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ABSTRACT The investigation of radiation field in the moon is important for the moon subsurface detection
and vertical magnetic dipoles (VMD) are especially useful as sources and probes. The present work focuses
on the radiation field inside the moon excited by a VMD located on or near the moon’s surface. Analytical
expressions are derived with approximate method. Contributions of the fields come from two parts: the
series expansions of low-order terms using the multiplication iteration method, and the integrals of high-
order terms using the asymptotic method. Meanwhile, the field of high-order terms is close to the total
field. Compared with the calculation’s direct sum, our method has advantages of accuracy and is suitable for
the large-size model. For a source-receiver system on or near the homogeneous moon, it is found the waves
propagating inside the moon can be described in terms of ray optics. Based on the formulas, various modes of
reflection are taken into account, and the intensity of the primarily reflected waves is calculated numerically.
Furthermore, effects of propagation distance and angel, the operating frequency, as well as the height of
the source are considered to demonstrate the properties of the field. Particularly, the proposed method and
formulas have applications to the moon interior exploration.

INDEX TERMS Moon exploration, vertical magnetic dipole, ray optics, electromagnetic wave.

I. INTRODUCTION
As the nearest planet to the earth, the research of the moon
contributes essentially to our scientific understanding. In par-
ticular, it is imperative to develop space exploration, out-
line the stratigraphy structure of the lunar subsurface, and
detect related parameters of the moon. Generally, in the
probing of the moon, the radar detection technique has been
employed, which was used for the first time during the Apollo
17 mission (Apollo Lunar Sounder Experiment, ALSE) to
characterize the lunar structure [1]. Since then, experiments
have continued in directions of the moon interior exploration.
Chang’e-3 (CE-3), Chang’e-4 (CE-4), and Chang’e-5 (CE-5),
the first attempt to survey the moon’s surface using the Lunar
Penetrating Radar (LPR), have landed successfully on the
moon in 2013, 2018, and 2019, respectively [2]–[4]. The
LPR, equipped with a low-and high-frequency antenna, has
advantages of reducing the electromagnetic (EM) wave loss
caused by space propagation [5]. Meanwhile, noises inter-
ference from a complex environment of the moon can be
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decreased. Hence, investigations of the LPR for the moon
detection has significance for high-precision measurement.
Notwithstanding contributions of experiments or the obser-
vation data acquired from the lunar [6]–[8], however, the
theoretical treatment for an antenna near the moon’s surface
is still lacking, which motivates us to study this problem.

Generally, the transmitting antenna mounted on the LPR
can be regarded as a dipole antenna. In the history of propaga-
tion mechanism over a sphere excited by a dipole, landmarks
have been Waston’s series expressions in the presence of a
perfectly conducting sphere with a large radius compared to
the wavelength [9]. However, Wastons’s results have been
left inconvenient for engineering use due to the series con-
verges slowly. Fock [10] optimized the series of Waston to
assemble faster using transform and approximate methods
afterward. In the case of a sphere with finite conductivity,
extension achievements were made by many investigators,
especially including Van der Pol and Bremmer [11], Gray
[12], North [13], and Wait [14], [15]. A more practical
development was introduced by Wait [16] using the mode
expansion method, of which the boundary conditions at the
sphere surface were specified by surface impedance. Detailed
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findings were summarised in two monographs by Bremmer
[17] and Wait [18], which presented asymptotic formulas
in Airy function forms used to calculate the ground wave
of vertical electric or magnetic dipoles (VED/VMD) over
the homogeneous spherical earth. In connection of a similar
method, further investigations were extended by Zhang and
Pan [19] and Li et al. [20], [21] for the spherical surface of
the earth with N-layered dielectric. Meanwhile, some inves-
tigators have treated the EM field over a sphere excited by a
dipole under different method. Taha et al. used differential
transform method to investigate the radiation field due to
a dipole in the earth considering the effect of atmosphere
electrical conductivity [22]. Recently, Dyadic Green function
technique was applied to examine the scattering field of a
perfect conducting sphere [23], [24].

Analytical approximations for the EM field have been
obtained using methods mentioned above; however, not
straightforwardly getting the exact closed-form solutions and
overlooking the areas inside the sphere. Owing to this reason,
Wu [25] invoked the concept of creeping waves based on the
Poisson summation formula. Meanwhile, Nussenzveig [26],
[27] applied a resemblance analysis to describe waves inside
a sphere. In the same idea, Houdzoumis [28], [29] led to a
new solution in terms of a series of integral that is equivalent
to the exact series solution. EM fields excited by a VED over
a homogeneous sphere were derived when both the source
and observation point were located on the interface. Essential
differences between EM waves propagation inside and out-
side the sphere are: 1) EM waves exponentially decreasing
through the free space; 2) Ray contribution to the waves
bouncing and circulating inside the sphere. A creeping-wave
structure for all six components along the boundary was
revealed by Margetis [30], which studied the EM field in the
free space due to a horizontal electric dipole (HED) located
below and tangential to the surface a homogeneous sphere.
When considering the source located some distance away
the surface, the results of Houdzoumis and Margetis would
be invalid. Convergence problem appears when the source is
off the interface. More recently, Houdzoumis [31] reexam-
ined developing formulations for any heights of the dipole
above the sphere. The emphasis was placed on expanding
the integrals by dealing with poles. Unfortunately, no explicit
approximate analytical formulas were presented, only com-
putation for special cases.

Along with this research line, we reconsider same problem
through a new approach. The background of this research
can be divided into the lunar exploration in low frequency
ranges and high frequency EM scattering analysis [32], [33].
As is mentioned above, we pay attention to the moon subsur-
face detection in this paper. The purposes of this paper are
twofold: 1) analytical expressions are derived due to a VMD
over the moon whose interior is homogeneous. Of primary
interest is the field when the source is off the moon’s surface;
2) propagation characteristics affecting electric field are eval-
uated under different conditions. In the presented treatment,
a practical procedure is developed to solve the convergence

FIGURE 1. Geometry of a VMD located on or near the homogenous moon
in spherical coordinates.

problem of the series. It is accomplished through a new
theoretical method, which is less restricted to the height
of the source. With the propose method, the computation
becomes less tedious when the sphere radius is larger than
the wavelength. Firstly, the series expansions are divided
into low-order terms and high-order terms. For low-order
terms, we adopt the multiplication iteration method. Then,
we consider the asymptotic method for transforming series
into integrals for high-order terms. Finally, in view of the
expressions of integrals, waves propagating inside the lunar
can be described in terms of ray optics using the phase-state
method.

The remainder of this paper is organized as follows: in
section II, radiation fields are analyzed with the approx-
imate method. The entire field expressions include series
expansions of low-order terms and integrals of high-order
terms. In section III, numerical results are presented. Some
examples are considered to demonstrate the properties of the
high-order terms contributions. In addition, the propagation
distance, the propagation angle, and the height of the source
are taken into consideration, as they affect the properties of
the radiation field. In section IV, important conclusions are
drawn, a discussion is presented.

II. METHODOLOGY
The geometry of spherical coordinates is presented in Fig.1,
which consists of a spherical and electrically homogeneous
moon of radius a. The center of the moon is the origin of
a coordinate system (r, θ, ϕ). A VMD is located at (b =
a + hb, 0, 0), and the observation point is taken at an arbi-
trary point P(r, θ, ϕ). The distance between source and the
observation point is R =

√
b2 + r2 − 2br cos θ .

We shall assign subscripts 0 and 1 to the parameters of the
free space and inside media of the lunar. Electric constants of
the free space and the moon are taken as (σ0, ε0) and (σ1, ε1),
the permeability being taken as µ0 for both. The magnetic
dipole may be realized by a small loop of wire carrying a
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uniform current Ida·e−iωt , where ω is the angular frequency
of the current. Wave numbers of two regions are expressed
as: k0 = ω

√
µ0ε0, k1 = ω

√
µ0ε1 + iσ1/ω. According to the

work [34], the conductivity σ1 of the moon is small enough,
and k1 can be treated as real for the sake of simplicity. It is
assumed that |k1|2 � |k0|2 and k0a � 1. In addition, radius
of the lunar is larger than the wavelength.

In a nutshell, the physics can be described as follows: As
the EM field propagates along the sphere surface, the direct
field is excited when the EM reach the observation point.
Simultaneously, due to the induction of the dipole source, the
secondary field is generated, which exists in the entire space.
The secondary field is divided into two parts: radiating and
scattering field in the free space, and the field is inside the
sphere in the form of rays.

A. SERIES EXPANSIONS OF RADIATION FIELD EXCITED BY
A VMD
The EM field in two regions (j = 0, 1) satisfy the Maxwell
equations

∇ × EEj = iω EBj + EM , (1)

∇ × EBj = −
ik2j
ω
EEj, (2)

where EM (Er) = Ida · δ(x)δ(y)δ(z − b)Ez, Ida = 1. Since the
source is a VMD, it is apparent from symmetry that only Bjr ,
Bjθ , Ejϕ are to be considered.
Electric fields radiated by a dipole on the sphere have been

investigated by Houdzoumis [28] and Margetis [30] in detail.
According to their works, with no diffraction conditions,
direct wavesE in0ϕ due to aVMD in the free space are expressed
as follows:

E in0ϕ =
ωµ0k0
4πb

∞∑
m=0

(2m+ 1)

×

{
jm(k0r)h

(1)
m (k0b)P1m(cos θ )(r < b)

jm(k0b)h
(1)
m (k0r)P1m(cos θ )(r > b).

(3)

Here, jm is the spherical Bessel function. h(1)m refers to the
spherical Hankel function, and P1m are the Legendre function
of the first kind. It is natural to set

Esc0ϕ =
ωµ0k0
4πb

∞∑
m=0

(2m+ 1)Smh(1)m (k0r)h(1)m (k0b)P1m(cos θ ),

(4)

E1ϕ =
ωµ0k0
4πb

∞∑
m=0

(2m+ 1)Tmjm(k1r)h(1)m (k0b)P1m(cos θ ),

(5)

where Esc0ϕ represents the scattering field in the free space and
theE1ϕ is the total field inside the lunar. Tm is the transmission
coefficient and Sm is the scattering coefficient.

It is then deduced from the boundary that at the interface
of the surface, the tangential component of the inside and

the outside electric fields are equal, i.e., E1ϕ |r=a= Esc0ϕ +
E in0ϕ |r=a.
According to the boundary conditions, the coefficients are

obtained

Tm =
i

(k0a)2jm(k1a)h
(1)
m (k0a)Cm

, (6)

Sm =
i

(k0a)2[h
(1)
m (k0a)]2Cm

−
jm(k0a)

h(1)m (k0a)
, (7)

Cm =
[

1
k0a
+
h
′(1)
m (k0a)

h(1)m (k0a)

]
−
k1
k0

[
1
k1a
+
j′m(k1a)
jm(k1a)

]
. (8)

The scattering field in the free space and the total field in
the moon are obtained by subscribing (6)-(8) into (4) and (5).
We have

Esc0ϕ =
iωµ0

4πbk0a2

∞∑
m=0

(2m+1)
h(1)m (k0b)h

(1)
m (k0r)

h(1)m (k0a)h
(1)
m (k0a)

1
Cm

P1m(cos θ)

−
ωµ0k0
4πb

∞∑
m=0

(2m+ 1)h(1)m (k0b)h(1)m (k0r)

×
jm(k0a)

h(1)m (k0a)
P1m(cos θ ), (9)

E1ϕ =
iωµ0

4πbk0a2

∞∑
m=0

(2m+ 1)
h(1)m (k0b)jm(k1r)

h(1)m (k0a)jm(k1a)

P1m(cos θ )
Cm

.

(10)

B. MULTIPLICATION ITERATION METHOD FOR
LOW-ORDER TERMS
From equations above, it is straightforward to obtain exact
series solutions for the fields. However, the series expressions
converge slowly when the radius of the moon is much larger
than the wavelength in the free space. In this section, a new
solution has been proposed in response to this problem. In the
solution process, terms m are divided into low-order terms
and high-order terms for calculation. Due to the large size of
the moon, even in the low-order terms, the Bessel function
and the Hankel function will turn to be large or small enough
that over the range for the computer calculation. Therefore,
for low-order terms, themultiplication iterationmethod of the
Bessel andHankel function is presented to solve this problem.
The solution is

jm+1 (x) = αjm (x)+ βj′m (x) , (11)

j′m+1 (x) = γ jm (x)+ ηj
′
m (x) , (12)

where jm(x) is the Bessel function, j′m(x) refers to the deriva-
tion of the Bessel function. α, β, γ and η are iteration coef-
ficients, respectively. The specific derivations are shown in
Appendix. We have

α =
m
x
, β = −1, (13)

γ = 1−
m(m+ 1)

x2
, η =

m+ 1
x

. (14)

Eqs.(11)-(14) are also applicable for the Hankel function.
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For the sake of generality, jm(x) (j′m(x)) is used for the
Bessel function iteration matrix and hm(y) (h′m(y)) is for the
Hankel function iteration matrix. We write[

jm+1(x)
j′m+1(x)

]
=

[
αj βj
γj ηj

] [
jm(x)
j′m(x)

]
, (15)

and [
hm+1(y)
h′m+1(y)

]
=

[
αh βh
γh ηh

] [
hm(y)
h′m(y)

]
. (16)

Multiplying (15) and (16), recurrence formulas are
expressed in matrix form by transposing. This gives

jm+1(x)hm+1(y)
jm+1(x)h′m+1(y)
j′m+1(x)hm+1(y)
j′m+1(x)h

′

m+1(y)

 = W


jm(x)hm(y)
jm(x)h′m(y)
j′m(x)hm(y)
j′m(x)h

′
m(y)

 , (17)

whereW refers to the recurrence coefficient matrix,

W =


αjαh αjβh βjαh βjβh
αjγh αjηh βjγh βjηh
γjαh γjβh ηjαh ηjβh
γjγh γjηh ηjγh ηjηh

 . (18)

When m = 0, the initial values of the multiplication
iteration functions are in the following form

j0(x)h0(y) = −i
ei(x−y) − e−i(x+y)

2xy
, (19)

j0(x)h′0(y) = (i− y)
ei(x−y) − e−i(x+y)

2xy2
, (20)

j′0(x)h0(y) = −i(x + 1)
ei(x−y) + e−i(x+y)

2yx2
, (21)

j′0(x)h
′

0(y) = (x − 1)(i− y)
ei(x−y) + e−i(x+y)

2x2y2
. (22)

Grouping Eqs.(19)-(22) into (15)-(18), the entire function
sequence of low-order terms is recursively deduced. We have

E low−order1ϕ =
iωµ0

4πbk0a2

mc∑
m=0

(2m+ 1)
P1m (cos θ)

Cm

×

[
m+1
k0b

h(1)m (k0b)− h
′(1)
m (k0b)

]
[
m+1
k0a

h(1)m (k0a)− h
′(1)
m (k0a)

]
×

[
m+1
k1r

jm (k1r)− j′m (k1r)
]

[
m+1
k1a

jm (k1a)− j′m (k1a)
] , (23)

where, mc is the critical term of low-order terms and high-
order terms. For low-order terms of the electric field, the
terms vary from 0 to mc.
The variations of the electric field E1ϕ of low-order terms

along the number of terms are shown in Fig.2, where the
solid line refers to the results calculated by the proposed
method, and the dashed line represents the results obtained
by the calculation directly the sum of the series algorithm.

FIGURE 2. Comparisons of the low-order terms of electric field E1ϕ along
the number of terms m.

The calculation is both under the condition that shown in
Section III. Taking the operating frequency f = 60 kHz,
k0a = 2184, and mc is 6000. From Fig.2, it is found
that two methods agree well. The difference between the
method proposed in this paper and the traditional recursion
method is 2 dB. With the presented method, the resonance
peak appear later than the direct sum method. Therefore,
the multiplication iteration method can calculate more terms
m. After calculation and verification, the method proposed
in this paper has higher stability and calculation accuracy
than traditional methods and is suitable for the large-scale
model.

C. ASYMPTOTIC METHOD FOR TRANSFORMING SERIES
INTO INTEGRALS FOR HIGH-ORDER TERMS
In the case of high-order terms (i.e., m = [mc + 1, ∞]),
asymptotic integral methods are applied. Asymptotic expres-
sions of the Bessel and Hankel function are derived as
follows [35]:

(2m+ 1)j′m(x)hm(y) ⇒ −i(m+ 1)
(
x
y

)m
, (24)

(2m+ 1)jm(x)hm(y) ⇒ −iy
(
x
y

)m+1
, (25)

where x = k1r or x = k1a, y = k0b or y = k0a.
Combining (24) and (25), the electric field of high-order

terms is obtained

Ehigh−order1ϕ =
iωµ0

4πk0a3

∞∑
m=mc+1

(2m+1)
(
r
b

)m+1 1
Cm

P1m(cos θ ).

(26)

In the remarkable paper by Wu [25], the Poisson summa-
tion formula was invoked to analyze radiation waves inside a
sphere. We have
∞∑
m=0

f (m) = a
∞∑

n=−∞

(−1)n
∫
∞

0
f
(
aλ−

1
2

)
ei2πnaλdλ. (27)
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As a result, Eq.(26) is replaced by integral sums:

Ehigh−order1ϕ

=
iωµ0

2πk0a

×

∞∑
n=−∞

(−1)n
∫
∞

0
λdλ

ei2πnaλ

C(λ)

(
r
b

)aλ+ 1
2

P1
aλ− 1

2
(cos θ )

−
iωµ0

4πk0a3

mc∑
m=0

(2m+ 1)
(
r
b

)m+1 1
Cm

P1m(cos θ ). (28)

In particular, the last term of Eq.(28) is series expressions,
which can be calculated through direct iteration.

Applying relation between the Bessel (Hankel) function
and the half-order Bessel (Hankel) function, we have

jm(x) =

√
πx
2
Jaλ(x), (29)

h(1)m (y) =

√
πy
2
H (1)
aλ (y). (30)

Therefore, C(λ) is defined by

C(λ)=
[

1
2k0a
+
H
′(1)
aλ (k0a)

H (1)
aλ (k0a)

]
−
k1
k0

[
1

2k1a
+
J ′aλ(k1a)

Jaλ(k1a)

]
. (31)

1) GEOMETRICAL RAY WAVES INSIDE THE MOON
According to the characteristic of Bessel functions, we have

J ′aλ(k1a)

Jaλ(k1a)
=

H
′(2)
aλ (k1a)

H (2)
aλ (k1a)

+
2i

πk1aJaλ(k1a)H
(2)
aλ (k1a)

, (32)

2Jaλ(k1a) = H (2)
aλ (k1a)

[
1+

H (1)
aλ (k1a)

H (2)
aλ (k1a)

]
. (33)

Then, Eq.(31) can be transformed as

1
C(λ)

=
1

D(λ)
+ F(λ)

1
1− E(λ)

, (34)

D(λ) =
[

1
2k0a

+
H
′(1)
aλ (k0a)

H (1)
aλ (k0a)

]
−
k1
k0

[
1

2k1a
+
H (2)′
aλ (k1a)

H (2)
aλ (k1a)

]
,

(35)

E(λ) =
4i

πk0aD(λ)[H
(2)
aλ (k1a)]

2
−
H (1)
aλ (k1a)

H (2)
aλ (k1a)

, (36)

F(λ) =
4i

πk0a[D(λ)H
(2)
aλ (k1a)]

2
. (37)

From above formulas, [1− E(λ)]−1 can be expanded into
series and (34) is rewritten as

1
C(λ)

=
1

D(λ)
+ F(λ)

∞∑
M=0

EM (λ). (38)

It is obvious that E1ϕ of high-order terms has two parts,
the first part is the wave propagating along the surface of the
moon depending with the poles, the second part represents
behavior of the wave propagating within the moon.

For the first term, the integral oscillates due to the
P1aλ−1/2(cos θ ) and the exponential ei2πnaλ. Concerning the
second group of terms, the factor F(λ)EM (λ) is of oscillatory
nature, as well. Moreover, the oscillation of this factor inter-
feres with P1aλ−1/2(cos θ ) and e

i2πnaλ in a way that can render
the phase stationary.

2) PHASE STATE METHOD
According to the work [36], the optics-ray integral can be
evaluated by the method of stationary phase. The solutions
by the method of stationary phase agree with those obtained
using numerical integration method. In the following, wave
propagating through the lunar will be mainly considered and
analyse their contributions. We have

Eray1ϕ =
iωµ0

2πk0a

∞∑
n=−∞

(−1)n
∞∑
M=0

IϕnM , (39)

IϕnM =
∫
∞

0
λdλ

(
r
b

)aλ+ 1
2

ei2πnaλF(λ)EM (λ)P1
aλ− 1

2
(cos θ ).

(40)

Using the approximations of Bessel and Hankel functions
for aλ� 1 [37], that is

H (1)′
aλ (ν)

H (1)
aλ (ν)

∼ i
√
1− (aλ/ν)2

[
1+

i
2ν

(1− (aλ/ν)2)−3/2
]
,

(41)
J ′aλ(ν)

Jaλ(ν)
∼ −i

√
1− (aλ/ν)2

[
1−

i
2ν

(1− (aλ/ν)2)−3/2
]
.

(42)

Subscribing (42) and (43) into (36)-(40), we write

ei2πnaλF(λ)EM (λ) ∼ −2
k1
k0
e−iMπ/2G(λ)RM (λ)e(iEnM±),

(43)

where

G(λ) =

√
1− (λ/k1)2

[
√
1− (λ/k0)2 + (k1/k0)

√
1− (λ/k1)2]2

, (44)

R(λ) =
(k1/k0)

√
1− (λ/k1)2 −

√
1− (λ/k0)2

(k1/k0)
√
1− (λ/k1)2 +

√
1− (λ/k0)2

. (45)

To examine the roots of stationary phase, we pay attention
to the phase part of the field inside the moon. This gives

EnM±=k1a
{
2(M+1)

[√
1−(λ/k1)2−(λ/k1) cos−1(λ/k1)

]
+ (λ/k1)(2πn± θ )

}
, (46)

where the ‘‘±’’ sign originates form the Legendre functions
whose expression involves a cosine.

The above functions represent the part of the phase that
depends on λ, we have

dEnM±
dλ

= a
[
(2πn± θ )− 2(M + 1)[cos−1(λ/k1)]

]
. (47)
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FIGURE 3. Geometry of rays bouncing and circulating in the moon. P is
the observation point. (a) n = 0,M = 1, s = +; (b) n = 1,M = 3, s = +;
(c) n = 1,M = 4, s = −; (d) n = 2,M = 5, s = −.

Therefore, the phase becomes stationary when

2πn± θ = 2(M + 1)[cos−1(λ/k1)]. (48)

For λ = k1 cosϕnM±, we have

ϕnM± =
2πn± θ
2(M + 1)

, 0 ≤ ϕnM± ≤ π/2, (49)

here ϕnM± is the angle between the ray and the corresponding
local tangent.

Subscribing (43)-(49) into (39), the preceding considera-
tion lead to the field Eray1ϕ inside the lunar, which is addressed
as follows:

Eray1ϕ ∼ −
iωµ0k31
2πak20

eiπ/4+
1
2 ln

r
b

√
sin θ

∞∑
M=0

e−iMπ/2
√
(M + 1)

×

∑
s=±

∑
n∈SMs

(−1)n cosϕnMs
√
2 sin 2ϕnMs

×G(k1 cosϕnMs)RM (k1 cosϕnMs)

×exp{[i2(M + 1)k1a sinϕnMs + k1a cosϕnMs ln
r
b

+ isπ/4]}. (50)

where SM+ = n : 0 ≤ 2n ≤ M , SM− = n : 0 ≤ 2n ≤ M + 1.
G(k1 cosϕnMs) is the distance covered by rays which start
from the north pole forming an angel. RM (k1 cosϕnMs) equals
the reflection coefficient.

The rays described by (50) circulate around the origin
while they are multiply reflected at the spherical boundary,
as depicted in Fig.3. Waves are determined by all possible
pairs (n,M , s), of which n is the number of circulations,
M presents the reflection number, s refers to the clockwise
(+) and counterclockwise (−). Primary waves from source

and various reflected few times at the spherical surface are
superposed together. For simplicity the source is assumed to
oscillate with no diminution. The diminution of the radia-
tion field will become remarkable only after once or twice
reflected.

So far, the total field excited by a VMD inside the moon are
obtained. It can be readily seen that different terms of series
are described in series and integrals, respectively.

E1ϕ =
iωµ0

4πbk0a2

mc∑
m=0

(2m+ 1)
P1m (cos θ)

Cm

×

[
m+1
k0b

h(1)m (k0b)− h
′(1)
m (k0b)

]
[
m+1
k0a

h(1)m (k0a)− h
′(1)
m (k0a)

]
×

[
m+1
k1r

jm (k1r)− j′m (k1r)
]

[
m+1
k1a

jm (k1a)− j′m (k1a)
]

−
iωµ0k31
2πak20

eiπ/4+
1
2 ln

r
b

√
sin θ

∞∑
M=0

e−iMπ/2
√
(M + 1)

×

∑
s=±

∑
n∈SMs

(−1)n cosϕnMs
√
2 sin 2ϕnMs

×G(k1 cosϕnMs)RM (k1 cosϕnMs)

×exp{[i2(M + 1)k1a sinϕnMs + k1a cosϕnMs ln
r
b

+ isπ/4]}

−
iωµ0

4πk0a3

mc∑
m=0

(2m+1)
(
r
b

)m+1 1
Cm

P1m(cos θ ) (51)

In order to verify corrections of the proposed method in
this paper, computations are carried out using the traditional
method (i.e., direct sum method) and the fast multipole
method (FMM) which is addressed in the work [38]. The
operating frequency, critical term, and the dielectric constant
inside the sphere are taking as f = 3GHz, ε1 = 2, and
mc = 300, respectively. Assuming both the dipole and the
observation point are on the surface, the radius of the sphere
equals 1. Comparison results are shown in Fig.4 and Table 1.

For sake of clarity, the normalized propagation distance
η = ρ/ρc is introduced by Houdzoumis [29], and ρc =
a( k0a2 )−1/3. From different methods, it is found numerical
results by the method proposed in this paper are agreement to
the direct summethod and the FMM. Particularly, the method
proposed in this paper has a faster convergence rate. It is noted
that from Table 1 that most of the relative error of results
between the direct sum method and the proposed method is
less than 6%, whereas those between the direct sum method
and FMM is much larger than 11 %.

III. COMPUTATIONS AND DISCUSSIONS
According to above derivations and analyses, radiation field
components inside the moon excited by a VMD are stud-
ied in detail. In this section, radiation fields will be treated
numerically via MATLAB. In this paper, we adopt the cold
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FIGURE 4. Different results of the electric field E1ϕ along the normalized
propagation distance.

TABLE 1. Results of the direct sum method, the proposed method, and
FMM.

TABLE 2. Notations and corresponding values adopted in our paper.

homogeneous moon model which has been proposed by
Ward [39]. Cold homogenous model is characterized by fre-
quency dependent effective values of dielectric constant and
conductivity which are uniform throughout the lunar. Param-
eters used in calculating are indicted in Table 2. According
to the work [34], the conductivity of the interior moon close
to the surface is about σ1 = 10−12. Therefore, the imaginary
part of k1 is smaller than the real part, which can be ignored
in the low frequency (LF) ranges. Moreover, the observation
point is located inside the moon and close to the surface
(i.e., r → a).

Firstly, Fig.5 shows the comparison between the results of
this paper and those by Pan [21]. The operating frequency is
f = 150 kHz and other parameters are taken from Table 2.
Apparently, the analytical curve of this paper and Pan’s
curve variation tendencies are approximate and unanimous,
completely confirming the high accuracy of our method.
In addition, the phenomenon of interference arises in the

FIGURE 5. Different results of the electric field E1ϕ along the normalized
propagation distance.

curve of this paper, which shows our method has advantages
for computation.

To illustrate the attenuation of the electric field depending
on the propagation distance, single bounce rays are taken as
examples (i.e., n = 1,M = 2 and n = 2,M = 2). The radi-
ation component E1ϕ varying with normalized propagation
distance is shown in Fig.6. Different cases are chosen with
f = 60 kHz, f = 80 kHz, and f = 150 kHz to gain insight
into the influence of frequency. According to Fig.6, there are
three sets of curves in which a comparison is made among
the low-order terms, the high-order terms, and the total field.
For a large-size model, the high-order terms of electric field
play an important role in the total field. It is evident that as the
normalized propagation distance increases, the electric field
intensity decreases. A phenomenon of interference appears
when the normalized propagation distance exceeds η ≥ 0.3.
When η ≥ 3, the interference will strengthen, which reaches
the peak at the observation point. It is caused by the super-
position of waves of different paths and various reflections
at the observation point. Comparing the results of different
frequencies, electric fields increase as frequencies advance.

For same parameters values, typical computations of elec-
tric fields E1ϕ are carried out versus the propagation angle
with the operating frequencies f = 80 kHz and f = 150 kHz,
respectively. From Fig.7, the electric field trend varying with
the propagation angle is similar with that of the propagation
distance. For a large-size model, the propagation distance and
the propagation angle have a following relation: ρ = aθ .
As is shown in Fig.7, the amplitude of E1ϕ decreases when
the propagation angle increases and electric fields increase as
the frequencies increase. It is noted that the first reflection
angle appears early as the (n, M,s) enhances.

Fig.8 demonstrates relations between the height of the
source and the electric field. The source is located at hb =
30m, hb = 10m, and hb = 0m, respectively. Theoretical
results are shown at the operating frequency f = 75 kHz.
Under different heights of the source, the electric field highly
oscillates with the normalized propagation distance increas-
ing. In the three cases, the regular patterns of electric field
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FIGURE 6. Electric field component E1ϕ vs. normalized propagation distance η with different frequency. (a) n = 1,M = 2, s = +, f = 60 kHz;
(b) n = 1,M = 2, s = +, f = 80 kHz; (c) n = 1,M = 2, s = +, f = 150 kHz; (d) n = 2,M = 2, s = +, f = 60 kHz; (e) n = 2,M = 2, s = +, f = 80 kHz;
(f) n = 2,M = 2, s = +, f = 150 kHz.

FIGURE 7. Electric field component E1ϕ vs. the propagation angle θ .
(a) n = 1,M = 2, s = +, f = 80 kHz; (b) n = 3,M = 3, s = +, f = 80 kHz;
(c) n = 1,M = 2, s = +, f = 150 kHz; (d) n = 3,M = 3, s = +, f = 150 kHz.

varyingwith normalized propagation distance are similar. It is
due to the height of the source is much smaller than the radius
of the moon, so the difference of electric field at different
heights is slight.Meanwhile, a distinction arises in the electric
field generated by a VMD in the moon. When the source

FIGURE 8. Electric field component E1ϕ vs. height of the source and the
observation point with n = 1,M = 2, s = +, f = 75 kHz.

is located on the boundary, the amplitude of electric field is
larger than that off the surface.

Spatial distributions of electric field E1ϕ at the operating
frequencies f = 60 kHz, f = 100 kHz, and f = 150 kHz
are presented in Fig.9, respectively. According to Fig.9, the
electric field in the moon show a divergence distribution
in space. It demonstrates the amplitude of the electric field
is relatively large near the source, and the field intensity
decreases as the propagation distance increases. In particular,
the minimum of the E1ϕ aggregates at the location near the
source. This is probably because the minimum of the E1ϕ
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FIGURE 9. Spatial distributions of component E1ϕ with different frequencies. (a) n = 1,M = 2, s = +, f = 60 kHz; (b) n = 1,M = 2, s = +, f = 100 kHz;
(c) n = 1,M = 2, s = +, f = 150 kHz.

corresponds to the change point of the phase. By comparing
the results at two frequencies, the radiation pattern is similar.
It is noted that the frequency influences the strength of electric
fields, where the amplitude of E1ϕ increases as frequency
increases.

IV. CONCLUSION
In this paper, the EM fields inside the moon, which are
radiated by a VMD located on or near the surface, have been
proposed in series form of low-order terms and integral form
of high-order terms. To solve the converge problem of a large-
size model, the multiplication iteration method for low-order
terms and the asymptotic method for high-order terms are
employed to formulate the expressions of the field. When the
source is on or near the boundary, the integral expansions of
high-order terms dominate the total field. Comparison results
show that the radiation fields against the direct sum method
with the relative error of 6%. The proposed method can
give a better performance in accuracy for a large-size model.
It is found that field attenuates strongly with the propagation
distance, the propagation angle, and heights of the source
increasing, but phenomenon to frequency is electric fields
increase as frequencies advance. Meanwhile, the interference
appears when the normalized propagation distance exceeds
η ≥ 0.3. When η ≥ 3, the interference will strengthen, which
reaches the peak at the observation point. The analytical
method presented in this paper provides theoretical support
for the moon subsurface exploration.

The present work admits several extensions and also
points to pending issues. Results presented in this paper are
only for analytical and numerical computations. Experiments
are needed to demonstrate the theory. In actual situations,
the environment inside the moon is complex, which would
require more complicated integrals by imposing some restric-
tions. These issues will be investigated in our future work.

APPENDIX
According to the recurrence relation of the Bessel function,

xj′m(x)− mjm(x) = −xjm+1(x),
d
dx

[xm+1jm+1(x)] = xm+1jm(x),

we have

jm+1(x) =
m
x
jm(x)− j′m(x),

j′m+1(x) =
[
1−

m(m+ 1)
x2

]
jm(x)+

m+ 1
x

j′m(x).

Therefore, iteration coefficients α, β, γ and η are obtained

α =
m
x
, β = −1,

γ = 1−
m(m+ 1)

x2
, η =

m+ 1
x

.

According the work of [40], whenm = 0, the initial values
of the spherical Bessel function and the Hankel function are

j0(x) =
sin x
x
, n0(x) = −

cos x
x
,

h(1)0 (y) = −i
e−iy

y
, h(2)0 (y) = i

e−iy

y
.
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