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ABSTRACT Novel, robust, and computationally attractive non-data-aided (NDA) and data-aided (DA)
single and joint parameter estimators for faster-than-Nyquist (FTN) signaling are presented. By using the
sixth moment alongside the second and fourth, it is possible to formulate an estimator allowing the joint
blind estimation of the FTN symbol-packing ratio (SPR) (speed-up parameter) as well as the signal-to-
noise ratio (SNR). The proposed estimators are robust in that they are based on uniformly spaced samples
of the FTN signal taken at a fairly arbitrary FTN rate, insensitive to carrier and timing phase errors. While
avoided in Nyquist signaling, the inter-symbol interference (ISI) term deliberately introduced in FTN signals
is advantageously utilized for the estimation of SNR and SPR. The derivations are performed on a general
complex base-signaling pulse and are illustrated for the commonly used root-raised cosine (RRC). Novel
FTN Cramer-Rao lower bounds (CRLB) are derived to benchmark the efficiency of the proposed estimators.
Extensive simulations are provided to illustrate the performance of the proposed estimators with respect to
variations in all the relevant parameters and indicate that the estimators work best for the practical range
of lower-intermediate values of SPR and SNR. The computational features of the proposed estimators,
in addition to their robustness against carrier and sampling errors, make them valuable in many practical
applications that incorporate cognitive radio (CR) alongside FTN.

INDEX TERMS Cramer-Rao lower bound (CRLB), faster-than-Nyquist (FTN), parameter estimation,
root-raised cosine (RRC), statistical moments, signal-to-noise ratio (SNR), symbol-packing ratio (SPR).

I. INTRODUCTION
Originated by Mazo in 1975 [1], faster-than-Nyquist (FTN)
signaling [2 and references therein] has received much
attention, driven by a constantly increasing need for faster
communications and a more efficient bandwidth utilization.
FTN has enjoyed a widespread use in diverse applications
such as terabit super-channel transmission [3], [4], satellite
communications [5], [6], digital video broadcasting [7],
optical communications [8], [9], wireless smart grid secu-
rity [10], long haul underwater links [11], ultra-high-
definition TV [12], and mobile communications [13], [14].

The practical implementation of FTN systems requires
the knowledge (or estimate) of some key parameters of the
FTN signal, namely the signal-to-noise ratio (SNR) and the
symbol packing ratio (SPR). Such parameters are important
in many aspects, such as turbo equalization, adaptive coding,
and modulation [15]. They are also important in applications
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that incorporate cognitive radio (CR) alongside FTN, as in 5G
mobile communication [16], where an accurate estimate of
SNR and SPR is needed for an accurate radio scene analysis,
leading to more efficient resource utilization.

Much work has been proposed to estimate SNR for the
additive white Gaussian noise (AWGN) channel [17 and
references therein]. This includes the so called ‘‘M2M4’’ [18]
that is based on the second and fourth-order moments of the
received signal in addition to an approach [19] that uses up
to the sixth-order moment to cater for non-constant modulus
constellations. However, all these methods assume AWGN
and neglect the effect of the Inter-Symbol Interference (ISI)
by assuming Nyquist timing with no sampling errors. Such
assumptions are obviously invalid with FTN signals that
are characterized by a large ISI, in addition to colored
noise. The open literature contains almost no work related
to estimating the SNR of FTN signals, except for a recent
report by Liang et al. [20], which used a code-aided approach
based on expectation maximization (EM). Their proposed
iterative algorithm requires a noise decorrelation by applying
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the Cholesky factorization to the covariance matrix of the
colored noise following the receiver’s matched filter. The
simulation results show that the mean squared error (MSE)
of the estimated SNR asymptotically approaches the standard
Nyquist timing data-aided (DA) Cramer Rao lower bound
(CRLB) [21] for higher values of SNR. However, this method
has several limitations. First, it assumes perfect timing with
no sampling phase errors. Second, it is computationally
expensive because of the Cholesky factorization, in addition
to its iterative nature with a convergence that depends on
the initial estimate. Third, it exhibits a ‘‘waterfall’’ threshold
effect wherein theMSE sharply increases for SNR lower than
approximately 3 dB on average.

In parallel, much attention has also been given to
estimating the data symbol rate for Nyquist signaling, mostly
focusing on utilizing the cyclostationarity of the signal’s
statistical moments [22], with little emphasis given to the
estimation of the SPR of FTN signals. The most noticeable
recent report in this context is the work by Song et al. [23],
which uses a deep-learning approach for SPR estimation.
This method searches for the most likely SPR over a
discrete grid of possible values using a 5-layer deep neural
network (DNN). In addition to its resolution issue and high
computational cost, this method requires retraining of its
DNN whenever there are changes in the system parameters;
hence, it is less flexible to adapt to changing scenarios. In the
only other report related to the estimation of the symbol rate
of FTN signals [24], Abello et al. showed that these are
not second-order cyclostationary. Hence, the second-order
moment usually used for Nyquist signaling is insufficient to
estimate the data symbol rate for FTN, requiring the use of
the fourth-order moment. Exploiting the fact that the latter
exhibits peaks in its spectral signature, a heuristic methodwas
presented to search for the maximum value in the spectral
moment function. However, no conclusive results have been
obtained regarding the efficiency of this method.

To the author’s knowledge, no work can be found in the
open literature about a joint blind estimation of the SNR and
SPR of FTN signals. In this paper, we address this gap by
proposing novel robust estimators that use the sixth moment
alongside the fourth and second. They are computationally
efficient because they are based on simple time-averages
that may be enhanced online as more samples are gathered.
The proposed estimators are also robust in the sense that
they are insensitive to carrier and timing errors, requiring
only uniform samples of the received signal (following the
matched filter) taken at a fairly arbitrary FTN rate with an
arbitrary sampling phase. Finally, this work also fills another
gap in the open literature related to the absence of CRLB in
the context of FTN signaling for both SNR and SPR.

The remainder of this paper is organized as follows.
Section 2 is used to formulate the problem and establish the
notations used. In Section 3, we present some fundamental
results related to the statistical moments of the FTN signal.
Section 4 is devoted to the derivation of the proposed DA
and blind (NDA) joint and single estimators for the two main

FTN parameters, SNR and SPR. In Section 5, we derive novel
FTN CRLBs to benchmark the efficiency of the proposed
estimators. Section 6 is used to present the simulation results
for the special case of the root-raised cosine (RRC) signaling
pulse. Finally, Section 7 summarizes and concludes the paper.

II. PROBLEM FORMULATION AND NOTATION SETUP
In this work, we focus on estimating the SNR and SPR of
the base-band signal of a single channel in a multitone FTN
signal following carrier demodulation. The present treatment
is in the context of a flat channel, wherein the ISI is not due
to channel dispersions, but to the non-orthogonal signaling
coupledwith sampling errors. The case of dispersive channels
may be generalized, but at the expense of simplicity and
clarity of the following analysis. We assume a general
case of complex, unit-energy signaling pulse p (t) with an
autocorrelation denoted by p̂ (t). The latter is assumed to be
orthogonal with respect to T , the time interval between two
adjacent ISI-free symbols, that is, the inverse of the Nyquist
rate.

In the following, we assume that p (t) is band-limited to
1/T , hence P (f ) = 0 for |f | ≥ 1/T , with P (f ) denoting
the Fourier transform of p (t). Consequently, the k th-order
real-valued auto-convolution of |P (f )|2, denoted by P̂k (f )
for k = 0, 1, . . . (with P̂0 (f ) ≡ |P (f )|2), vanishes out of the
interval [-(k + 1)/T , (k + 1)/T ]. Hence, the autocorrelation
of p (t) (real and even-symmetric) is given by:

p̂ (t) =

1/T∫
−1/T

|P (f )|2 ej2π ftdf =

1/T∫
−1/T

P̂0 (f ) ej2π ftdf . (1)

Using the convolution property of the Fourier transform,
P̂k−1 (f ) is related to the k th power of p̂ (t) as:

p̂k (t) =

k/T∫
−k/T

P̂k−1 (f ) ej2π ftdf ; k = 1, 2, . . . (2)

and may be expressed in terms of the following recursion

P̂k (f ) =

k/T∫
−k/T

P̂k−1 (u) P̂0 (f − u) du

=

(k−p)/T∫
−(k−p)/T

P̂k−p (u) P̂p−1 (f − u) du;

p = 1, . . . [k/2] (3)

where [k/2] denotes the largest integer closest to k/2. Using
(3), we note the following special case of P̂2k+1 (f ) (k =
0, 1, 2, . . .) (odd-ordered auto-convolution of P̂0 (f ) ):

P̂2k+1 (f ) =

(k+1)/T∫
−(k+1)/T

P̂k (u) P̂k (f − u) du; (4)
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hence,

P̂2k+1 (0) =

(k+1)/T∫
−(k+1)/T

[
P̂k (u)

]2
du

= 2

(k+1)/T∫
0

[
P̂k (u)

]2
du (5)

owing to the even symmetry of P̂k (u).
We assume that the pulses p (t) are modulated by M-ary

circularly symmetric1 complex data symbols (e.g., MPSK
and MQAM, M ≥ 4) denoted by dn, and are transmitted at
the FTN rate, that is, at multiples of T̂ = αT where α(≤ 1)
is the SPR. We assume dn to be zero-mean, independent, and
uniformly distributed, satisfying the following conditions:

E {dn} = 0 = E {dndm}; for all n,m (6)

and

E
{
dnd∗m

}
= δnm (7)

where ‘‘ ∗’’ denotes the complex conjugate,E {.} the expected
value, and δn,m is the Kronecker delta function (equal to 1 for
n = m and zero otherwise). The independence of the data
symbols as well as (6) and (7) straightforwardly lead to the
following useful generalizations:

E

{
N∏
i=1

dni

}
= 0 ∀ N , ni (8)

and

E


[
N∏
i=1

dni

]M∏
j=1

d∗mj

=0; if N 6=M and ∀ni,mj

(9)

and

E


[

K∏
i=1

dni

] K∏
j=1

d∗mj


=

{
ψq if {ni} ¯̄2Kq

{
mj
}
, q = 1, . . . ,K

0 otherwise
(10)

where ψq accounts for non-constant-energy symbol con-
stellations (ψq = 1 for M-PSK), and ¯̄2Kq denotes the
qth pairwise-equal combination between {ni; i ∈ NK } and{
mj; j ∈ NK

}
with NK denoting set {1, . . .K }, K ≥ 2.

For example, such combinations include the case where all
indexes are equal, that is, {n1 = m1 = n2 = m2 = . . . =

nK = mK}, all the cases of a single distinct pair with all other

1For the sake of clarity and conciseness, we opted to focus on the more
commonly treated circular signaling (e.g., MPSK and MQAM, M ≥ 4)
corrupted by circularly symmetric Gaussian noise. The case of non-circular
signaling corrupted by non-circular noise may be treated in a similar
manner, except that it involves extended statistics with a more elaborate
combinatorial. For example, the fourth-ordermoment of a zero-mean circular
complex Gaussian variable is twice its variance, while for a real Gaussian RV
it is three times its variance.

indexes equal, namely {(nk = ml) and
(
ni = nj = mi =

mj 6= nk
)
; for all i 6= k and j 6= l}, . . . etc., ending with the

case where all K pairs are distinct. The following two special
cases corresponding to K = 2 and K = 3 illustrate the result
in (10) and are used in subsequent sections:

E
{
dn1dn2d

∗
m1
d∗m2

}
= η4δn1n2δn1m1δn1m2 + δn1m1δn2m2 (1− δn1n2 )

+ δn1m2δn2m1 (1− δn1n2 )

= (η4 − 2)δn1n2δn1m1δn1m2 + δn1m1δn2m2 + δn1m2δn2m1

(11)

and

E
{
dn1dn2dn3d

∗
m1
d∗m2

d∗m3

}
= η6

(
δn1n2δn1n3δn1m1δn1m2δn1m3

)
+ η4

3∑
u=1

3∑
v=1

δnumv
[
δnimk δnjml δninj (1− δnuni )

]
+

3∑
q=1

δn1mq
[(
δn2maδn3mb + δn2mbδn3ma

)
×
(
1− δn2n3

) (
1− δn1n2

) (
1− δn1n3

)]
= (η6 − 9η4 + 12)

(
δn1n2δn1n3δn1m1δn1m2δn1m3

)
+ (η4 − 2)

3∑
u=1

3∑
v=1

δnumv
[
δnimk δnjml δninj

]
+

3∑
q=1

δn1mq
[(
δn2maδn3mb + δn2mbδn3mb

)]
(12)

where in the above, i 6= j ∈ N3\{u}, k 6= l ∈ N3\{v}, a 6=
b ∈ N3\{q}, and η4 and η6 denote the expected value of the
fourth and sixth powers of the modulus of dn, respectively.

E
{
|dn|4

}
= η4 (13)

and

E
{
|dn|6

}
= η6. (14)

For M-PSK η4 = η6 = 1, however, for M-QAM, this
is not the case. For example, for a square 64-QAM data
constellation, the equally likely symbols (given by dn =
an + jbn where an, bn ∈ {±V ,±3V , . . .} with V = 1/

√
42)

have η4 = 609/441 and η6 = 20613/9261. Similarly for
16-QAM, V = 1/

√
10 with η4 = 33/25 and η6 = 49/25.

Next, let w(t) denote the complex, circularly symmetric,
wide-sense stationary (WSS), and zero-mean AWGN with a
two-sided power spectral density (PSD) equal to N0/2 (real
and imaginary part each has a PSD of N0/4). We assume that
w(t) is added to the transmitted FTN signal, resulting in the
following complex baseband signal in one receiver channel
after carrier demodulation:

r (t) =
[
ejφ(t)

]√
Es

∞∑
m=−∞

dnp
(
t − mT̂

)
+ w(t) (15)
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where Es denotes the symbol energy and φ(t) accounts for
possible carrier phase errors and/or frequency offsets. It is
assumed that φ(t) varies relatively slowly with time, so it may
be considered to be constant over the observation interval.
We assume that the receiver is based on the symbol-by-
symbol approach [25] rather than the trellis-based sequence
detector algorithm [26]. Hence, the receiver consists of a filter
matched to p (t) followed by a soft interference cancellation
equalizer [25]. The output of the matched filter is given by

y (t) = ŵ (t)+ ŝ (t) (16)

where ŝ(t) represents the signal-related part of the output
(desired sample plus ISI) and is given by

ŝ(t) =
[
ejφ
]√

Es
∞∑

m=−∞

dmp̂ (t − mαT ) (17)

where φ(t) is assumed to be constant over the interval of
interest, p̂ (t) is given by (1), and w(t) is the noise output of
thematched filter that is still zero-meanGaussian, but colored
noise. Its PSD is given by

Sŵ (f ) =
N0

2
|P (f )|2 , (18)

with a correlation function given by

Rŵ (τ ) ≡ E
{
ŵ(t)ŵ∗(t + τ )

}
=
N0

2

∞∫
−∞

|P (f )|2 ej2π f τdf

=
N0

2
p̂ (τ ), (19)

and variance equal to

σ 2
ŵ =

No
2
, (20)

because p̂ (0) = 1, a direct consequence of the unit-energy
assumption of p (t). We further assume that y(t) in (16) is
sampled at t = (n+ β) εαT (for a total of K samples), where
β and ε respectively, account for the sampling phase and rate
errors with |β| ≤ 0.5, and while ε is allowed to be an arbitrary
real number, it is practically expected to be close to unity.
Hence, the nth sample of the matched filter output, denoted
by y[n] is given by:

y [n] ≡ y ((n+ β) εαT )

= ŝ [n]+ ŵ [n] for n = 0, . . . ,K − 1, (21)

where

ŵ [n] ≡ ŵ ((n+ β) εαT ) (22)

and

ŝ[n]≡
[
ejφ
]√

Es
∞∑

m=−∞

dmp̂ ([(n+β) ε−m]αT ). (23)

As a prelude to the forthcoming results on the statistics of the
FTN signal as well as the estimator derivations, we present
the following pivotal proposition related to the power series
of the base pulse p̂ (t).

Proposition 1: Let Sk denote the power series of
p̂ ([λ− n]αT ) where λ is an arbitrary real number indepen-
dent of n. Then, Sk is finite, independent of λ for the sufficient
condition2 0 < α ≤ 1/k , inversely proportional to αT and is
compactly given by

Sk =
∞∑

n=−∞

[
p̂ ([n− λ]αT )

]k
=
µk−1

α
; k = 1, 2 . . . ; for 0 < α ≤ 1/k. (24)

where µk−1 is independent of α and λ and is given by

µk ≡
P̂k (0)
T
; k = 0, 1, . . . (25)

Proof of Proposition 1: The proof follows from the
substitution of p̂k (.) of (2) into the right-hand side (RHS)
of (24), interchanging the order of the summation and
integration, and using the standard result

∞∑
n=−∞

e±j2πnau = δ (au)

=
1
|a|
δ (u); for |au| < 1, (26)

where δ (u) is the Dirac delta function. This completes the
proof of Proposition 1. The fact that Sk in (24) is independent
of λ is remarkable and is the reason behind the robustness of
the estimators against sampling frequency and phase errors.

III. ON THE STATISTICAL MOMENTS OF THE FTN SIGNAL
This section sheds light on the statistical moments of the FTN
signal that will be used for the derivation of the upcoming
estimators. The following propositions first focus on the
FTN’s colored noise ŵ[n], then on its signal-related part ŝ[n].
Proposition 2:

E
{(
ŵ[n1]

)a1 (ŵ∗[n2])a2}
= δa1a2 [a1!]

[
N0

2
p̂ (|n1 − n2| εαT )

]a1
(27)

Proof of Proposition 2: Using the standard result on
the expected value of the product of zero-mean Gaussian
random variables [27] (being the sum of the products of the
expected value of all pair-wise combinatorial of these random
variables), in addition to the circularity [28] assumption of
w(t) (leading to the fact that E

{(
ŵ[n]

)a}
= 0; ∀a, n ),

as well as (19) and (22) we get the result of (27), where
‘‘a1!’’ denotes the factorial of a1 (equal to the total number
of combinations that distinctly pair each of the ‘‘a1’’ ŵ[n1]
terms with one of the ‘‘a1’’ ŵ∗[n2] terms). This completes
the proof of Proposition 2.

2Practically the range 0 < α ≤ 1/k may be relaxed in case the support
of H (f ) is less than 1/T . For example, for RRC, H (f ) is zero for f > (1 +
r)/2T , hence, the sufficient condition on α becomes 0 < α ≤ 2/[k (1+ r)].
As illustrated in the computer simulations of Section 6, it turns out that the
range of α may practically be expanded even further.
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Proposition 3: The even-ordered moments of ŵ[n],
denoted by Mŵ2q (q = 1, 2, . . .), are given by

Mŵ2q = E
{∣∣ŵ[n]∣∣2q} = [q!] [N0/2]q (28)

Proof of Proposition 3: Using the fact that p̂ (0) = 1,
(28) is a special case of (27) with n1 = n2 and a1 = a2 = q.
This completes the proof of Proposition 3.
Proposition 4: LetMŝ2q (q = 1, 2, 3) denote the first three

even-ordered moments of ŝ[n] in (23), defined by

Mŝ2q = E
{∣∣ŝ [n]∣∣2q}; q = 1, 2, 3 (29)

Then, Mŝ2q (q = 1, 2, 3) is irrespective of φ, β, n, ε, and is
given by the sum of products of powers of S2q (q = 1, 2, 3)
that only depend on α, P̂k−1 (0), and T . Namely, we have

Mŝ2 = EsS2 (30)

and

Mŝ4 = E2
s

[
(−2+ η4)S4 + 2 (S2)

2
]

(31)

and

Mŝ6=E
3
s

[
(η6−9η4+12)S6+9(−2+η4)S2S4+6 (S2)

3
]
(32)

Proof of Proposition 4: First, the independence ofMŝ2q
from the carrier phase term φ is a direct consequence of using
the modulus of ŝ [n]. Second, the results of (30)-(32) follow
by applying (23) to (29) and simplifying the summations
using the earlier results of (8)-(14) alongside (24). This
completes the proof of Proposition 4.
Proposition 5: LetMy2q (q = 1, 2, 3) denote the first three

even-ordered moments of the FTN signal y[n] in (21), defined
by

My2q = E
{
|y [n]|2q

}
; q = 1, 2, 3, (33)

thenMy2q (q = 1, 2, 3) is explicitly given by

My2 =Mŝ2 +Mŵ2 =
µ1Es
α
+ No/2 (34)

My4 =Mŝ4 + 4Mŝ2Mŵ2 +Mŵ4

= −
µ̂3E2

s

α
+ 2M2

y2 (35)

My6 =Mŝ6 + 9Mŝ4Mŵ2 + 9Mŝ2Mŵ4 +Mŵ6

=
µ̂5E3

s

α
+ 9My4My2 − 12M3

y2 (36)

where µk (k = 0, 1, . . .) is defined by (25) with µ̂3 and µ̂5
respectively given by

µ̂3 = (2− η4) µ3 (37)

µ̂5 = (η6 − 9η4 + 12) µ5 (38)

Proof of Proposition 5: The results in (34)-(38) directly
follow from applying (21) to (33) and utilizing (8)-(10), (27),
(28), and (30)-(32), along with the independence of ŝ [n]and
ŵ[n]. This completes the proof of Proposition 5.

In the following sections, several estimators are proposed
with the objective of estimating SPR (= α) as well as SNR
(= Es/No) independently of the carrier phase errors and/or
slowly varying frequency offsets (= φ) as well as the timing
phase errors (= β) and to a practical extent the sampling rate
offsets (= ε).

IV. ESTIMATORS DERIVATIONS
A. JOINT BLIND (NDA) ESTIMATORS
Let Ky denote the kurtosis of the FTN signal, given by

Ky =
(My4 − 2M2

y2 )

M2
y2

. (39)

Then, simple algebraic manipulations of (34)–(36) lead to the
following joint and blind (NDA) estimators of Es (≡ EsJNDA ),
N0 (≡ N0JNDA ), SNR (≡ SNRJNDA), and SPR (≡ αJNDA).

EsJNDA =
µ̂3

4µ̂5

(
−My6 + 9My4My2 − 12M3

y2

KyM2
y2

)
(40)

N0JNDA = 2
(
My2 −

µ1EsJNDA
αJNDA

)
(41)

SNRJNDA ≡ EsJNDA/N0JNDA (42)

αJNDA =
−µ̂3E2

sJNDA

KyM2
y2

(43)

where Ky, µ1, µ̂3, and µ̂5 are provided by (39), (25), (37),
and (38), respectively. Note that the division by Ky in (40),
(43), and the following derivations is justified by a recent
analytic investigation into the statistical characteristics of
the FTN signal [29], formally establishing that it is always
sub-Gaussian (Platy-kurtotic) with −2 ≤ Ky < 0.

B. SINGLE BLIND (NDA) ESTIMATORS
Assuming α to be known, while ε is still allowed to vary in
order to cater to possible sampling frequency errors, simple
manipulations of (34) and (35) lead to the following blind
single estimator of Es(≡ EsSNDA ), N0 (≡ N0SNDA ), and SNR
(≡ SNRSNDA).

EsSNDA =

√√√√α
(
2
[
My2

]2
−My4

)
µ̂3

(44)

N0SNDA = 2
(
My2 −

µ1EsSNDA
α

)
(45)

SNRSNDA ≡ EsSNDA/N0SNDA (46)

On the other hand, assuming SNR (≡ Es/N0) to be known,
we obtain from (34) and (35) the following quadratic equation
in α:

α2 + 4α (SNR)
(
µ1 +

µ3 (SNR)
Ky

)
+ [2 (SNR) µ1]2 = 0

(47)

that has the following valid solution for the entire range of α
and SNR. Thus, we obtain the single blind estimator of SPR
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(≡ αSNDA) as

αSNDA=
−2(SNR)2µ̂3

Ky

[
Kyµ1

(SNR)µ̂3
+1−

√
1+

2Kyµ1

(SNR) µ̂3

]
(48)

where it can be easily verified that the term under the square
root is always positive, namely,

1+
2Kyµ1

(SNR)µ̂3
≥ 0⇔

[
(SNR) µ1 −

α

2

]2
≥ 0; (49)

the right inequality being always true.

C. JOINT DA ESTIMATORS
This section presents a DA joint estimator that uses DA (in
addition to NDA3) first and second moments only. Even
though a DA approach incurs some cost on the density of the
FTN signal, this method is appealing owing to its efficiency,
as demonstrated by the upcoming simulation section. Here,
we assume K transmitted data symbols to be known at the
receiver; hence, without loss of generality, we set dn = 1 in
(23) without affecting the characteristics of the noise process
ŵ [n] [21]. Using the result of (24), the DA FTN signal model
of (21)-(23) becomes

yDA [n] = ŵ [n]+ ejφ
√
Es

∞∑
m=−∞

p̂ ([(n+ β) ε − m]αT )

= ŵ [n]+ S1ejφ
√
Es = ŵ [n]+

µ0ejφ
√
Es

α
;

for n = 0 . . . ,K − 1. (50)

Referring to (50), the magnitudes of the first and second DA
moments of yDA [n], denoted by

∣∣MDAy1

∣∣ and ∣∣MDAy2

∣∣, are
given by ∣∣MDAy1

∣∣ = µ0
√
Es

α
(51)∣∣MDAy2

∣∣ =MDAy2 =
µ2
0Es
α2
+
No
2

=
∣∣MDAy1

∣∣2 + N0

2
. (52)

Using (51) and (52) as well as the second NDA moment of
the FTN signal in (34), we obtain the following joint DA
estimates of Es(≡ EsJDA ), N0 (≡ N0JDA ), SNR (≡ SNRJDA),
and SPR (≡ αJDA):

EsJDA =

[
µ0∣∣MDAy1

∣∣µ1

(
My2−MDAy2+

∣∣MDAy1

∣∣2)]2
(53)

N0JDA = 2
(
MDAy2 −

∣∣MDAy1

∣∣2) (54)

SNRJDA =
EsJDA
N0JDA

(55)

αJDA =
µ0∣∣MDAy1

∣∣√EsJDA (56)

3As such, the estimators may be thought of as hybrid, where it is assumed
that an estimate of the NDA second moment is available prior to sending the
data preamble and calculating the DA moments.

D. SINGLE DA ESTIMATORS
Assuming α to be known, using (51) and (52), we obtain the
following single DA estimates of Es(≡ EsSDA ), N0 (≡ N0SDA ),
and SNR (≡ SNRSDA):

EsSDA =
[
α

µ0

∣∣MDAy1

∣∣]2 (57)

N0SDA = 2
(
MDAy2 −

∣∣MDAy1

∣∣2) (58)

SNRSDA =
EsSDA
N0SDA

(59)

On the other hand, assuming SNR is known, a single DA
estimate of SPR(≡ αSDA) is obtained from (51) and (52) as

αSDA =

µ0

√
2SNR

(
MDAy2 −

∣∣MDAy1

∣∣2)∣∣MDAy1

∣∣ (60)

V. ESTIMATOR BENCHMARKS
In this section, we present novel DACRLBs for both SNR and
SPR, respectively denoted by CRLBFTN_SNR and CRLBFTN_α
which are used to benchmark the efficiency of the proposed
estimators. It is shown that CRLBFTN_SNR tends in the
limiting case of Nyquist signaling (i.e., α = ε = 1;β = 0)
to the standard DA CLRB [21] (denoted by CRLBNyq_SNR).

Referring to the DA FTN signal in (50), it is more
conveniently reformulated in the following K th-dimensional
vector space form:

yDA = µ+ ŵ (61)

where yDA = [yDA [0] . . . yDA [K − 1]]T , µ = µ0
ejφ
√
Es

α
u,

u = [1 . . . 1]T ,ŵ = [ŵ [0] . . . ŵ [K − 1]]T , and [.]T denotes
the transpose operation. Referring to (61) and (27), the vector
y is Gaussian with mean µ and covariance matrix Cy defined
by

Cy = E
{(
yDA − µ

) (
yDA − µ

)∗T}
= Cŵ (62)

whereCŵ is theK×K positive definite symmetric covariance
matrix defined by its (ith, jth) entry as:

Cŵij = E
{
ŵ[i]ŵ∗[j]

}
=
N0

2
p̂ (|i− j| εαT );

for i, j ∈ {0 . . . ,K − 1} (63)

To decorrelate the colored noise ŵ[.], the Cholesky factoriza-
tion [20] is applied to the covariance matrix Cŵ to yield

Cŵ =
N0

2
LLT . (64)

Next, the following bijective transformation is applied to the
data vector yDA (without altering its statistical sufficiency):

z = L−1yDA =
√
Es
α

v+ ˆ̂w (65)

with

ˆ̂w = L−1ŵ (66)
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and

v = µ0ejφL−1u (67)

It is easy to check that the Gaussian data vector z in (65) is
uncorrelated with the mean (

√
Es/α)v and covariance matrix

equal to [N0/2] IK , where IK is the K × K identity matrix.
It turns out that for large values of K , ‖v‖2 has a closed-form
approximation given by Proposition 6 below. This will be
used to express the CLRB in a compact expression.
Proposition 6:

‖v‖2 →
K→∞

[
2µ2

0αε

µ0 + αε

]
K (68)

Proof of Proposition 6: Using (67),

‖v‖2 = v∗T v = µ2
0 u

T (LLT )−1u. (69)

from (63) and (64), u is an eigenvector of LLT with
eigenvalue Ŝ1, that is,

LLTu = Ŝ1u (70)

where Ŝ1 is given by

Ŝ1 =

K−1∑
n=0

p̂ (nαεT ). (71)

Using (24), along with the symmetry of p̂(.), and the fact that
p̂ (0) = 1, we obtain

lim
K→∞

Ŝ1 =
1
2

[µ0

εα
+ 1

]
(72)

hence,

K = uTu = uT
(
LLT

)−1 (
LLT

)
u

= Ŝ1uT
(
LLT

)−1
u

=
Ŝ1‖v‖2

µ2
0

(73)

⇔ ‖v‖2 =
µ2
0K

Ŝ1
(74)

(72) and (74) lead to the result of (68), thus completing the
proof of Proposition 6. To simplify the derivations of the
CRLB, let θ denote the vector parameter to be estimated as:

θ = [θ1 θ2 θ3] =
[√

Es
N0

2
1
α

]
. (75)

Hence, the natural logarithm of the pdf of the complex
random vector z in (65) is given by:

ln (p (z, θ)) = −Kln (2π)− Kln (θ2)

−
1
2θ2

∑
k

|zk − θ1θ3vk |2 (76)

Let g(θ ) be the function of the parameter θ to yield the SNR
in dB and SPR on a linear scale. Hence,

g (θ) = [g1 (θ) g2 (θ)] =

[
10 log

(
θ21

2θ2

)
1
θ3

]
(77)

TheCRLBs for the joint SNR and SPR estimation are given
by [30]

CRLBi =

([
∂g (θ)
∂θ

]
I−1

[
∂g (θ)
∂θ

]T)
ii

(78)

where i = 1 for the SNR and i = 2 for the SPR, with (A)ij
denoting the ijthentry of a given matrix A, and I is the Fisher
information matrix (FIM) [30] defined by

Iij = −E
{
∂2 ln (p (z, θ))

∂θi∂θj

}
(79)

From (76)-(79), we get

∂g (θ)
∂θ

=


20

ln (10) θ1

−10
ln (10) θ2

0

0 0
−1

θ23

 (80)

I11 =
θ23 ‖v‖

2

θ2
(81)

I22 =
K

θ22

(82)

I33 =
θ21 ‖v‖

2

θ2
(83)

I31 = I13 =
θ1θ3‖v‖2

θ2
(84)

I21 = I12 = I23 = I32 = 0 (85)

It turns out that matrix I is singular; hence, the generalized
Moore-Penrose inverse [31], denoted by I † is used instead of
I−1 in (78) and is found to be

I † = a

 1 0 b
0 c 0
b 0 b2

 (86)

where

a =
θ2θ

2
3

‖v‖2(θ23 + θ
2
1 )

(87)

b =
θ1

θ3
(88)

c =
θ22

aK
(89)

Using (86)-(89) in (78), and after some simplifications,
we obtain, using (68), the joint FTN CRLB for the SNR and
SPR (for a large K ) as

CRLBJ_FTN_SNR =
100

ln2 (10)

[
1
K
+

2α2

SNR‖v‖2(1+ α2Es)2

]
≈

100

ln2 (10)K

[
1+

α(µ0+αε)

µ2
0ε(SNR)(1+α

2Es)2

]
(90)

CRLBJ_FTN_α =
α4

2SNR‖v‖2(1+ 1
α2Es

)2

≈
α3(µ0 + αε)

4Kµ2
0ε(SNR)(1+

1
α2Es

)2
(91)
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where the SNR unit in (90) and (91) is on a linear scale, while
CRLBJ_FTN_SNR is in dB2. The singularity of the FIM [31]
makes the joint CRLBs in (89) and (90) rather optimistic
(loose). Tighter CLRBs may be obtained in the context of
individually estimating the SNR and SPR. Assuming α to be
known, the single CLRB for the SNR follows by using the
upper-left 2-by-2 block of the FIM above in (81)-(85) as well
as the upper 1-by-2 vector of ∂g (θ) /∂θ in (80). After some
simplifications, using (68), we obtain for a large K

CRLBs_FTN_SNR =
100

ln2 (10)

[
1
K
+

2α2

SNR‖v‖2

]
≈

100

ln2 (10)K

[
1+

α (µ0 + αε)

µ2
0ε (SNR)

]
(92)

Likewise, the single CRLB for the SPR can be obtained after
some simplifications as

CRLBs_FTN_α =

[
∂g2 (θ)
∂θ3

]2
I−133 ≈

α3(µ0 + αε)

4µ2
0εK (SNR)

(93)

It can be seen from (90)-(93) that the joint CRLBs
for both SNR and SPR are upper bounded by the single
CRLBs. For the sake of simplicity, the tighter single CRLBs
for the SNR and SPR in (90) and (91) will be used to
benchmark the estimators in the next section and are denoted
by CRLBFTN_SNR and CRLBFTN_α . Note that in the case of
Nyquist signaling (i.e., no ISI with α = 1, β = 0, ε =
1 leading to the fact that µ0 = 1 in the DA FTN signal model
of (50) owing to the fact that p̂ (0) =1 and p̂ (nT ) = 0 for
n 6= 0), the matrix Cŵ in (64) is diagonal and L is the K by
K identity matrix. Hence, ‖v‖2 = K and the CRLBFTN_SNR
in (90) tends for a large sample size K to the standard
DA-CRLB [21] given by

CRLBNyq_SNR =
100

ln2 (10)K

[
1+

2
SNR

]
(94)

VI. COMPUTER SIMULATIONS FOR THE SPECIAL CASE
OF THE RRC PULSE
In this section, we present the results of the computer
simulations that we carried out to illustrate the theoretical
derivations and the performance of the proposed estimators
for the special case of the commonly used RRC signaling
pulse. The simulations targeted the effect the following
parameters on the MSE performance of the estimators:
• SNR
• SPR
• The sampling phase error (β)
• The sampling frequency errors (ε)
• The sample size K
• The pulse roll-off factor (r)
• The modulation type and level
Because the carrier phase term φ is irrelevant in the

calculation of all the even-ordered moments (including the
magnitude of the first moment for the DA estimators), it is
set to zero throughout all the computer simulations. All

moments were estimated using time-averages, namely,My2q
is calculated by

M̃y2q =
1
K

K∑
n=0

(y[n])q
(
y∗[n]

)q
. (95)

In addition, all estimator variances were estimated over
500 trials. We subjectively judged a 24-sample ISI (12
samples before and after the sample of interest) to provide
a good compromise between accuracy and simulation time,
as we experimentally observed that increasing the ISI extent
to larger values would greatly prolong the simulation times
but with a negligible effect on the results. The same window
extent was also used to find ŵ(t) while convolving the AWGN
w (t) with the RRC pulse p (t) defined by

p (t) =



1+ r (−1+ 4/π) for t = 0
r
√
2

[
sin
( π
4r

)(
1+

2
π

)
+cos

( π
4r

)(
1−

2
π

)]
,

for |t| =
T
4r[

sin
(
π t(1−r)

T

)
+

4rt
T cos

(
π t(1+r)

T

)]
π t
T

[
1− (4rt/T )2

]
(96)

with its squared magnitude spectrum

P̂0 (f ) ≡ |P (f )|2

=


T ; for |f | ≤ (1− r) /(2T )
T
2

[
1+ cos

(
Tπ
r

(
|f | −

(1− r)
2T

))]
,

for
1
2T

(1− r) ≤ |f | ≤
1
2T

(1+ r)

(97)

and auto-correlation

p̂ (t) =
[
sinc (t/T ) cos (πrt/T )

1− (2rt/T )2

]
, (98)

where r in (96)-(98) above denotes the roll-off factor. For
this special case, the support of P (f ) is reduced from 1/T
to (1+ r) /2T leading to the fact that P̂k−1 (f ) = 0 for
|f | > k (1+ r) /2T (k = 1, 2, . . .). As a result, the tighter
sufficient condition related to Sk in (24) is relaxed to 0 < α ≤

2/[k (1+ r)]. As illustrated in the next section, computer
simulations indicate that it is practically possible to further
relax this range without a considerable loss of accuracy in the
estimation results. Referring to (5), (25), and (97), we obtain:

µ0 =
|P (0)|2

T
= 1 (99)

for 0 < α ≤ 1 and 0 ≤ r ≤ 1, and

µ1 =
P̂1 (0)
T
= 2

1/T∫
0

|P (f )|4 df = 1−
r
4
; (100)

with the sufficient condition 0 < α ≤ 1/ (1+ r) and
0 ≤ r ≤ 1. The evaluation of µ3and µ5 from (5) requires
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FIGURE 1. SNR Estimator MSE versus SNR for QPSK with r = 0.1,
α = 0.45, β = 0.15, ε = 0.95, and K = 106.

finding P̂1 (f ) and P̂2 (f ), respectively, the first- and second-
order auto-convolution of P̂0 (f ). Lengthy but straightforward
integrations that we carried out with the help of symbolic
computer calculations led to

µ3 =
2
3
+

(
8
π2 − 1

)
r2 +

(
25
32
−

453
64π2

)
r3 (101)

with the sufficient condition 0 < α ≤ 1/2(1 + r) and 0 ≤
r ≤ 1/2.

µ5 =
11
20
+

(
6
π2 −

3
4

)
r2 +

3
2π4

(
84− 18π2

+ π4
)
r4

−
1

2048π4

(
348705− 58485π2

+ 2389π4
)
r5

(102)

with the sufficient condition 0 < α ≤ 1/3(1 + r) and 0 ≤
r ≤ 1/3.

A. ESTIMATOR MSE VARIATIONS WITH RESPECT TO SNR
Fig. 1 depicts the variations of the SNR estimators with
respect to the SNR (= Es/N0) of the FTN signal for QPSK
modulation with r = 0.1, α = 0.45, β = 0.1, ε = 0.95,
and K = 106. It is seen that the joint NDA estimator is,
on average, one order of magnitude less efficient than its
NDA single counterpart, with a more pronounced gap for
higher SNR. Generally, the MSE for both estimators exhibits
an upward slope as the SNR increases. On the other hand, the
DA estimators seem invariant to the SNR with a noticeably
smaller gap in MSE between the joint and single estimators.
Both DA estimators have anMSE that is between one and two
orders ofmagnitude smaller than their NDA counterparts, and
one order of magnitude higher than the CRLBFTN_SNR.
Fig. 2 is analogous to Fig. 1 in that it depicts the variations

of the SPR estimators with respect to the SNR of the FTN
signal for QPSK modulation with r = 0.1, α = 0.45,
β = 0.1, ε = 0.95, and K = 106. It shows that the
joint NDA estimator produces an MSE that is comparable
to that of the single NDA estimator for lower SNR values

FIGURE 2. SPR Estimator MSE versus SNR for QPSK with r = 0.1,
α = 0.45, β = 0.15, ε = 0.95, and K = 106.

FIGURE 3. Joint (Es,No) NDA Estimator NMSE versus SNR for QPSK with
r = 0.1, α = 0.45, β = 0.15, ε = 0.95, and K = 106.

(close to -5 dB), increasing to approximately one order of
magnitude for a higher SNR (close to 10 dB). The MSE
for both estimators exhibits a downwards slope as the SNR
increases. The DA estimators seem invariant to the SNR with
a gap in MSE of approximately half an order of magnitude
between the joint and single estimators. The DA estimators
have an MSE that is between two and three orders of
magnitude smaller than their NDA counterparts for a smaller
SNR (less than zero), decreasing to approximately one order
of magnitude for a higher SNR (close to 10 dB). In addition,
the variance of the DA SPR estimators is one to two orders of
magnitude higher than that of CRLBFTN_α for smaller SNR
values increasing to three orders ofmagnitude for higher SNR
values.

Finally, Fig. 3 illustrates the normalized MSE (NMSE) of
the explicit joint NDA estimators of Es and No versus SNR
for QPSK modulation with r = 0.1, α = 0.45, β = 0.1,
ε = 0.95, and K = 106. This indicates that while the
NDA estimator variance for both Es (and α, as shown in
Fig. 2) decreases with increasing SNR, this dependency is
reversed for N0 in agreement with the upward slope of the
NDA estimators in Fig. 1.
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FIGURE 4. SNR Estimator MSE versus SPR for QPSK with r = 0.1,
β = 0.15, ε = 0.95, SNR = 0 dB, and K = 106.

FIGURE 5. SPR Estimator MSE versus SPR for QPSK with r = 0.1,
β = 0.15, ε = 0.95, SNR = 0 dB, and K = 106.

B. ESTIMATOR MSE VARIATIONS WITH RESPECT TO SPR
Fig. 4 shows the variations of the SNR estimators with respect
to SPR for QPSK modulation with r = 0.1; β = 0.15;
ε = 0.95; SNR= 0 dB,K = 106. The joint NDA estimator is
approximately one order of magnitude less efficient than its
NDA single counterpart for smaller and higher values of α.
This gap is approximately halved for α around 0.45 where
the MSE for both NDA estimators exhibited a minimum.
The degradation in MSE above this value is attributed to
exceeding the conditions in (100)-(102). On the other hand,
the DA estimators exhibit less variation in MSE with respect
to α with a light downward slope. Both DA estimators have
an MSE that is approximately one order of magnitude higher
than the CRLBFTN_SNR.

Fig. 5 depicts the MSE of the SPR estimators versus α for
QPSKmodulation with r = 0.1; β = 0.15; ε = 0.95; SNR=
0 dB, K = 106. The results are similar to those in Fig. 4, with
a moderately larger gap in MSE between the DA joint and
single estimators.

C. ESTIMATOR MSE VARIATIONS WITH RESPECT TO
SAMPLING PHASE ERRORS (β)
Fig. 6 and 7 illustrate the variations of the estimators’ MSE
(SNR and SPR, respectively) with respect to the sampling

FIGURE 6. SNR Estimator MSE versus |β| for QPSK with r = 0.1, α = 0.45,
ε = 0.95, SNR = 0 dB, and K = 106.

FIGURE 7. SPR Estimator MSE versus |β| for QPSK with r = 0.1, α = 0.45,
ε = 0.95, SNR = 0 dB, and K = 106.

FIGURE 8. SNR Estimator MSE versus ε for QPSK with r = 0.1, α = 0.45,
β = 0.15, SNR = 0 dB, and K = 106.

phase errors (|β|) for QPSK modulation with r = 0.1, α =
0.45, ε = 0.95, SNR = 0 dB, and K = 106. It can be seen
from both figures that, aside from the expected variations
due to averaging over a finite trial size, the MSEs of all
the estimators are independent of |β|, reflecting one of the
aspects of the robustness of the proposed estimators.
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FIGURE 9. SPR Estimator MSE versus ε for QPSK with r = 0.1, α = 0.45,
β = 0.15, SNR = 0 dB, and K = 106.

FIGURE 10. SNR Estimator MSE versus K for QPSK with r = 0.1, α = 0.45,
β = 0.15, SNR = 0 dB, and ε = 0.95.

D. ESTIMATOR MSE VARIATIONS WITH RESPECT TO
SAMPLING FREQUENCY ERRORS (ε)
Fig. 8 and 9 illustrate the variations of the estimators’ MSE
(SNR and SPR, respectively) with respect to the sampling
frequency errors (= ε) for QPSK modulation with r = 0.1,
α = 0.45, β = 0.15, SNR = 0 dB, and K = 106. It can
be seen from figure 9 that the MSE for the SPR estimators
exhibits little variation for ε ≥ 0.5 and slightly increases
with a smaller ε below 0.5. Fig. 8 depicts a similar MSE
profile for the SNR estimators, except that it increases with a
slightly higher slope for a smaller ε below 0.5. Both figures
indicate that it is plausible to assume that the performance of
the proposed estimators remains fairly invariant to sampling
frequency errors corresponding to ε ≥ 0.5, a range that
is expected to be practical, especially with some a priori
knowledge about the SPR.

E. ESTIMATOR MSE VARIATIONS WITH RESPECT TO
SAMPLE SIZE (K )
Fig. 10 and 11 illustrate the variations of the estimators’ MSE
(SNR and SPR, respectively) with respect to the sample size

FIGURE 11. SPR Estimator MSE versus K for QPSK with r = 0.1, α = 0.45,
β = 0.15, SNR = 0 dB, and ε = 0.95.

FIGURE 12. SNR Estimator MSE versus r for QPSK with α = 0.45,
β = 0.15, SNR = 0 dB, ε = 0.95, and K = 106.

FIGURE 13. SPR Estimator MSE versus r for QPSK with α = 0.45, β = 0.15,
SNR = 0 dB, ε = 0.95, and K = 106.

(K ) for QPSKmodulation with r = 0.1, α = 0.45, β = 0.15,
SNR = 0 dB, and ε = 0.95. It can be seen from both figures
that the MSE monotonically decreases with an increase in K
with a flattened profile at and above K = 5× 107.
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FIGURE 14. Joint NDA SNR Estimator MSE versus SNR for different
modulation types and levels with r = 0.1, α = 0.45, β = 0.15, ε = 0.95,
and K = 106.

FIGURE 15. Joint NDA SPR Estimator MSE versus SNR for different
modulation types and levels with r = 0.1, α = 0.45, β = 0.15, ε = 0.95,
and K = 106.

F. ESTIMATOR MSE VARIATIONS WITH RESPECT TO THE
ROLL-OFF FACTOR (r )
Fig. 12 and 13 illustrate the variations in the Estimators’MSE
(SNR and SPR, respectively) with respect to the RRC pulse
roll-off factor (= r) for QPSK modulation with α = 0.45,
β = 0.15, SNR= 0 dB, and ε = 0.95, andK = 106. For both
SNR and SPR, the NDA estimators exhibit little variations
with respect to ‘‘ r’’, while for DA the performance of the
estimators sharply decreases for values of r below 0.2 and
remain fairly constant above this value.

G. ESTIMATOR MSE VARIATIONS WITH RESPECT TO THE
MODULATION TYPE AND LEVEL
Fig. 14 and 15 illustrate the variations in the Joint NDA
Estimators’ MSE (SNR and SPR, respectively) with respect
to the SNR for M-PSK (M = 4, 16, 64) and M-QAM (M =
16, 64) with r = 0.1, α = 0.45, β = 0.15, SNR = 0 dB,
and K = 106. Fig. 16 and 17 are analogous to 14 and
15 except for the single NDA estimators. It can be seen
from these figures that for both SNR and SPR, the MSE

FIGURE 16. Single NDA SNR Estimator MSE versus SNR for different
modulation types and levels with r = 0.1, α = 0.45, β = 0.15, ε = 0.95,
and K = 106.

FIGURE 17. Single NDA SPR Estimator MSE versus SNR for different
modulation types and levels with r = 0.1, α = 0.45, β = 0.15, ε = 0.95,
and K = 106.

of the estimators for the equal-energy signal constellations
(M-PSK) are approximately half an order of magnitude more
efficient than their non-equal-energy counterparts (M-QAM).
The modulation level seemed to slightly effect the latter, with
no noticeable impact on the former.

VII. CONCLUSION
In this work, we presented novel, robust, and computationally
attractive DA and NDA estimators for the two main
parameters of the FTN signal, namely SNR and SPR. The
estimators are robust in the sense that they are insensitive to
carrier and sampling errors. By including the sixth statistical
moment (M6) alongside the fourth (M4) and second (M2),
it is possible to provide, for the first time, a joint blind
estimator for both parameters. Single NDA estimators were
also provided using up to M4 only and turn out to be
approximately one order of magnitude more efficient than
their joint counterparts. DA estimators were also proposed
that use up to M2 only and provide two to three orders
of magnitude reduction in MSE compared to their blind
counterparts. To benchmark the estimator’s efficiency, novel
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and compact DA CRLBs were derived, for SPR and SNR.
In the limiting case of Nyquist signaling, the FTN SNR
CRLB was shown to be identical to the standard DA CRLB.
The RRC signaling pulse was used as a special case of the
general estimator derivations, providing some of the required
estimator parameters in compact closed-form expressions
in terms of the pulse roll-off factor r . Extensive computer
simulations were applied to this special case to validate
the derivations and illustrate the MSE performance of the
proposed estimators. They were found to work best for the
practical range of low SNR values (close to 0 dB) and
moderate SPR values (close to 0.4).

Despite the relatively low efficiencies (with reference to
the CRLBs) of the proposed estimators, their computational
features in addition to their robustness against carrier
and sampling errors, make them valuable in many practi-
cal applications that incorporate cognitive radio alongside
FTN.
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