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ABSTRACT Massive Multiple Input Multiple Output (MIMO) system has gathered lately a huge interest
from researchers and it has been known as a backbone technology for the 5th generation because it can greatly
improve the capacity of wireless communication and it can potentially provide energy efficiency and security.
Before ensuring the full advantages, massive MIMO system has to overcome many challenges. One of them
is to accurate an exact estimation of the Channel Impulse response (CIR) between each transmit-receive
antenna pair. The other problem arises when implementing such a system in presence of High Power
Amplifiers (HPA) which imposes a nonlinear distortion on the transmitted signals. This paper proposes
contributions in three key areas. Firstly, we investigate the nonlinear effects of memoryless HPA, which is
modeled using Saleh model, by deriving its Bit Error Rate expression (BER) in massive MIMO Orthogonal
Frequency Division Multiplexing (OFDM) system. Secondly, we highlight the necessity of providing the
accurate channel characteristics by estimating it using Compressive Sensing (CS) techniques. Moreover,
we propose also a CS compensation algorithm based on Orthogonal Matching Pursuit (OMP) to mitigate
the nonlinear distortion in the receiver. The proposed CS-based compensation technique has been compared
to the Neural Network (NN) pre and post compensation technique and it has shown a good performance not
only in terms of BER but also in terms of complexity.

INDEX TERMS Channel estimation, compressive sensing, power amplifier, nonlinear distortion, lineariza-
tion, OMP, BER, NN, pre-compensation, post-compensation.

I. INTRODUCTION
Over the past decade, the wireless network has known a
huge evolution to respond to the increasing demand of
user terminals. Massive MIMO which is a huge antenna
array with a few hundreds of element antennas in the
Base Station (BS) serving one or multiple User Equip-
ments (UE) at the same time, has been emerged as a key
method for ultra high speed data service, spectral and power
efficiency [1].

To take advantage of the complete benefits of a massive
MIMO system, the perfect knowledge of the CIR of each
transmit-receive antenna pair has to be ensured. The chan-
nel estimation is a very challenging task in massive MIMO
system especially in Frequency Division Duplexing (FDD)
mode where the CIR is estimated after the pilot signal has
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been transmitted from the BS on the downlink frequency
and then send it back to the user on a different uplink fre-
quency which means that a huge amount of resources will be
dedicated only to the pilot sequence [2], [3]. Whereas, with
the Time Division Duplexing (TDD) mode and thanks to the
channel reciprocity, the Channel State Information (CSI) can
be obtained using only uplink pilot sequence [4]. However,
many channel estimation approaches have been proposed in
the literature beginning with the conventional one such as
training based techniques [5] arriving to CS techniques which
assume that wireless channels tend to be sparse due to the
few number of paths containing the magnitude of the received
signal.

On the other hand, to enforce even more the power effi-
ciency of the massive MIMO system, the use of HPAs at the
transmitter is crucial since they are the responsible elements
for increasing the power of the transmitted signal to reach its
destination with a good quality [6].
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Unfortunately, these passive elements present a major
problem by generating nonlinear distortion due to their
saturation characteristic [7], [8]. That’s why, next gen-
eration wireless communication must make an adequate
tradeoff between efficiency and linearity in the power of
HPA to ensure a better quality of the transmission. This
tradeoff has pushed the researchers not only, to study
intensively the impact of the nonlinear distortion on
the performance of massive MIMO system but also to
find a compensation technique to restrain the nonlinear
effect.

To overcome theHPA imperfections, several compensation
techniques [8] have been proposed which can be divided
into two categories: compensation at the transmitter such as
peak-to-average power ratio (PAPR) reduction technique [9],
power back-off and linearization techniques [10], [11] includ-
ing the feedback method, the feedforward method and pre-
distortion. The second category is the compensation at the
receiver for example postdistortion which is mainly used in
the uplink scenario to compensate the HPA’s nonlinearity.
However, NN which has known a great interest as compensa-
tion technique for MIMO-OFDM system and so for massive
MIMO-OFDMsystem, can be studied either at the transmitter
or the receiver side [12].

Many other studies have been concentrated on using CS
as an alternative solution for the compensation technique.
Therefore, CS techniques have been used not only as a chan-
nel estimation approach but also as a compensation method.

Generally, the HPA models can be classed into two kinds
of models: memoryless nonlinear models and nonlinear mod-
els with memory. Memoryless nonlinear models include
Soft Envelop Limiter (SEL), Solid State Power Amplifiers
(SSPA) [13] and Saleh model [14] which are characterized
by their amplitude-to-amplitude (AM/AM) and amplitude-to-
phase (AM/PM) conversions whereas the nonlinear models
with memory such as memory polynomial model, Volterra
and Hammerstein depend on AM/AM and AM/PM of the
previous input levels [15], [16].

In this paper, we will begin with presenting our system
model of TDD uplink massive MIMO-OFDM system where
we will focus on three main blocks which are the passive
and essential elements such as HPA block, the CS-estimation
block and the compensation block. For the HPA block,
in order to emphasize their importance in each transmission
system, a classification of HPA models will be presented and
then an analytical expression of BER in presence of HPA
will be demonstrated. For the estimation block, our earlier
proposed algorithm B-OMP will be presented and we will
study its performance in presence of not only a HPA elements
but also a compensation block. For the compensation block,
a two compensation methods will be introduced: we will
begin with the well-known NN as a compensator then we will
propose a CS-based scheme and algorithm to compensate the
nonlinear effect of HPA elements. Finally, these two methods
will be compared in terms of computational complexity and
BER performance.

The reminder of this paper is organised as follows:
Section 2 covers Related work. The considered systemmodel
is presented in section 3. In section 4, a theoretical analy-
sis of BER for the massive MIMO in linear and nonlinear
mode is introduced. The NN compensator and the proposed
CS-based compensation technique are presented in section 5.
Section 6 presents the simulations and results of the proposed
nonlinear compensation technique on the performance of
massive MIMO system in terms of BER. conclusions are
summarized in section 7.

Notation: Throughout this paper, lower-case and
upper-case boldface letters denotes vectors and matrices,
respectively; (.)T denotes the transpose of a matrix, As
denotes the sub-matrix consisted of columns of A according
to the index set S. ‖.‖p is the lp − norm. We use diag(x)
to transform a vector x into a diagonal matrix with the
entries of x spread along the diagonal. The discrete Fourier
transform (DFT) is represented by F.

II. RELATED WORK
Certainly, the use of massive MIMO system increases signif-
icantly the capacity of the wireless channel.

On the other hand, OFDM which is wideband multicarrier
modulation [17] transmission technique, converts frequency
selective channels into several independent flat fading sub-
channels thereby it greatly attenuates the effect of multipath.
Thus, it improves the spectrum efficiency due to its strong
anti-inter symbol interference and anti-multipath fading.

Therefore, the combination of massiveMIMOwith OFDM
has been remained as the most capable method and promis-
ing technique for high-speed data rates to achieve enhanced
reliability, high capacity and high robustness in broadband
wireless communications.

Furthermore, considering the combined massive MIMO-
OFDM system, several researchers have focused on the
channel estimation issue to better know the CIR before
data transmission and then ensure a better signal reliability.
Among the different contributions concerning channel esti-
mation; Least Square (LS) [5] and minimum mean square
error (MMSE) [18] have always been used to estimate the
CSI but these conventional techniques can not be used in
massive MIMO system because they suffer from huge com-
plexity due to the inversion of very large channel estimation
matrix. Because of that, many researchers have been attracted
to use CS technique as a promising alternative technique
for recovering CIR while assuming that the channel signal
is sparse [19]–[23]. This field has motivated us previously
to propose two channel estimation algorithms based on CS
technique in particularly OMP, Adaptive OMP (AOMP) [24]
and Block OMP (B-OMP) [25] which have been introduced
for the uplink TDD massive MIMO system.

Meanwhile, to guarantee a better signal propagation with
relatively good signal to noise ratio, HPA is needed as indis-
pensable component to provide enough power for the signal
transmission through the wireless channel. Unfortunately,
these components degrade the performance of the masive
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MIMO-OFDM system in terms of BER due to its nonlinear
distortion when operating near to its saturation zone.

In this context, the theoretical analysis of nonlinear dis-
tortion effects in an OFDM signals has been done by
Dardari et al. in [26], Conti et al. in [27], Gregorio et al.
in [28], and Bohara and Ting in [29].

Considering this point, the issue of HPA nonlinearity has
been studied not only in OFDM system, MIMO system but
also lately in massive MIMO system. Obviously, the non-
linear issue becomes more complicated in massive MIMO
system comparing to MIMO and Single Input Single Out-
put (SISO) systems due to the high M-array modulation.
Therefore, a big variety of research efforts have investigated
the effect of the HPA nonlinear distortion in massive MU-
MIMO downlink [30], [31]. Many other approaches have
considered the nonlinear distortion issue in the parallel HPA
units as a relatively simple additive noise model [32], [33]
dissenting from the Bussgang theorem [34]. Some other
researchers have focused on studying the impact of the non-
linear distortion of HPA on the energy-efficient design of
massive MIMO system [35]. In [36], the spatial character-
istic of the nonlinear distortion which radiates from antenna
arrays has been demonstrated. Moreover, several studies have
been focused on the effect of nonlinear distortion on BER
and PAPR investigations of OFDM system [30], [37], [38].
However, OFDM system suffers from PAPR due to its high
envelope fluctuations which causes signal distortion and con-
sequently, leading to performance degradation [39].

Aiming the uncertainty of the signal quality in presence of
HPA, linearity becomes a rigours requirement so that many
effectivemitigation schemes and compensationmethods have
been proposed. Among these methods, the decision-assisted
recognition technique [40] which has been proposed to
reduce the harmful effects of nonlinear distortion. Other tradi-
tional solutions including recording clipping data and sender
coding [41], [42] have also been proposed to compensate
the nonlinear distortion. However, all of these methods need
supplementary data to be transferred which affect the system
effectiveness. Thus, the choice of compensation technique is
a challenging task for researchers.

Recently, NN has known a big attention and it has been
proposed as a good tool for nonlinearity compensation in
communication systems. For instance, in [43] an adaptive
predistortion technique based on a feed-forward NN has been
proposed as a compensation technique at the transmitter to
linearize the transmitted signal from HPAs. This efficient
technique has been extended in [44] to MIMO-OFDM sys-
tem. In [45] a compensation technique at the receiver was pro-
posed to compensate the joint effects of HPA’s nonlinearity.
The authors in [46] have extended NN to be applied also as
a Beam-Oriented Digital Predistortion (BO-DPD) technique
for HPAs in hybrid beamformingmassiveMIMO. In our case,
we will focus on both the predistortion and the postdistortion
structure in frequency domain.

On the other side, since the nonlinear distortion can be
modeled as a sparse signal, CS technique is applied as a

solution for recovering the linear signal at the receiver. For
instance, the authors in [47] have used CS to reduce the
PAPR of the optical OFDM signal. In [48], CS is applied to
recover the original signal after the clipping issue by using
l1-norm optimization which has a high computational com-
plexity. However, the OMP is often used as a CS algorithm
to reconstruct the linear signal due to its simplicity and less
complexity than Basis Pursuit (BP) algorithms [49]–[51].

III. SYSTEM MODEL
We consider a massive MIMO-OFDM uplink system which
consists of a Base Station (BS) with Nt element antennas
equipped with Nt HPA serving U (U ≤ Nt) single antenna
User Terminals (UT) as it is shown in Fig 1. As a training
technique for the channel estimation, we have opted for the
pilot sequence which is transmitted along with a block of
transmit symbols.

A. TRANSMITTER
1) LINEAR MASSIVE MIMO-OFDM SYSTEM
At the transmitter, the OFDM modulation transmission tech-
nique is presented with Nc subcarriers which employed to
cope with multipath interference including Np pilot subcar-
riers which are uniformly allocated with the corresponding
indices p = [p1, p2, · · · , pNp ]. So that the training sequence
per user is denoted as x = [x(p1), x(p2), · · · , x(pNp )]

T .
Passing through the fast inverse Fourier Transform (IDFT)
module, the input signal is converted to the time domain x
which is given as:

x(n) =
1
Nc

Nc−1∑
i=0

X(i)ej2πni/N, n = 0, 1, . . . ,Nc − 1 (1)

where X(i) is the complex symbol on the ith subcarrier.
This equation can be written also as:

x = FHX (2)

2) NONLINEAR MASIVE MIMO-OFDM SYSTEM
After the OFDM modulator, a mandatory use of HPA is
expected before transmitting the signal into the channel as
shown in Fig.1. However, these HPAs generate nonlinearity
effects. For nonlinear HPA, we consider amemoryless model,
in particular Saleh’s model. Generally, the HPA operates at a
given Input Back-Off (IBO) which is defined as:

IBO = 10 log10(
I20
P0

) (3)

where I0 is the input power at the saturation point and P0 is
the average power of the input signal.

The complex envelope of the input signal of HPA per user
at each branch can be presented as:

xu = ρuejθu (4)

where ρu and θu denotes, respectively, the amplitude and the
phase of xu. The general formulation of the complex envelope
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FIGURE 1. CS-based channel estimation and compensation model for massive MIMO-OFDM system.

of a memoryless HPA output zu is given as follows:

zu = g(xu) = B(ρu)e(jθu+φ(ρu)) = S(ρu)ejθu (5)

where g[.] is the HPA transfer function, B(.) and φ(.) denotes
the AM/AM and AM/PM characteristics of HPA, respec-
tively.

For the Saleh’s model, the AM/AM and AM/PM charac-
teristics can be represented as follows:

B(ρu) = (
αaρu

1+ βaρ2u
) φ(ρu) = (

αpρ
2
u

1+ βpρ2u
) (6)

where αa and βa are the parameters that decide the nonlinear
level, and αp and βp are phase displacements.

Therefore, the multi carrier signal after passing the nonlin-
ear HPA is expressed as:

zu(n) = g(xu(n)) = U0xu(n)+ cu(n) (7)

where xu(n) is the input signal vector in time domain of Eq.1,
U0 is the gain of the linear part and cu(n) is the nonlinear
distortion term uncorrelated with the input signal.

This Eq.7 can be expressed in frequency domain as:

Zu = U0Xu + Cu (8)

3) CHANNEL MODELING
The transmitted signal presented in the previous section is
running over Rayleigh fading channel. In fact, in wireless
communication, the transmitted signal is transferred to the
receiver through multiple reflective paths and since that the
number of scatters in propagation environment is insufficient,
it has been proven that the massive MIMO CIRs are sparse so
that the number of non-zero taps of the channel, denoted as
K , is much smaller than the total number of CIR taps L (K �
Np � L). Moreover, the non-zero elements locations in each
vector on the measured channel matrix change slightly during
an OFDM symbol. So, we assume that each channel Hnt is
independent from the other and each uplink CIR is assumed
to have its unique support of non-zero elements positions
as well as the measurement vectors which are considered
independent.

B. RECEIVER
1) LINEAR RECEIVED SIGNAL
The received signal Y ∈ CNp×Nt in subset p at all the receive
antennas after cyclic prefix removal and DFT operation, can
be expressed as

Y =
U∑
u=1

XuFNp,LHu +W (9)

where Xu = diag(xu) is a diagonal matrix with the entries of
xu as diagonal elements, FNp,L contains the Np rows accord-
ing to p and the first L columns of FNc,
Hu = [h1u,h2u, · · · ,hNtu] ∈ CL×Nt represents the CIRs

from the uthUT to the BS andW is the white Gaussian noise
with zero mean and variance σ 2 I.

2) NONLINEAR RECEIVED SIGNAL
According to Eq.7 the nonlinear transmitted signal is com-
posed from two terms the input signal xu and the nonlinear
distortion cu. Therefore, to express the nonlinear received
signal, we have just to replace Eq.7 in Eq.9 as follows:

Y =
U∑
u=1

ZuFNp,LHu +W (10)

where Zu = diag(zu) is a diagonal matrix with the entries of
zu as diagonal elements. We define the measurement matrix
A1
=[Z1FNp,L,Z2FNp,L, · · · ,ZUFNp,L] ∈ CNp×UL and H =

[HT
1 ,H

T
2 , · · · ,H

T
u ]
T
∈ CUL×Nt then Eq.10 is rewritten as:

Y = AH+W (11)

In CS concept, the number of rows Np of the measurement
matrix A must be very small comparing to the number of its
columns UL so we have Np� UL.

3) CS CHANNEL ESTIMATION
Since the CIRs in massive MIMO system are sparse, we have
proposed in our previous work, two CS channel estimation
algorithms based on OMP which are AOMP and B-OMP.
We proved in our latest work [52] that B-OMP has shown
more resistance to the nonlinear distortion of memoryless
HPA including Saleh model comparing to AOMP. Therefore,
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in this paper, we will focus on using B-OMP as channel
estimation algorithm. Following, a briefing presentation for
B-OMP algorithm:

It is a novel high dimensional sparse signal recovery algo-
rithm based on CS technique which aims to reduce the total
number of needed iteration for the matrix recovery, the MMV
model presented in Eq.11 is transformed to a block SMV
model as follows:

y = Dh+ w (12)

where y = vect(YT) ∈ CNpNt×1 is the vectorization of the
matrixY formed by stacking its columns into a single column
vector and it represents the observation signal in the proposed
block SMV model, D = A

⊗
INt ∈ CNpNt×LNt represents the

new measurement matrix for the proposed block SMVmodel
and it is the result of the Kronecker product of the two matri-
ces A ∈ CNp×L which represents the measurement matrix in
MMVmodel presented in equation (2) and the identity matrix
I ∈ CNt×Nt , h = vect(HT) ∈ CLNt×1 represents the new
channel vector and it is the vectorization of the channel matrix
H and finally w = vect(WT) ∈ CNpNt×1 is the vectorization
of the noise matrix W.

Each iteration of the B-OMP algorithm consists of the
following stages:

1. Identification: we identify Nt atoms from the measure-
ment matrixDwith largest inner product and store its indexes
in the set Tj.
2.Update support set:we add the Tj to the support set�j.

3.Signal estimation by least square: The solution to this
minimization problem is: h�j = (DH

�jD�j)
−1DH

�jy.
4.Update residual: we update the residual using the new

solution of vector estimation.
After determination of the channel estimation vector h̃,

we come back to the expression of Eq.11 and we have H̃
∈ CL×Nt . matrix form by using reshape command so we
obtain an estimated channel matrix H̃ ∈ CL×Nt .

4) CHANNEL EQUALIZATION
Once the channel matrix has been estimated H̃, then the next
step is to determine the equalized signal.

Referring to Eq.11 and replacing the matrix A with its
expression, we obtain:

Y = ZFH+W (13)

Let denote FH̃ = H̃freq then the equalized signal can be
written as:

YH̃−1freq = ZI+WH̃freq (14)

where Z is multiplied by the identity matrix INpNt , then Z
∈ CNp×Nt

Combining Eq.8 and Eq.14 give the following equation:

YH̃−1freq = (U0X+ C)+WH̃−1freq (15)

IV. BIT ERROR RATE EXPRESSION
In this section, a mathematical approach is presented to eval-
uated the impact of HPA’s nonlinear distortion on achievable
uplink approximated BER for massive MIMO-OFDM sys-
tem. The proposed approach is applicable for any arbitrary
U antenna users number and Nt antenna numbers. Therefore,
this section will be divided into two subsections linear and
nonlinear BER. Based on the analytical expression of the
obtained BER results in linear form, we will discuss the
impact of the nonlinear distortion and determine its BER
expression.

A. LINEAR BER
We begin with the linear massive MIMO-OFDM system.
In general, the overall narrowband fading channel per user
is represented by:

h(t) = α(t)ejφ (16)

where α is the Rayleigh fading envelope with a Probability
Density Function (PDF):

fα(α) =
α

α20

e
−

α2

2α20 , α ≥ 0 (17)

Since that Re[h] and Im[h] are Independent and Identi-
cally Distributed (i.i.d) Gaussian with variance α20 , E[α] =√
π
2 α0 and E[α

2] = 2α20 .
andφ is the channel phase uniformly distributed in [−π, π[

with PDF

fφ(φ) =


1
2π
, −π ≤ φ ≤ π

0, otherwise.
(18)

For the SISO case, the PDF of the instantaneous SNR per
bit can be obtained from Eq.17 by simple changing from α to
γ :

fγ (γ ) =
1
γ
exp(−

γ

γ
),E[γ ] = γ , γ ≥ 0 (19)

where γ = α2(Eb/N0) with an average value equals to
γ = E[α2](Eb/N0).

By analogy to Eq.19, the PDF of SNR for the massive
MIMO system can be given as [53]:

fγ (γ ) =
1

(Nt − 1)!
γ Nt−1

γ Nt
exp(−

γ

γ
) (20)

assuming that the SNR of each user is following the same
PDF such as γ = γ 1,= . . . = γU .

Therefore, the average BER for the linear massive MIMO
system under i.i.d Rayleigh fading channel is expressed as
follows:

Pb(γ ) =
∫
∞

0
fγ (γ )Pe(γ )dγ (21)
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After substitution of Eq.20 in Eq.21 we obtain:

Pb(γ ) =
1

(Nt − 1)!γ Nt

∫
∞

0
γ Nt−1exp(−

γ

γ
)Pe(γ )dγ (22)

On the other hand, considering the Eq.9 of the linear
received signal, we have already mentioned that W is white
Gaussian noise with zero mean and variance σ 2 I. then:

Pe(γ ) =
∫
∞

0

1
√
2πσ 2

exp(−
γ 2

2σ 2 )dγ (23)

B. NONLINEAR BER
Referring to the Eq.10 of the received signal with HPA, the
received signal for the U th user can be expressed as:

Yu = U0XuFNp,LHu︸ ︷︷ ︸
useful signal

+ CuFNp,LHu︸ ︷︷ ︸
nonlinear distortion

+ Wu︸︷︷︸
noise

(24)

To provide the theoretical expression of BER in nonlin-
ear massive MIMO system, the nonlinear distortion term
is needed to be approximate as an independent Gaussian
random variable G with average µG and variance σG.

Thus, the Eq.24 becomes:

Yu = U0XuFNp,LHu︸ ︷︷ ︸
useful signal

+ Gu︸︷︷︸
nonlinear distortion

+ Wu︸︷︷︸
noise

(25)

The PDF of random variable Gu can be expressed as:

P(Gu) =
1√

2πσ 2
G

exp(−
(G− µG)2

2σ 2
G

) (26)

Similarly to the Eq.22, the average BER for the nonlinear
massive MIMO system under i.i.d Rayleigh fading channel
can be given as:

Pb(γ ) =
1

(Nt − 1)!γ Nt

∫
∞

0
γ Nt−1

exp(−
γ

γ
)Pe(γ, µG, σG)dγ (27)

With:

Pe(γ, µG, σG) =
∫
∞

0

1√
2π (σ 2 + σ 2

G)

exp(−
(γ − µG)2

2(σ 2 + σ 2
G)

)dγ (28)

V. OUTAGE CAPACITY
Foschini and Gans in [54], proved that in order to achieve
a large capacity, the deployment of multiple antennas at
both transmitter and receiver is required. In [55] and [56],
they have considered that the channel propagation parameters
have an effect on the capacity of the studied system. In [57],
the authors have studied the outage capacity of space diversity
systems in presence of a discrete multipath fading channel.
In consequence, they focused on the performance of the CSI
feedback respect to the Rayleigh model in presence ofMIMO
system and they found that the diversity gain is affected by

the number of multipath component L rather than the size of
the array system Nt . They proved that the capacity of MIMO
system approach to Rayleigh channel performance only when
L is twice equal to the number of transmitter and receiver
antennas. It is theoretically known that the massive MIMO
system offers a greater data rate than a conventional MIMO
system. Therefore, we will present here the expression of the
capacity of massive MIMO system and then in the simulation
part, we will show the effect of the multipath component on
the capacity performance.

C = log2[1+ γ ] (29)

VI. NONLINEARITIES COMPENSATION
In this section, we present first of all the NN compensator
and then we will present our proposed CS compensation
technique.

A. NN COMPENSATOR
The NN compensator can be implemented at the transmitter
as well as at the receiver and in this paper, we will study its
performance at both the transmitter and the receiver.

1) ARCHITECTURE OF THE APPLIED NN
In communication networks, the most popular NN’s archi-
tecture used is the Multi Layer Perceptron (MLP) [58] which
consists of many neurons connecting to each other from the
input layer passing through the hidden layers to reach finally
the output layer as it is shown in Fig.2. Thanks to its simple
network structure and fast training process, only a fewer
hidden layers are needed to formulate the output of HPA. For
instance, in Fig.2 the network has only 2 hidden layers with
4 neurons in the first layer and 3 neurons in the second layer,
it has also 1 input layer and 2 neurons in the output layer. The
input layer is connected to all neurons of the hidden layers
which are also connected to the output layer. Each neuron is
characterized by a linear combiner and an activation function
giving the output neuron as:

X̂ij,nt = f(
Nl−1∑
nl=0

Wnl,mX̃ij,nt + Bnl,m) (30)

with X̃ij,nt is the input signal into the neuron from the
jthcomponent of the ith vector of the nt receive antenna,Wnl ,m
is the weight matrix connecting m neurons in layer nl and
Bnl ,m is the biais term.

2) TRAINING AND GENERALIZATION
Weaim to identify the inverse transfer function of TWTwith a
feed-forward neural network by obtaining a direct estimation
of the amplitude and phase nonlinearities.

a: TRAINING
As it is shown in Fig.3, NN1 aims to identify the HPA’s
inverse transfer function, the complex envelope signals are
differentiated and the error sent to the learning algorithm bloc
that reacts on coefficients of NN1.
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FIGURE 2. Multilayer NN architecture.

FIGURE 3. Training and generalization block diagram of the NN
compensation in frequency domain.

FIGURE 4. CS-based compensation scheme for massive MIMO-OFDM
system.

b: GENERALIZATION
The NN1’s coefficients are recopied on NN that achieves the
equalization.

B. PROPOSED CS COMPENSATION TECHNIQUE
In this section, we will present our proposed CS compensa-
tion technique therefore we will describe the CS compensa-
tion scheme which is shown in Fig.4 then we will present the
proposed iterative CS compensation algorithm relative to the
proposed scheme.

1) PROPOSED ITERATIVE CS COMPENSATION SCHEME
As the channel matrix H̃ is now accurate, the Eq.15 is needed
to be multiplied by a selection matrix Swhich is generated by
selecting the Np columns of the identity matrix INcNp to apply
the CS algorithm and determine the nonlinear distortion C so
S ∈ CNc×Np .

SYH̃−1freq = S(U0X+ C)+ SWH̃−1freq (31)

Let denote Q = YH̃−1freq then:

SQ = SC+ U0SX+ SW ˜H−1freq (32)

Next, we subtract the estimated valueU0SX̃ from the above
equation and we get:

SQ− U0SX̃ = SFC + U0S(X − X̃ )+ SWH̃−1freq︸ ︷︷ ︸
noise

(33)

with C = diag(c) is the time domain matrix of nonlinear
distortion. Let denote φ = SF ∈ CNc×Np is the measurement
matrix,
η = U0S(X − X̃) + SWF−1H̃−1 is the noise matrix and

R = SQ− U0SX̃

R = φC+ η (34)

From the above equation, the CS algorithm can be applied
to reconstruct the nonlinear distortion C̃. Finally, the linear
signal can be determined as follows:

ˆXfinal = Q− C̃ (35)

2) PROPOSED ITERATIVE CS COMPENSATION ALGORITHM
According to the iterative compensation scheme presented in
Fig.4, after obtaining the estimated value of the distortion C̃,
it is subtracted from the equalized signal and then a second
decision is required to get a more accurate value ˜Xn+1 of X
by using the maximum likelihood estimator.

ˆXn+1 = argmin
∣∣∣Q− C̃n − Pr

∣∣∣ (36)

where Pr ∈ χ is the preset constellation points set.
The first decision value can be determined when C̃0 is a

zero matrix as follows:

X̂0 = argmin |Q− Pr| (37)

From the above equations Eq.36 and Eq.37 and including
the iterative CS compensation scheme presented in Fig.4, The
proposed approach is more detailed in algorithm 1.

By mixing the CS-based compensation scheme and the
proposed iterative CS compensation algorithm, we obtain a
summary of our proposed compensation method as follows:

1. Get the initial estimation of U0X̃ from equalized signal
Q;

2. Define the selection matrix S;
3. Determine the observation matrixR according to Eq.34;
4. Reconstruct the nonlinear distortion C̃n+1 using the first

iteration of algorithm 1;
5. Update the decision value X̂n+1 according to Eq.36;
6. Update the residual using the new solution of estimated

nonlinear distortion matrix C̃n+1;
7. Return to step 4 until the iteration terminates and calcu-

late the final decision X̂final.
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Algorithm 1: Iterative Recovery of Nonlinear Distortion
Based on OMP
Input:

A Nc × Np measurement matrix φ
A Nc × Nt matrix R
The sparsity level K

Output:
An Np × Nt estimated matrix X̂final

Initialization:
φ0 is an empty matrix
C̃0 is a zero matrix
Res = R the residual
� = θ the index set
and j = 1 the iteration counter.

Procedure :
1) Calculate (Q− C0) to get estimated U0 X̃0

while j < K do
a) Find a column of matrix φ the most correlated

with a the current residual

λj = argmaxn=1,2,...,Np |Resj−1, φn|

b) Add the most correlated column into the set of
selected columns

�j = �j−1 ∪
{
λj
}

and the matrix of the chosen atoms

φ0j = φ�j

c) Solve the least-squares problem to obtain
a new signal estimate.

Cj = argminC ||φ0jC− R||2
d) Update residual

Res = R− φ0jCj

e) Increment j j = j+ 1
end

2) Get the final accurate value of (Q− C0) using the
maximum likelihood estimator.

X̂final = argmin
∣∣∣Q− C̃

∣∣∣

C. COMPLEXITY ANALYSIS
It has been shown in [59] that the computational complexity
of OMP algorithm is equal to O(KNcNp) including the inner
product operation and the least square operation whereas the
computational complexity of our proposed CS-based com-

TABLE 1. Complexity values.

pensation scheme equals toO(KNcNpNt ). Considering that K
is too negligible comparing to Nc,Np,Nt and assuming that
Nc = Np = Nt = n then the overall complexity is equal to
O(n3).
For the feedforward NN, the computational complexity

depends on the number of inputs n, the total number of layers
Nl and the number of neurons mnl in each layer.

On the other side, the overall computational complexity
depends on the complexity of the activation function and the
nt training examples.

Each neuron is characterized by an activation function
which will be applied Nl−1 times. The activation function as
it is presented in Eq.30 includes amultiplication of twomatrix
Wnl,mX̃ij,nt . Generally, it has been proven that the complexity
of multiplication of two matrix is around of O(n3). Consider-
ing the nt training examples then the total complexity is equal
to O(nt (n3)). Assuming that nt = n then the total complexity
becomes O(n4).
In terms of complexity, it has been demonstrated above

that the proposed CS-based compensation gives a reduced
complexity comparing to NN.

VII. SIMULATION AND RESULTS
For the simulation, we have opt for the 3GPP channel model
which is characterized by k = 6 significant multipath taps
and the maximum delay spread is set to be L = 60. The
proposed massive MIMO system with Nt = 100 BS antennas
serving U = 10 UT. The total OFDM subcarriers Nc = 1024
and the pilot subcarriers Np = 128. As a performance metric,
we will based on BER to analyze simulation results.

First, we consider a comparison of the spectral behaviour
of transmitted OFDM signal in massive MIMO system in
presence of Saleh’s HPAmodel with the linear signal. In fact,
Fig.5 shows the HPA’s nonlinearities effect on the spectrum
of OFDM signal. It can be observed that there is a regrowth in
the amplitude of the nonlinear OFDM signal comparing to the
linear signal. When the IBO value increases, the amplitude
of the nonlinear OFDM signal increases accordingly. On the
other hand, it can be seen also that the nonlinear OFDM signal
presents a large lobes comparing to the linear signal.

In Fig.6, the impact of the propagation parameters espe-
cially the multipath taps on the performance of the capacity
of the massive system according to the Rayleigh model is
presented. From this Fig, it can be seen that more the environ-
ment is rich in the number of scatters (which is known as the
multipath taps or also the sparsity level ), more the capacity
is enhanced. Therefore, the capacity depends on the number
of the multipath component.

Then, to highlight the impact of the Saleh’s HPA nonlin-
earities on the B-OMP performance, a comparison in terms of
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FIGURE 5. Power density spectral for OFDM with and without the effect
of HPA for different IBO values.

FIGURE 6. Capacity evaluation in massive MIMO system in rich multipath
environment.

BERwith different IBO values is shown in Fig.7. It is obvious
that more IBO value increases, the less BER result we get.

For example, for IBO = 6 dB and with SNR equals to
15dB, B-OMP presents a BER of 1× 10−2 while with
IBO = 8 dB, B-OMP presents a BER equals to 6.2× 10−3

Finally, with IBO = 10 dB, and always with SNR equals to
15dB, a BER of 6× 10−3 is realised by B-OMP.

To evaluate the performance of the proposed CS-based
compensation technique, we will compare it to the NN pre
and post compensation technique.

Fig.8 shows the effects of NN pre-compensation and NN
post-compensation on massive MIMO system. These com-

FIGURE 7. Impact of Saleh model on B-OMP algorithms with different
values of IBO.

FIGURE 8. Impact of NN pre and post compensation on massive MIMO
system.

pensation techniques are compared to the original linear sig-
nal before adding any HPA and the nonlinear signal after
adding saleh model. In this figure, it is clear that the NN
post-compensation outperforms the NN pre-compensation
technique where it makes a gain of about 2dB. For instance,
with SNR equals to 10dB, the post-compensation represents
a BER of 2× 10−2 while the pre-compensation represents a
BER of 4× 10−2.

On the other side, the NN pre-compensation technique
presents a gain equals to 1dB over the nonlinear signal.
For example, comparing with the same SNR of 10dB, the
NN pre-compensation technique offers a BER equals to
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FIGURE 9. Variation in number of layers for the NN post-compensation
technique.

4× 10−2 whereas the nonlinear signal presents a BER equals
to 5× 10−2.
From these two comparison, it can be concluded that the

NN post-compensation technique presents a reduction in a
BER of about 3dB over the nonlinear signal.

Despite of this achieved gain 3dB over the nonlinear sig-
nal, the NN post-compensation technique succeed only to
approach to the original linear signal by 1dB. Considering
always the same value of SNR 10dB, as it has beenmentioned
above the NN post-compensation technique presents a BER
of 2× 10−2 whereas the original linear signal presents a BER
of 1× 10−2. Therefore, for the next simulations, and as a
comparison to our proposed CS based compensation tech-
nique, we will use only the NN post-compensation technique.

Fig.9 shows the effects of increasing the number of layers
of the NN post-compensation technique. It is obvious from
this figure that when the number of layers increases, the BER
decreases and the NN post-compensation technique gives a
better performance. For instance, for an SNR equals to 10dB,
the NN post-compensation technique with 30 layers offers
a BER of 2× 10−2 whereas the curve with only 5 layers
presents a BER of 3× 10−2. The gain between these two
curves is about 1dB. It should be mentioned that even with
a high number of layers like 30, the compensation has been
ameliorated slightly. Nevertheless, increasing the number of
layers generates a high computational complexity.

In Fig.10, a comparison between the proposed CS-based
compensation technique and the NN post-compensation tech-
nique has been presented which are compared both to the
original linear signal and the nonlinear signal that must
to be compensated. From this figure, it can be seen that
the CS-based compensation curve outperforms not only the
NN post-compensation technique but also it succeed to be
too close to the original linear signal. For instance, with

FIGURE 10. CS-based compensation technique Vs NN post-compensation
technique.

SNR equals to 10dB, a BER of 2× 10−2, 1.5× 10−2 and
1.3× 10−2 are represented by the NN post-compensation
curve, the CS-based compensation curve and the original
linear signal curve, respectively. It can be noticed also that
more the SNR increases, closer the curve of the CS-based
compensation is to the original linear curve which means that
the proposed CS-based compensation technique can give a
better performance even with high values of SNR. For exam-
ple, with SNR equals to 25dB, the CS-based compensation
technique offers a BER of 4.5× 10−4 which is slightly worse
than the original linear with a BER of 4× 10−4 while the NN
post-compensation technique provides a BER of 7× 10−4.
As it has been mentioned previously, the nonlinear curve
presents a BER of 5× 10−2 for an SNR equals to 10dB so the
proposed CS-based compensation technique presents a BER
reduction about a 4dB.

After showing the efficiency of the proposed CS-based
compensation technique over the NN pre and post-
compensation technique, the Fig.11 shows the effect of
varying the sparsity level on the performance of CS-based
compensation technique. From this figure, it is clear that
increasing the sparsity level generates an amelioration in
the performance of the CS-based compensation technique.
It means that when the sparsity increases the BER reduces
as well. For example, with an SNR equals to 15dB, a BER
of 3× 10−2 and 5× 10−3 are achieved by the CS-based
compensation technique with the sparsity level of 6 and 30,
respectively.

However, we should highlight that the sparsity level has to
be a small number to confirm that the signal is well sparsed
and we can apply the CS technique.

The Fig.12 represents different CS algorithms which have
been used in our previous work to determine the channel
estimation, are now implemented as CS-based compensation
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FIGURE 11. The impact of the variation of the sparsity level on the
CS-based compensation algorithm.

FIGURE 12. Comparison between compensation algorithms based on
OMP.

algorithms in order to compare them and decide which algo-
rithm gives the best performance for channel estimation as
well as HPA nonlinearities compensation.

It is shown in this figure, for the linear curves as well
as compensation curves, the B-OMP algorithm outperforms
Regularized Orthogonal Matching Pursuit (ROMP), Stage-
wise Orthogonal Matching Pursuit (StOMP) and AOMP
algorithms. Let’s concentrate on linear curves, as it has been
shown in our previous work, the best performance for channel
estimation is given by B-OMP while AOMP and StOMP
give a very close results and ROMP represents the worst
performance. For example, with SNR equals to 15dB, a BER

of 4× 10−3 is achieved with B-OMP algorithm while a
BER of 7× 10−3 is achieved by both StOMP and AOMP
and a BER of 3× 10−2 is represented by ROMP algorithm.
However, when they are implemented as CS-based compen-
sation algorithms, it can be seen that the same performance
is realised for the B-OMP and ROMP but AOMP represents
a remarkable amelioration over StOMP. For instance, taking
always the same SNR, a BER of 6× 10−3 and 3.6× 10−2

are achieved by B-OMP and ROMP respectively, whereas,
a BER of 8.9× 10−3 and 1.4× 10−2 are achieved by AOMP
and StOMP respectively. It is clear from the numerical results
represented above that B-OMP has succeeded to give a com-
pensation result that is so close to the linear mode.

VIII. CONCLUSION AND FUTURE DIRECTIONS
This paper dealt mainly with two axes; the first axe is study-
ing the impact of the passive elements such as the HPA
nonlinearities on the performance of channel estimation of
Uplink TDDmassive MIMO-OFDM system. The second axe
is how to compensate these nonlinear effects to get a better
performance for the channel estimation. To achieve the first
axe, we have started by introducing the different HPAmodels
then presenting an analytical expression of BER in presence
of HPA nonlinearities and finally showing the behaviour of
our CS-based channel estimation algorithm B-OMP in pres-
ence of Saleh model with different IBO values. To tackle the
second axe, we have presented first of all the feedforward
NN which has known a huge success as a compensation tech-
nique for HPA nonlinearities. This NN has been used as pre
and post-compensation technique to compare our proposed
scheme and algorithm which is based also on CS technique.
The results have proven that the proposed CS algorithm
outperformed the NN technique not only in terms of BER
but also in terms of complexity. To more emphasize the
performance of our proposed compensation algorithm, it was
compared to other CS algorithms such as AOMP,StOMP and
ROMP and it has always given best results in terms of BER.
Besides, a comparison between linear and nonlinear curves
have been dressed for the NN compensation technique as
well as the proposed CS-based compensation technique and it
has shown that our proposed CS-based scheme and algorithm
succeed to get close to the linear mode. In our future work,
we will implement the coding and decoding blocks and see
how they can enhance the performance of massive MIMO
system.
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