingmodule
to obtain clean seismic data. The densely connected structure
is adopted in the noise estimation module so that the noise
estimation can reflect the details of the original seismic data
to be obtained.

III. SEISMIC NOISY DATA CLASSIFICATION AND
MODEL EVALUATION INDEX
A. CLASSIFICATION OF SEISMIC NOISY DATA
Noise present in seismic exploration data can be roughly
divided into two categories. The first category is regular
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FIGURE 6. The seismic data denoising process. The specific steps are: 1) Prepare the seismic input data. 2) Input the noisy
seismic data into the denoising module. 3) Start the optimization with Eqn. 8 as the loss function. 4) Back-propagate the
error using the noise estimation module. 5) Repeat steps 2-4 until the noise estimation module reaches the optimum
level. 6) Input the estimated noise level and the corresponding noisy seismic data into the denoising module. 7) Start the
optimization with Eqn. 11 as the loss function. 8) Back-propagate error using the denoising module. 9) Repeat steps 6-8
until the denoising module reaches the optimal level. 10) Output the denoised seismic data.

FIGURE 7. The categories of noisy seismic data. (a) The simple synthetic
seismic profile data (before migration stack). (b) The shallow simple
stratum seismic profile data (after migration stack). (c) The deep complex
stratum seismic profile data (after migration stack). In (a), the upper red
circle is the position of the direct wave (after the seismic source is
excited, and the seismic wave has directly reached the wave form of the
geophone along the ground surface). The rest of the red circle marks the
stratum reflection interface.

noise, and an example is industrial electrical interference.
There is a tendency for the frequency or apparent speed of
this type of noise to occur at a specific value. The conven-
tional denoising method removes regular noise based on the
difference between the regular noise and effective signal.
The second category is irregular or random noise. Random
noise is not only related to the field collection environment
(ocean, land, mountains, plains, etc.) but is also related to
the underground geological environment. The difficulty of
random noise removal is different for different geological
environments, but it is especially difficult in the geological
environment, which is the focus of this paper.

We roughly divide the geological environment into two
types: the horizontal strata in the subsurface and the deep
complex units, as shown in Fig. 7. Although the random
noise is complicated in the horizontal strata in the subsurface,
the effective seismic signal features are obvious. This type
of data distribution is very beneficial for denoising. In the
deep complex units, the seismic data are very complex. This
phenomenon makes it very difficult to remove random noise
from seismic data. In summary, we divide noisy seismic
data into simple and complex categories. The term simple
corresponds to horizontal strata in the subsurface, and the
term complex corresponds to deep complex units.

FIGURE 8. The denoising module stability test. The loss function
converges when the epoch is set to 2000. When the epoch is set to 4000,
the range of change is stable at approximately 0.01, which meets the
requirements of this experiment. When the experiment needs to retrain
the model, the epoch is set 4000 to save time while ensuring the
performance of the noise evaluation module.

B. EVALUATION INDEX
In this experiment, the peak signal-to-noise ratio (PSNR) and
the root mean square error (RMSE) were used to evaluate
the denoising effect. The PSNR and RMSE are calculated as
follows:

PSNR = 10log10
‖ x ‖2

‖ ŷ− x ‖2
(12)

RMSE =

√
‖ ŷ− x ‖22
T × J

(13)

where ‖ x ‖2 is the power of effective signal, ‖ ŷ−x ‖2 is the
power of noise, J is the number of sampling points per track,
and T is the number of tracks.

IV. MODEL TRAINING AND PARAMETER SETTING
A. NOISE ESTIMATION MODULE PARAMETER SETTINGS
For the noise evaluation module, the main parameters are the
convolution kernel size of the multiscale convolutional neural
network, the number of channels, and the length of dense
connections. Under the premise of fully extracting seismic
data features and to take into account the efficiency of model
training, we set the convolution kernel size of the multiscale
convolutional network to 3 × 3 and adopt the three-channel
mode. For dense connections, we use 4 multiscale convolu-
tion modules. Equation 8 is used as the loss function to test
the stability of the module, that is, the relationship between
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FIGURE 9. The effect of different learning rates. (a) The loss value of the denoising model with different epoch settings (b) The PSNR of the denoising
model with different epoch settings.

epoch and loss value, as shown in Fig. 8. Through multiple
iterations, we set the number of epochs of the denoising
module to 4000.

B. DENOISING MODULE PARAMETER SETTINGS
Since the denoising module uses a deeper network, the
parameters of the module not only affect the performance, but
also affect the calculation speed. Therefore, we must consider
operating time and cost when selecting parameters. In this
optimization process, the PSNR was used as the evaluation
index.

1) LEARNING RATE
As an important parameter of the denoisingmodule, the initial
learning rate determines the convergence effect and speed of
the algorithm, as well as the effect of noise removal. In the
experiment, the model is tested with different learning rates,
as shown in Fig. 9.

When the learning rate is set to 0.1 or 0.01, the performance
of the model is not optimal, and the PSNR does not reach the
expected goal of the experiment. When the learning rate is set
to 1 × 10−5 or 1 × 10−6, the performance of the denoising
module improves but is still not optimal; however, the training
time of the module is twice as long when the learning rate is
set to 0.0001. When the learning rate is 10−6, the PSNR of
the denoising module greatly fluctuates and the performance
is unstable. Based on the above factors, we set the learning
rate to 0.0001.

2) CONVOLUTION DEPTH (CONVOLUTIONAL LAYERS)
To pursue better nonlinear expression ability, it is generally
necessary to deepen the network and learn more complex
transformations to handle more complex feature inputs. This
is especially important for complex seismic data from similar
seismic explorations. Therefore, deepening the network could

FIGURE 10. The denoising effect of different convolutional layers.

improve the denoising ability of the model to a certain extent.
However, as the network deepens, problems such as gradient
instability and network performance degradation occur. The
performance of the denoising module is tested at different
network depths (10, 15, 20, 25 and 30 layers). The test results
are shown in Fig. 10.

When the number of network layers is set to 10,
the denoising performance is significantly lower than the
other networks. Considering the denoising effect from
15 to 30 layers, the performance of the model does not
decrease with the deepening of network layers; however,
there is no significant improvement. Based on the above
factors, the depth is generally set to 15 layers.

3) PATCH SIZE AND CONVOLUTION KERNEL SIZE
The patch size is the size of the data input at one time and
represents a small piece of the entire seismic data. To test the
impact of different data size inputs on the network, the depth
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FIGURE 11. The effect of different patch sizes and convolution kernel sizes. (a) is the effect of patch size, (b) is the convolution kernel size.

TABLE 1. Model training time based on convolution kernel size.

of the network was set to 15, and the size of the convolution
kernel was set to 5 × 5. Different data sizes (2 × 2, 16 × 16,
32× 32, 64× 64, 96× 96) were used as input. The denoising
module uses the same data. The performance is shown in
Fig. 11(a). The 2× 2 data input does not improve the model.
When the input data size changes from small to large, the
difference in the denoising effect is not obvious; however,
the stability of the network is different. For example, when
the patch size is 16 × 16, the PSNR fluctuates greatly. The
patch size of 64 × 64 is selected as the size of the data input
after considering the comprehensive results.

In general, the larger the size of the convolution kernel
is, the larger the receiving field of view, the greater amount
of information received, and the better the global features
obtained. However, as the size of the convolution kernel
becomes larger, the number of calculations required by the
network model increases sharply. In the case of the same
computer hardware, the depth of themodel is affected, and the
calculation performance may also be reduced. Convolutional
kernels of 3 × 3, 5 × 5, 7 × 7, 9 × 9 are used to verify the
performance of denoising module in seismic data processing,
as shown in Fig. 11(b).

For an input data size of 64 × 64, when the convolution
kernel is increased from 3 × 3 to 5 × 5, the effect is signif-
icantly improved. After a convolution kernel size of 5 × 5,
as the size of the convolution kernel increases, the effect does
not significantly change; however, the training time increases
significantly, as shown in Table 1. Considering time as a
factor, we set the size of the convolution kernel to 5 × 5.
After a series of model training, the parameter settings of
MCD-DCNN are shown in Table 2.

TABLE 2. Main parameter settings of the MCD-DCNN.

V. MODEL TEST AND RESULT ANALYSIS
To test the application of this model, we divided the experi-
ment into two stages. The first stage was the noise evaluation
experiment. The second stage was the MCD-DCNN denois-
ing performance experiment. In the second stage of the exper-
iment, we used single-trace seismic data as the test object
to verify the denoising ability of the MCD-DCNN model
because the feature extraction of single-trace seismic data
only involves the horizontal and vertical directions. Second,
we used simple seismic profile data to test the performance
of the MCD-DCNN model. The simple profile data included
synthetic data and actual shallow seismic profile data. These
two types of seismic data are shown in Fig. 7 (a) and Fig. 7 (b)
in the second part of this paper. Finally, we changed the test
object into complex deep seismic data which are shown in
Fig. 7(c). The seismic wave reflection interface of this kind of
seismic data fluctuates greatly and is discontinuous, and the
noise is difficult to remove. The experimental research envi-
ronment was a CentOS7, an Intel Core i5-8400 processor, and
an NVIDIA RTX2080Ti GPU. The programming language
was Python 3.6.6.

A. NOISE EVALUATION MODULE EXPERIMENT
In this portion of the experiment, we selected 100 seismic pro-
file data. Among them, type (a) data contains 40 profiles, and
types (b) and (c) data contain 30 profiles each. Each seismic
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TABLE 3. Noise estimation of three kinds of seismic data under different noise levels.

profile consists of 500 single-trace data. Each seismic trace
has 1201 sampling points, and the sampling interval is 2 ms.
Part of the data are shown in Fig. 12.

In the experiment, we selected 10 profiles for each of the
three types of data as the test set, and the rest of the data as
the training set. In the three types of data, we added different
levels of noise (σ :10, 20, 30, 40, 50, 60, 70) and used the
histogram-based noise estimation (HBNE) algorithm, quan-
tile noise estimation (QNE) and discrete wavelet transform
noise estimation (DWTNE) to compare with the model pro-
posed in this paper. Table 3 shows the noise estimates and
RMSE of each method on the three data types under different
noise levels in detail.

In Table 3, we display the results with the best evaluation
results in black font. It can be seen from Table 3 that the
noise estimation model proposed in this paper has the best
result. Integrating Table 3 and Fig. 12, the HBNE, QNE and
DWTNE show three major characteristics. First, the HBNE,
QNE and DWTNE have different noise estimation results
for noisy seismic data with different noise levels. When the
noise level is in the range of 10 to 50, and the estimation
results of the HBNE, QNE and DWTNE are within the
acceptable range (RMSE less than 3.5).When the noise levels
are 60 and 70, the evaluation performance of the HBNE,
QNE and DWTNE decrease rapidly because it is difficult
to distinguish the data of the effective seismic signal from
the data of the noise signal when the noise level increases.
In addition, when the test data changes from simple to com-
plex, the evaluation effect of the HBNE, QNE and DWTNE
also decreases. However, the decline is not obvious. This is
a common problem of conventional noise estimation models
when dealing with complex data. Finally, when the noise
level in the seismic data increases, the estimated results of

the HBNE, QNE and DWTNE are generally lower. Similar
to the previous reason, when the effective signal data and the
noise signal data are difficult to distinguish, the traditional
method easily treats the effective signal as noise, which will
lead to a low evaluation result. The model proposed in this
paper adopts multiscale convolutions and dense connections,
which can fully extract the characteristics of seismic signals.
In particular, global features of seismic data can be extracted
for dense connections. This is different from traditional meth-
ods that only use local features of seismic data. Therefore,
when given complex and highly noisy seismic data, the per-
formance of the noise evaluationmodel proposed in this paper
is can still be considered. For example, when the noise level
is 70, the RMSE of the evaluation results of the model in
this paper on the three types of data are 0.36, 1.56, and 1.17,
respectively.

B. DENOISING EXPERIMENT
Through the first stage of the experiment, we found that the
results of noise estimation are not only related to the noise
level in the seismic data, but are also related to the complexity
of the seismic data. Therefore, in the denoising experiment,
we divided the test data into three parts: synthetic, simple
and complex. Finally, we compared the DnCNN and FFDNet
models with the MCD-DCNN model proposed in this
paper.

1) DENOISING EXPERIMENT OF SINGLE-TRACE
SEISMIC DATA
First, the characteristics of seismic single-trace data only
involve the horizontal and vertical directions. The data struc-
ture is relatively simple. Second, the seismic single-trace
data are a one-dimensional input, which does not involve the
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FIGURE 12. The RMSE of the noise estimation of different methods. (a) The synthesized seismic profile data. (b) The submerged and simple seismic data.
(c) The deep and complex seismic data. The figure shows the test results of 10 seismic profiles of each type of data. The noise level σ gradually rises
from 10 to 70.

FIGURE 13. Comparison of the denoising effect of single trace data. (a) The original noisy data. (b) The
denoising result of the DnCNN. (c) The denoising result of the FFDNet. (d) The denoising result of the
MCD-DCNN. The red curve is the effective seismic signal data. The blue curve in (a) is the noisy data, and
the blue in (b)and (c) are the clean signal data after denoising.

feature association of adjacent seismic traces. These charac-
teristics make it easy to denoise this type of seismic data. The
specific denoising effect is shown in Fig. 13.

Although each of the three methods denoised the data,
their denoising effects are different. This is mainly mani-
fested in two aspects. First, data with relatively large seismic

signal amplitude changes, which usually correspond to the
reflection interface of seismic waves, have different denois-
ing effects. The details are shown in the green ellipses and
circles in Fig. 13. Although the DnCNN retains the general
amplitude trend, it excessively suppresses effective seismic
signals due to excessive denoising.
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FIGURE 14. The denoising effect of the seismic profile data. (a) Clean data. (b) Noisy data. (c) The
DnCNN denoising effect. (d) The FFDNet denoising effect. (e) The MCD-DCNN denoising effect. (f) The
noise removed by the DnCNN. (g) The noise removed by the FFDNet. (h) The noise removed by the
MCD-DCNN.

The denoising effect of the FFDNet is better than that of
the DnCNN. This is due to the input of the initial noise that
is mixed with seismic noise data. The FFDNet model first
sets an initial value of the noise level _

σ , and then continu-
ously adjusts the initial value through residual learning and
artificially set thresholds. Finally, through repeated iterations,
the model achieves the best denoising performance [34]. This
method of data processing alleviates noise level problems
in the unclear and noisy data, which would otherwise lead
to the degradation of the model’s denoising performance.
However, this process requires a very large amount of time to
repeatedly optimize the initial value of the noise level through

the threshold, which reduces the efficiency of denoising. The
process of optimizing the initial value of the noise level
by the FFDNet is accompanied by denoising. In addition,
the setting of the initial value greatly affects the denois-
ing performance of the FFDNet. The orange rectangle in
Fig. 13 shows the shortcoming of FFDNet model. Due to the
initial noise level setting problem, FFDnet has a poor denois-
ing effect during data smoothing. Since theMCD-DCNN suc-
cessfully evaluates the noise level, the denoising ability of the
model reaches its optimal value. In addition, no incomplete
denoising occurred in the DnCNN and FFDNet models when
smoothing the amplitude data.
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2) DENOISING EXPERIMENT OF SIMPLE SEISMIC
PROFILE DATA
Although single-trace seismic data are easier to denoise,
this process is inconsistent when denoising actual seismic
data. In seismic exploration, data are generally processed and
displayed in two-dimensional and three-dimensional forms.
In addition, the idea of processing a single trace and then
composing the profile abandons the horizontal characteristics
of seismic data. The underground strata not only has vertical
characteristics but also horizontal characteristics, which are
more important. Therefore, in this stage of the experiment,
we input multiple data together, strengthen the extraction of
horizontal features, and complete the denoising of seismic
profile data. This stage of the experiment is divided into
denoising two types of profile data: simple and complex.
When dealing with simple seismic profile data denoising,
we select 100 synthetic profile data and 100 actual profile
data. Each seismic profile data contains 500 seismic traces.
Each seismic channel contains 1201 data, and the sam-
pling interval is 2 ms. Among the data, we randomly select
10 profiles from the two types of data as the test set. Using
synthetic seismic profile data as an example, the denoising
effects of the DnCNN, FFDNet and MCD-DCNN when the
noise level is 30 are shown in Fig. 14 and Table 4.

TABLE 4. Denoising effect of simple seismic profile data.

We analyze the characteristics of each denoising method
from three aspects of seismic waves: strong reflection inter-
face, weak reflection interface and smooth data. For strongly
reflective interfaces, the DnCNN maintains the basic shape
of the seismic wave reflection interface when denoising.
Although the DnCNN retains the trend of the amplitude data,
the amplitude is compressed, which is a manifestation of
excessive denoising. When this behavior is reflected on the
seismic profile, the strong reflection interface is blurred and
the details are shown in the green rectangle in Fig. 14. In the
denoised data, we find obvious ‘‘traces’’ of the seismic reflec-
tion interface. The ‘‘trace’’ refers to the position indicated
by the red arrow in Fig. 14(f). The weak reflection interface
(as shown by the red rectangle in Fig. 14) was not retained but
was instead directly removed by the DnCNN model. For the
entire profile, theDnCNNmodel does not completely denoise
the data as there is residual noise visible to the naked eye.

The denoising effect of the FFDNet is better than that of
the DnCNN. The denoising effect of the FFDNet and the
corresponding noise that is removed are shown in Fig. 14(d)
and Fig. 14(g). When the FFDNet is denoised, the strong
reflection interface remains relatively complete, and the weak
reflection interface can also be retained, as shown in the red

rectangle in Fig. 14(d). There are only a few ‘‘traces’’ of
the strong reflection interface in the removed noise. In the
entire profile, there is only a small amount of residual noise.
In general, the denoising effect of the FFDNet is within the
acceptable range.

The denoising effect and amount of noise removed by
the MCD-DCNN are shown in Fig. 14(e) and Fig. 14(h).
Compared with the original clean data, the strong and weak
reflection interfaces of the MCD-DCNN after noise removal
can be completely retained. In the removed noise, no ‘‘trace’’
of the effective signal was found. This shows that the
MCD-DCNN protects the original effective signal data to the
utmost extent when denoising.

3) DENOISING EXPERIMENT OF COMPLEX PROFILE DATA
For complex seismic profile data, denoising becomes difficult
due to the lack of obvious laws in the reflection interface.
In this stage of the experiment, the dataset was replaced with
a complex seismic profile. The number and structure of the
dataset are the same as those of the simple seismic data.
Similar to the denoising experiment of the simple seismic
profile data, we randomly select 10 profiles as the test set. For
the DnCNN and FFDNet, we clearly provide the noise level
of each seismic profile data. For the MCD-DCNN, we do
not specify the noise level in the data to test the difference
between these models in an ideal state. The results of the test
are shown in Table 5.

From Table 5, we can see that when the noise level in
the noisy seismic data increases, the denoising performance
of the DnCNN, FFDNet and MCD-DCNN models decrease.
When the noise level is 30, the PSNR of the DnCNN, FFDNet
andMCD-DCNNmodels in the simple data set denoising test
are 21.39 dB, 23.51 dB, 27.49 dB, respectively. The PSNR
of the denoising test on the complex data set are 18.83 dB,
21.91 dB, 22.02 dB, respectively. When the noise level of
seismic data are given, the DnCNN has a better denoising
effect on low-noise seismic data. For example, when the noise
level is 10 and 20, the PSNR is 26.07 dB and 21.24 dB,
respectively, and the denoising effect is above 20 dB. As the
noise level in seismic data increases, the denoising perfor-
mance of DnCNN declines rapidly. When the noise level
is 70, the PSNR is only 9.21 dB.

Due to the accurate initial noise value, the denoising per-
formance of the FFDNnet can reach its best state. When
the noise level in the seismic data are less than 50, the
PSNR of the FFDNet is above 20 dB. Compared with the
DnCNN, the denoising effect of the FFDNet is obviously
better. As the noise level in the data increases, the perfor-
mance gap becomes increasingly obvious. Since there is no
noise level in the given data, theMCD-CNNneeds to estimate
the noise in the test set. The error of noise estimation will
comparatively affect the denoising performance of the model.
However, it can be seen from Table 5 that the denoising
effect of the MCD-DCNN is slightly better than the FFDNet
because we use multichannel convolutions and dense connec-
tions in the denoising module of MCD-DCNN. The features
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TABLE 5. PSNR of complex seismic profile data denoising results.

that are extracted by multiscale convolutions are richer, and
the dense connections can make more effective use of the
extracted features. These measures can effectively improve
the denoising performance of the model.

To fully verify the denoising performance of the
MCD-DCNN, we fix the noise level of the data in the test
set at 40. To save time, we only compare with the FFDNet.
In the experiment at this stage, we did not set the FFDNet
noise level of the seismic data. Instead, we set the initial value
of the FFDNet to 10, and then denoised the seismic data with
a noise level of 40. Then, we gradually increased the initial
value until 70. The results of the test are shown in Table 6.

From Table 6, we can see that when the initial noise
level setting does not match the real noise level in the data,
the denoising performance of the FFDNet decreases sharply.
When the initial noise level and the actual noise level are the
same, the denoising performance of the FFDNet will be most
optimal. This shortcoming limits the practical application
of the FFDNet in seismic data denoising. When denoising
the actual seismic data, it is impossible for us to know the
true noise level of the seismic data, and it is impossible to

TABLE 6. Noise reduction effect without prior noise level.

set the initial noise level from low to high and test each
profile. When the MCD-DCNNmodel proposed in this paper
processes seismic data with a noise level of 40, the noise
level is evaluated (the average evaluation value of 10 profiles
is 40.17), and the flexibility of denoising is far greater than
that of the FFDNet.

C. EXPERIMENTAL DISCUSSION
The purpose of this experiment is to restore effective seismic
signals as much as possible according to the characteristics
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of random noise in seismic data. Random noise has wide
frequency bands and complex components and is widely
distributed in effective seismic signals. In this regard, we pro-
posed the MCD-DCNN model. The advantage of this model
is that it can evaluate the noise in the seismic data and
use multiscale convolutions to extract more data features.
In addition, this model also uses dense connections to make
full use of the extracted features, and improves the denois-
ing performance of the model. On the basis of the above,
we used single-trace, simple and complex data to simulate
the seismic denoising process in the real environment to
test the model. For seismic profile data, the denoising per-
formance of the FFDNet and MCD-DCNN is comparable
for a given noise level in the data. he DnCNN’s denoising
effect is slightly worse. he FFDNet requires the noise level in
the given data, which is not feasible for actual seismic data
denoising.

Whether it is the single-trace data denoising method or the
noise level in the given data, these situations do not conform
to the actual seismic data denoising. In this regard, we tested
the FFDNets andDnCNNs again without specifying the noise
level. The test results show that the denoising performance of
the FFDNet is greatly reduced, while the denoising perfor-
mance of the MCD-DCNN is not affected.

In general, the MCD-DCNN model proposed in this paper
has achieved certain effects in denoising seismic data, but
it also has shortcomings. First, the noise estimation and
denoising modules in the model require a large amount of
on-site seismic data for training. Therefore, data denois-
ing can only be carried out after the field acquisition of
seismic exploration is completed. The MCD-DCNN cannot
achieve real-time denoising in the field. In addition, the gen-
eral trend of seismic exploration data is three-dimensional,
while the MCD-DCNN model proposed in this paper is
two-dimensional. How to apply the model to 3D is our future
research direction.

VI. CONCLUSION
This paper proposes the MCD-DCNN model for seismic
data denoising, which is divided into two modules: noise
estimation and denoising. In the noise evaluation module,
we use multiscale convolutions to enrich the features of the
extracted seismic data. In addition, the noise estimation mod-
ule uses dense connections to make full use of the extracted
features. These methods improve the quasi-curvature of noise
evaluation. In the denoising module, the noise evaluation
solves the problem of prior noise level when the existing
methods are used to denoise seismic data. On this basis,
we combined multiscale convolutions and dense connections
to greatly improve the flexibility and noise capabilities of the
model.

We tested the model with single-trace, simple and complex
data. In addition, we compared the MCD-DCNN model with
the more commonly used DnCNN and FFDNet models. The
comparison results show that, given the noise level in the

seismic data, the denoising performance of the MCD-DCNN
and FFDNet are comparable. Finally, we simulated the
real environment of field seismic exploration. The simu-
lation results show that the denoising performance of the
MCD-DCNN model is far greater than that of FFDNet.
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