
Received December 2, 2021, accepted January 17, 2022, date of publication January 27, 2022, date of current version February 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3147144

Creating a Modeling Language Based on a New
Metamodel for Adaptive Normative Software
Agents
MARX VIANA 1, PAULO ALENCAR2, (Member, IEEE), EVERTON GUIMARÃES 3,
ELDER CIRILO 4, AND CARLOS LUCENA5
1Department of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil
2David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
3Engineering Division, Pennsylvania State University, Malvern, PA 19355, USA
4DCOMP, Federal University of São João del-Rei, São João del Rei, Minas Gerais 36307-352, Brazil
5Department of Informatics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil

Corresponding author: Marx Viana (mleles@inf.puc-rio.br)

This work was supported in part by the Coordination for the Improvement of Higher Education Personnel (CAPES), in part by the National
Council for Scientific and Technological Development (CNPq), and in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

ABSTRACT The demand for creating increasingly dynamic, autonomous and proactive software systems
is challenging for the traditional Multi-agent Systems (MASs) approaches. Such requirement has given rise
to adaptive software agents approaches. At the same time, norm is an essential and challenging feature
that still tends to be addressed in adaptive MAS. In fact, norms to regulate agent behavior is still a vague
concept that has not been properly investigated in terms of modeling and implementation. Even though
many researchers have proposed modeling languages to deal with different abstractions, these languages fail
to support the modeling of abstractions, such as adaptation and norms. Even more severe is the fact that little
has been done to support the systematic design of Adaptive Normative Multi-Agent Systems (ANMASs).
To facilitate the design and development of ANMASs, this paper presents a new metamodel, as well as
language support, as means to provide tools to enable software developers. The proposed metamodel fosters
a better understanding of the way agents are able to change their behaviors to deal with norms and captures
interactions between agent’s norms and adaptation. To this end, our research is organized into five steps: (i) a
literature review to identify the limitations of existing approaches related to ANMAS modeling; (ii) propose
a new metamodel to support adaptative and normative concepts; (iii) propose a new language for modeling
ANMASs; (iv) perform a qualitative and quantitative evaluation of the proposed language using a real case
scenario, and (v) an empirical evaluation. The proposed metamodel and its associated modeling language
advances the state of the art in modelingMASs and the approach is assessed in terms of correctness, time and
difficulty. Our initial results revealed that our approach can be feasibly applied in a real world application,
and is less difficult to apply and requires less time in comparison with a traditional approach. As software
applications become more dynamic and adaptive, we believe it is essential to support developers to model
MASs with abstractions such as adaptive agents, norms and their relationships. Such information can be
foundational to steer future research on modeling adaptive agents capable of understanding and dealing with
norms and adaptation.

INDEX TERMS Multi-agent systems, software modeling, normative systems, software adaptation.

I. INTRODUCTION
Software agents emerged as a new technology for building
complex systems [1]. These systems are characterized by
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the distribution and composition of autonomous entities that
interact with each other [2]. Multi-agent Systems (MASs)
are societies in which these heterogeneous and individually
designed entities work to accomplish common or independent
goals [3]. Thus, the use of agents to develop complex systems
is considered a promising approach in many areas, such as
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the Internet of smart Things (IoT) [4], smart traffic lights [5],
[6], smart cities [7], energy [8], second life [9] and healthcare
systems [10]. Because of the pervasiveness of adaptation and
some forms of norms in modern software applications, the
proposed approach is relevant not only for MAS, but also for
various other domains, such as Systems of Systems (SoS) and
the Internet of Things (IoT). Because of their complexity, the
successful and widespread deployment of large-scale MASs
requires a unifying set of agent-related abstractions to support
modeling languages and their respective methodologies.

Modeling languages are defined as languages that support
the design and construction of models in a specific domain.
In general, a model is a simplification of reality that can help
software developers to better understand the systems that they
are developing. These models help developers to: visualize
the system as it is, or as they wish it to be; specify its structure
or behavior; provide guidance during system development,
and have a way to record their design decisions. Moreover,
models of complex systems need to be built because in most
cases even the software professionals who interact with these
systems on a daily basis cannot understand the systems in
their entirety. For all these reasons, a modeling language is an
indispensable element in agent-based software technology as
it is an essential tool for designing software systems models.

To reduce the risk of adopting a new technology, it is
convenient to present a modeling language as an incremental
extension of known and trusted approaches as well as to pro-
vide explicit engineering tools that support industry-accepted
methods of technology deployment [11]. As a standard, the
UML modeling language has been used for object-oriented
modeling in both industry and academia although it does not
provide the abstractions required for modeling MASs [7].
In addition, there are several MAS modeling languages
[12]–[14] that extend UML to model agent-oriented systems
but do not provide abstractions that support the modeling of
adaptative or normative agent concepts.

However, the ongoing research efforts towards defin-
ing more comprehensive and expressive MAS modeling
approaches and languages has faced numerous challenges,
especially in the case of agents that need to exhibit both
normative and adaptive behavior. An agent is considered
normative if its behavior is regulated by norms, and it is
considered adaptive when it is able to respond to changes
in other agents or in the environment. The first challenge is
that there is currently a lack of consensus about the under-
standing of these two key abstractions, namely norms and
adaptive behavior. Furthermore, most modeling languages
do not define the interaction between these abstractions at
design-time and runtime concepts for both the agent’s internal
and external aspects [12].

Tackling these challenges becomes increasingly relevant as
many modern software applications need, for one, to (self-
) adapt their behavior and dynamically react to changes in
their environments. In addition, they need to be able to define
normative (i.e. regulatory) behavior of individual and collec-
tive agents. For example, smart traffic lights, an emergent

application in the area of the Internet of Things (IoT), require
agent models that are able to sense and adapt to changes in
other agents and in the environment and that are also subject
to norms aiming to regulate their behavior. Another example
is the modern healthcare systems, which need agent models
that are both adaptive and normative; these systems require
adaptations in different dynamic contexts and are often highly
regulated. In both examples not only do the models need to
capture isolated normative and adaptive behavior, but they
also need to understand the changes that affect their adaptive
behavior, and vice-versa.

A. SPECIFIC PROBLEMS AND GOAL
Although some modeling languages involve abstractions of
adaptation and / or normative concepts ( [11], [12], [15],
[16], [17]–[20], [21]), these approaches do not explicitly
present the adaptive and normative factors that can influence
MASs, such as:

• (#F1) traditional agent architectures and their associated
languages do not provide a mechanism for an agent to
adapt to the norms that restrict its behavior ([22]);

• (#F2) due to limitation (#F1), these languages cannot
be used to model many essential aspects in the represen-
tation of agents, such as aspects involving adaptation,
norms and the interactions between them ([12], [18]);

• (#F3) both at design and runtime, changes in agents’
behavior and their reactions to changes in the environ-
ment need to be represented ([12]);

• (#F4) there is a lack of models to capture how agents
can adapt their behavior to comply with the new norms
adopted ([18]).

Given the above, there is a need for creating approaches that
enable the development of multi-agent systems capable of:
(#F1) understanding and adapting the norms addressed to
them in the environment; (#F2) supporting a language that
allows to represent the concepts of norms and adaptation
explicitly; (#F3) verifying how these abstractions are related,
and (#F4) representing mechanisms that assist in the con-
struction of agents capable of adapting to deal with norms.

Based on the challenges and limitations of current
approaches, our main goal is to provide a novel MAS model-
ing approach by: creating a metamodel according to which
agents can understand and adapt the norms addressed to
them in the environment; creating amodeling languagewhich
allows representing the concepts of norms and adaptation
explicitly; verifying how these abstractions relate to each
other, and representing mechanisms to help the construction
of agents capable of adapting to deal with norms.

B. OVERVIEW OF THE PROPOSED APPROACH
An overview of the proposed MAS modeling approach,
which can support adaptation and norms, is presented in
Fig. 1. The MAS modeling approach involves four phases:
Phase 1, which aims at the development of a novel MAS
metamodel that supports adaptation and norms; Phase 2,

VOLUME 10, 2022 13975



M. Viana et al.: Creating Modeling Language Based on New Metamodel for Adaptive Normative Software Agents

FIGURE 1. An overview of the proposed MAS modeling approach.

which aims at the creation of a MAS modeling language
based on the new metamodel; Phase 3, which aims at mod-
eling a real-world practical application, and Phase 4, which
aims at evaluating the MAS modeling language.

In Phase 1, we develop a new MAS metamodel called
Adaptive Normative Agent (ANA) by extending TAO [23]
and FAML [12] metamodels. We extend TAO because it
only introduces basic relationships between roles and orga-
nizations of agents. In addition, we extend FAML because
it already gives support to modeling at different meta-
levels, namely: (i) system-level – agent-external in design-
time; (ii) environment-level – agent-external in runtime;
(iii) agent definition-level – agent-internal in design-time,
and (iv) agent-level – agent-internal in runtime. These two
metamodels already include the basic concepts that we
needed, namely basic agent-based entities and relationships
as well as the support for modeling at different levels (i.e.,
at design-time and runtime). The extension allows us to take
advantage of existing modeling constructs and focus our
modeling approach on the novel adaptation and normative-
oriented constructs. The ANA metamodel introduces new
abstractions that are not provided in neither FAML or TAO,
such as normative attributes (e.g., state, condition, motiva-
tion) and adaptation attributes (e.g., sensor, effector, strategy,
policies). This metamodel defines the static and dynamic
aspects of agents, both internally and externally, in design
and run times. The static aspect of ANA captures entities,
their properties and relationships. The entities defined in
ANA are agents, organizations, environments, roles, mental
state and norms. The dynamic aspect of ANA is directly
related to the relationships between the MAS entities and

define the domain’s independent behaviors associated with
the interaction between MAS entities. In summary, the ANA
metamodel captures new modeling language constructs to
represent norm and adaptation abstractions as well as their
interactions.

In Phase 2, based on the ANA metamodel, we develop
an Adaptive Normative Agent Modeling Language (ANA-
ML) [24] by extending theMAS-MLmodeling language [23]
because it already gives support to modeling: (i) the main
MAS entities: agents, organization and environments; (ii) the
static and dynamic properties of a MAS; (iii) agent roles,
which are important while defining agent societies, and (iv)
proactive agents. However, ANA-ML introduces new mod-
eling language constructs to represent the ANA metamodel
norm and adaptation abstractions.

In Phase 3, we characterize a fire scenario involving evac-
uation from hazardous areas [21], which is modeled using
ANA-ML. Our goal is to describe the entities and rela-
tionships composing the evacuation plan, which take into
consideration people’s location given a specific disaster man-
agement situation.

In Phase 4, we conduct a quantitative experimental evalu-
ation of ANA-ML by comparing it to another modeling lan-
guage. This evaluation addresses three main aspects, namely
we evaluate ANA-ML in terms of its ability to support: (i) the
correct understanding of the creation and maintenance of
the models; (ii) the time to correctly understand the cre-
ation and maintenance of the models, and (iii) the diffi-
culty to correctly understand the creation and maintenance
of the models. The experimental evaluation has shown that,
in comparison with an existing modeling language, the use of
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ANA-ML facilitates the correct understanding of the creation
and maintenance of models that represent adaptation and
norms, and requires less time from the developers for model
creation and maintenance.

Furthermore, we note that many types of practical applica-
tions ofmulti-agent systems need to support adaptive and nor-
mative mechanisms in design and run times, as for example,
in emergency services and natural disasters (i.e. floods, fires,
landslides, earthquakes) [25], [26]; homes and smart [4],
[7], cities [8]; the construction of virtual assets (i.e., Second
Life [9]) and health (i.e. diseases or conditions involving the
immune system [10], [27]).

C. CONTRIBUTIONS
This article proposes and evaluates the ANA-ML modeling
language, and its underlying metamodel. Its main contribu-
tions can be summarized as:

• An extended metamodel, which allows representing the
structural and adaptive behavior of agent-based software
that can deal with norms. The proposed metamodel aims
to express entities and relationships, both internal and
external to the software agent;

• A modeling language, which addresses the particular
features of MASs as means to cope with the limitations
of existing approaches documented in the literature;

• A qualitative analysis of the proposed modeling lan-
guage through a real case scenario related to a fire
scenario in which people need to be evacuated.

• An initial evaluation of the proposedmodeling language,
in which we compare the creation and maintenance
of models based on ANA-ML in contrast to MAS-
ML. As criteria for this evaluation, we have consid-
ered: the time spent; the number of errors made by
the participants when performing the required activ-
ities (the quality of the models), and the difficulties
encountered.

D. PAPER STRUCTURE
The remainder of this paper is organized as follows. Section II
presents research background and related work. Section III
discusses the proposed ANA metamodel and Section IV
presents the ANA modeling language (ANA-ML). Sec-
tions V and VI present a real case scenario and a quan-
titative experimental evaluation of ANA-ML, respectively.
Finally, Section VII presents our conclusions and future
work.

II. BACKGROUND AND RELATED WORK
This section introduces the main concepts needed to under-
stand this work, including the concepts related to software
agents, adaptive behaviour, normative systems, and MAS
metamodels. The section also describes related work. This
section is based on a survey we have developed to assess
existing approaches and identify the gaps we are addressing
in this paper [28].

A. SOFTWARE AGENTS AND THE BDI ARCHITECTURE
Software agents are autonomous entities able to perform tasks
without human intervention [2]. The behavior of a software
agent depends on both the state of the environment and its
mental state. The mental state of an agent is composed of
its state and behavior at a given time, i.e., goals, beliefs,
decisions and intentions linked to its plans and actions. When
it executes actions, the agent can change its mental state,
introducing new perceptions about the environment, and by
sending and receiving messages from other agents. The agent
behavior is characterized based on its plans, actions and
environment norms, which influences the agent autonomy
and interactions [29]. Nevertheless, software agents can send
and receive messages in the environment of other agents.
The agent autonomy is given through its capacity of acting
proactively. Finally, agents are adaptive entities, that may
adapt its state and behavior regarding changes and restrictions
in the environment.

One of the widely known architectures for designing and
implementing cognitive agents is the belief-desire-intention
(BDI) architecture [29], [30], following a model initially
proposed by Bratman [31], which consists of beliefs, desires
and intentions as mental attitudes that influence human
action. Beliefs represent the characteristics of the environ-
ment, desires captures information about objectives and their
costs and priorities, and intentions represent the current action
plan [28].

B. ADAPTIVE AGENTS
The term adaptation means ‘‘any change in the structure or
functioning of an organism that makes it better suited to its
environment’’ [32]. Software adaptation refers either to the
software being adapted or the evolutionary process leading
to the new adapted software. More specifically, in the context
of MASs, adaptations can be observed at two levels, which
involve structural and behavioral changes. These changes aim
at making applications more adaptable to their evolutionary
context [33]. A promising solution for software adaptation
is introducing self-adaptive software systems that can man-
age change dynamically while running efficiently and reli-
ably [34]. According to [35], self-adaptation systems are able
to modify their behavior or structure in response to their
perception of the environment, the system itself, and their
goals. One of the main advantages of self-adaptive software
is its ability to manage the complexity arising from highly
dynamic and non-deterministic operating environments.

For a software system to be considered self-adaptive [10],
it should support a specific set of features, which include
having: (i) the ability to observe changes in its operating
environment; (ii) the ability to detect and diagnose changes
in the operating environment and assess its own behavior;
(iii) the ability to change its own behavior to adapt to new
changes; and (iv) support for dynamic behavior (i.e. its inter-
nal and external behavior should be able to change intention-
ally and automatically). Even though many approaches [10],
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TABLE 1. Properties of norms.

[34], [35] describe systems’ self-adaptation, they do not
focus on modeling and implementing software agents. There-
fore, although properties related to self-adaptive systems are
considered important (i.e. autonomy, reasoning, proactivity),
they are not explicitly addressed by existing approaches [17],
especially when both adaptation and norms have to be con-
sidered.

C. NORMATIVE SYSTEMS
Norms are mechanisms that enable an agent to require other
agents behave in a certain way [36]. In other words, norms
can regulate the agents’ behavior by representing the way in
which an agent understands the responsibilities of others [3].
In a normative system, the software agents work under the
belief that other agents will behave according to prescribed
norms. The use of norms is a precondition in MASs in which
the members are autonomous, but not self-sufficient and,
therefore, cooperation is required and needs to be assured by
specific mechanisms to support it.

Moreover, norms can be used to achieve different purposes,
ranging from the construction of a simple agreement between
software agents to more complex cases involving legacy
systems [37]. Therefore, different aspects can be used to
characterize norms. Table 1 presents the properties of norms.
First, norms are always created to be obeyed by a set of agents
to achieve specific social goals. Second, norms are not always
applied, and their activation conditions depend on the context
of the software agents involved in a specific interaction. The
type of entity a norm regulates must be known, and it can
be an agent’s action or the state of the environment. Finally,
in some cases, norms may provide a set of sanctions to
be imposed when agents fulfill or violate them [3], [36],
[37]. Nevertheless, norms and adaptation are indispensable
to MAS models in domains such as the Internet of Things
(IoT) [7] and in both internal and external and external design
and run times [12], [13].

D. RELATED WORK
Having described relevant background, in this section we
discuss works related to (i) metamodels and (ii) modeling
languages, both in the context ofMAS systems. The literature

reports very distinct and varying sets of abstractions suitable
for different domains [12], [13], [21], [25], [38], [39], [40].
Each methodology has incorporated its own abstractions for
modeling the different multi-agent systems concepts, and
there is no agreement about a common group of abstrac-
tions that can be used across different methodologies. Several
authors recognized the importance ofmodeling agents in their
environment both in design time and in runtime [8], [12], [41].
In general, these authors also observed that most modeling
languages do not represent some important concepts that are
present in MASs, such as adaptive behavior and norms [7],
[12]. Nevertheless, norms and adaptation are relevant and
indispensable to the software agent’s internal and external
design and run times.

1) MAS METAMODELS AND FAML
Several MAS metamodeling approaches have been intro-
duced in the literature [8], [12], [23]. A metamodel involves
a collection of concepts such as things and terms associated
with a domain, which basically include relevant entities and
relationships. In the case of MAS metamodels entities are,
for example, agent, message, role, action, and plan. Instead
of describing specific metamodels individually, we describe
in this section a generic metamodel called FAML.

FAML [12] is a process-independent metamodel for an
agent-oriented modeling language. It allows the description
of software components of any multiagent system, as it cap-
tures problem-independent concepts (e.g., agents, resources)
involved in multiagent system requirement description and
system design with different abstractions. FAML’s suitability
for supporting modeling language development is demon-
strated through a comparison with existing methodology-
specific metamodels.

The FAML metamodel is constructed by a combination
of bottom-up and top-down analysis and best practices.
The expressiveness of the FAML metamodel concepts and
their relationships were evaluated in [12] in comparison
with two agent-oriented metamodels, namely TAO [42] and
Islander [43]. The FAML metamodel has two layers: design-
time and runtime layers. Each layer may have two scopes:
system-related or agent-related. The design-time layer cap-
tures entities and relationships related to the ‘‘system as
developed’’ and the runtime layer captures those related to
the ‘‘system as being executed’’.

We briefly describe in this section a generic metamodel
called FAML. A more detailed description of FAML as well
as other multiagent models and languages is provided in [28].
However, concepts such as adaptation and norms are not
included in the metamodel structure, neither at design nor
execution times. In doing so, the agents cannot reason about
the norms nor adapt to changes in the environment.

Cernuzzi [20] provided a comprehensive description of
the GAIA, a methodology initially developed to model
small-scale multiagent systems [2]. After undergoing several
modifications [44], the authors seek to show the advantages
of using GAIA to create models in the FAML social and
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agent level [12]. In addition, various efforts have been made
to model organizational structures and the norms governing
the agents’ overall behavior in the organization. Even after
the modifications to the GAIA methodology, it still lacks
support to model how the agent understands those norms and
how it deals with them. The authors mainly addressed the
relation between the norms and the roles of the agents in
the organization. Further, this methodology does not consider
possible adaptations of the agent to deal with norms in the
environment; we introduce these adaptations in our modeling
language.

In contrast, the metamodels presented in this section do not
include a description of the internal architecture of normative
agents and how they adapt their behaviors to deal with norms.

2) MAS MODELING LANGUAGES
Several languages have been proposed for the modeling of
MASs ( [2], [11], [12], [15], [17], [21], [23], [44], [45],
[46]–[49], [50]). Each of these approaches will be described
in the following paragraphs. Additional information on MAS
metamodels and languages can be found in [28].

Bernon [46] proposed the ADELFE methodology, which
is capable of guiding and helping designers to build adap-
tive MASs. ADELFE 3.0 [19] can be used to design
non-collaborative situations an agent can find or create. For
each of these situations, an agent must leave the actions to
be performed and ensure that the agent resumes these actions
while staying in a state of cooperation with other agents and
with itself.

Silva et al. [23] presented the modeling language MAS-
ML, which extends UML and was based on the conceptual
framework (metamodel) called TAO [51]. The metamodel
Taming Agents and Objects (TAO) provides an ontology that
covers the fundamentals of Software Engineering based on
agents and objects and makes possible the development of
large-scale MASs [14]. This metamodel connects consol-
idated abstractions, such as objects and classes, and new
abstractions, such as agents, roles and organizations, which
are the foundations for agent-oriented software engineering.
TAO presents the definition of each abstraction as a concept
of its ontology and establishes the relationships between
them. Fig. 2 depicts the abstractions and relationships pro-
posed in TAO. The TAO abstractions are defined as follows:

• Object: It is a element that can be passive or reactive
and has state and behavior, and can be related to other
elements;

• Agent: It is an autonomous and interactive element that
has a mental state. Its mental state has the following
components: (i) beliefs — everything the agent knows;
(ii) goals — the future states that the agent wants to
achieve; (iii) plans — the sequences of actions that
achieve a goal, and (iv) the actions themselves;

• Organization: It is an element that groups agents and
sub-organizations, which play roles and have common
goals. An organization has intra characteristics, prop-

FIGURE 2. Abstractions and relationships of TAO [14].

erties and behaviours represented by the agents inside
it. It may restrict the behaviour of their agents and their
sub-organizations through the concept of axiom, which
characterizes the global organizational constraints that
agents and sub-organizations must obey;

• Object role: It is an element that guides and restricts the
behaviour of an object in the organization. An object role
can add information, behaviour and relationships that an
object instance executes;

• Agent role: It is an element that guides and restricts the
behaviour of the agent playing the role in the organiza-
tion. An agent role defines (i) duties as actions that must
be performed by the agent playing the role, (ii) rights
as actions that can be performed by the agent playing
the role, and (iii) a protocol that defines the interaction
between agent roles;

• Environment: It is an element to which agents, objects
and organizations belong. Environments have state and
behaviour.

In [14], the authors define the following relationships
in the TAO metamodel: Inhabit, Ownership, Play, Spe-
cialization/Inheritance, Control, Dependency, Association
and Aggregation/Composition. The concepts are presented
through a semi-formal approach that uses templates to for-
malize Objects, Agents, Organization, Object Role, Agent
Role, Environment and their relationships.

The great difference between this approach and others is
the clear definition and representation of abstractions and
behaviors that make up a MAS. However, the approach
in [23] is incomplete because important abstractions such as
adaptation and norms are not described neither in the TAO
nor in the MAS-ML modeling language.

Gonçalves and colleagues [11] proposed an extension of
MAS-ML [23] called MAS-ML 2.0, which bring, as a main
novelty, mechanisms that support modeling proactive agents,
and also the ability to model different internal architectures
of agents, such as those presented in [52]. These different
architectures were created to deal only with agent behavior
based on reactive and proactive fundamentals.
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The modeling language NormML [21] based on UML
was developed to specify norms that restrict the behavior
of entities in MASs. The NormML metamodel provides a
language to model roles, permissions, actions, resources,
and authorization constraints along with the relationships
between permissions and roles, actions and permissions,
resources and actions, and constraints and permissions. This
approach allows the modeling of the static aspects of norms,
but it is not possible to define dynamic aspects of a norm or
to define norms in an interactive context. In addition, it is
not possible to identify the rules that are active or those that
have been violated; the norms described in NormML are not
able to undergo changes throughout their activation time in
the environment. Other approaches for modeling normative
agents based on the BDI model have been proposed in the
literature [53], [54].

The work presented in [55] describes the AUML language.
This modelling language aims to provide semi formal and
intuitive semantics through a friendly graphical notation.
AUML does not provide elements to represent the next-
function, planning, formulate problem function, formulate
goal function and utility function. For instance, this language
does not define the environment as an abstraction, so it is
not possible to model agents that are able to move from one
environment to another. Further, AML [13] is a modelling
language based on a metamodel that enables the modelling
of organizational units, social relations, roles and role prop-
erties. AML agents are composed of attribute list, operation
list, parts and behaviors, and sensors and actuators.

In contrast, the approaches previously described do not
support modeling concepts related to both adaptation and
norms and their respective interactions [18], [19]. Indeed,
norms and adaptation are relevant and indispensable to the
internal and external design and run times of MAS modeling.
Even though the literature reports several languages [4], [7],
[8], [9], [10], [12], with capabilities for modeling MASs,
there is still a need for a modeling language to describe con-
cepts related to adaptation and norms as first-class abstrac-
tions through an explicit MAS metamodel that can be used
to model the structural and dynamic aspects often described
in MASs for these concepts, and promote the refinement of
these models from design into code.

Current organizational norms are mostly used to restrict
the behavior of agents and are implemented in the following
ways: (i) addressing a given role; (ii) as a set of states to be
regulated by the norm which also affects the agent’s role; (iii)
as valid restrictions when the norm is active in the environ-
ment; (iv) in many modeling languages and methodologies
using the deontic concept of obligation [8], [25], [38], and
(v) through the rewards and punishments associated with a
particular norm [36].

Regarding the adaptation concept, we make explicit in the
metamodel atomic concepts such as: (i) monitoring sensors;
(ii) effectors, which are mechanisms needed to run the agent’s
actions and plans; (iii) events of the specific system — for
example, to show when the system objectives are violated;

(iv) strategies to adapt to environmental conditions; (v) dif-
ferent tactics performing plans in each strategy to carry out
the adaptation, and (vi) adaptation policies that should always
be checked during the environmental monitoring [10], [34].

Table 2 presents a comparison among the expressiveness
of the main multi-agent architectures and models found in
the literature ( [12], [21], [25], [38], [39], [44]) based on
the atomic abstractions related to the concepts of software
agents, norms and adaptation. Some modeling languages
and methodologies, such as AUML [55] and MAS-ML [23],
Adelfe [46], FAML [12] and GAIA [20], do not support the
modeling of norms. Approaches such as NormML [21] also
make the modeling of several elements of a norm possible.
From the set of modeling languages [10]–[13], [21], [22], and
methodologies [15], [17], [20], [46], we have reviewed, just
one of them (NormML) is able to model all the properties
of the elements described in Section II.B However, NormML
does not support the representation of adaptation-related
abstractions (Section II.A) and, as a consequence, does not
support modeling the interactions between norms and adap-
tation. In terms of abstractions for adaptation, although only
Adelfe [46] is able to represent adaptive agents using adaptive
workflows, it does not introduce the atomic elements an agent
needs to adapt its behavior.

III. ANA METAMODEL
The ANA metamodel (Adaptive Normative Agent) enables
the structural and adaptive behavior of agent-based software
to support norms. Based on the distinction proposed by
Beydoun [12] about design and run times, this metamodel
aims at representing the internal and external entities and
relationships of a software agent.

The metamodel presented in this section has four parts:
(i) the external agent design-time representation, which
describes the relationships among agents and other entities
in the environment; (ii) the internal agent design-time repre-
sentation, which describes the agent internal properties and
their relationships; (iii) the external agent runtime represen-
tation, which describes the classes related to the Environment
at runtime and includes events and messages; and (iv) the
internal agent runtime representation, which describes the
internal entities and relationships at runtime and includes
plans, actions and messages.

A. EXTERNAL AGENT DESIGN-TIME REPRESENTATION
First, to create a multi-agent system, agents, organizations
and their norms must be in an environment, but these agents
cannot belong to more than one environment at the same
time [12], [14]. Fig. 3 shows an external agent at design-
time, which aims at representing the relation among the
agents and other entities of the environment. This meta-level
representation is adapted from TAO [14] and FAML [12].
The entities presented in Fig. 5 are represented by blue and
green rectangles. The new classes in our model (i.e., the ones
that were not defined in existing models) are shown as blue
rectangles and the modified classes (e.g., the ones that result
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TABLE 2. Comparing the expressiveness of multi-agent modeling approaches using abstract atomic elements related to agents, norms and adaptation.

from modifications of classes that were defined in existing
models) are shown as green rectangles.

A software Agent is an autonomous entity able to perform
taskswithout human interference [56]. Agents transform their
own Environment; therefore, it is necessary to consider the
environment state and the ‘‘mental states’’ of each agent to
understand how they work. In addition, a software agent may
communicate with other agents to achieve the common goals
they would otherwise not achieve by themselves.

Agent behavior is characterized by its plans, actions, rea-
soning type and active norms in the environment. These
features are related to the agent’s general characteristics such
as interaction, autonomy, and adaptation [36], [39], [56].
In addition, agents can interact by sending or receiving mes-
sages from other agents within the environment. The agent’s
autonomy is provided through its ability to act proactively,
without any need for external input while the agents are
executing their goals. Finally, agents are adaptive entities,
since they can adapt their status and behavior according to
changes and constraints in the environment.

The MentalState of a software agent is composed of its
state and behavior at a given time, i.e., the goals, beliefs, deci-
sions, and intentions linked to its plans and actions. When
agents execute actions, they can change themental state either
by introducing new perceptions about the environment or
sending and receiving messages from other agents. These
concepts were included in the ANA metamodel to make it
possible for the agent to use the BDI architecture.

An agent’s Role guides and constrains the agent behavior
by describing the goals it needs to achieve when playing
a certain role [37], [56]. If an agent agrees to play a role,
it will add the goals and beliefs of that role to its knowledge
base. These new goals and beliefs can describe constraints
in its behavior. Moreover, we cannot guarantee that an agent,
which is an autonomous entity, will always execute all actions
associated with a specific role, since these actions may be
contrary to the agent’s individual goals.

FIGURE 3. External agent design-time representation.

TAO [14] has introduced the concepts of duty and rights
that are related to the role an agent is playing. However,
these concepts are not enough to show that an agent needs to
comply with the goals of the role because the software agent
has no advantage if it decides to fulfill, or violate, the duties of
that role. If an agent does not find any advantage in achieving
the goals of the role, it will only fulfill its individual goals.
For this reason, the concept of norms has been introduced
(see Section II.B) in the ANA metamodel, in order to restrict
the behavior of agent roles.Norm properties include rewards
and punishments, leaving to the agent the task of deciding
whether or not it should comply with the goals of that role.

An Organization, in turn, arranges the agents of a MAS
into groups and roles, both defining the structure of software
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FIGURE 4. Internal agent design-time representation.

agents within an organization [13], [25]. Establishing an
organization involves the specification of social plans, objec-
tives and norms. Normative specifications are defined by
using norms (see Section II.B) that connect agent roles to
the organization’s goals, and restrict an agent behavior while
performing a certain role. TAO defines the axiom concept,
which agents and sub-organizations must satisfy. In FAML,
the convention concept has been established as an agreement
between the organization and the agent. However, the con-
cepts used by both approaches are not provided to regulate
the behavior of agents while keeping their autonomy.

Regarding the external agent relationships at design-time,
there are two kinds: specialization and association. The spe-
cialization relationship defines sub-entities by specializing
super-entities; the sub-entities inherit the properties and rela-
tionships defined in the super-entity. Inherited properties can
also be reset by a sub-entity [42]. The association relation-
ship, on the other hand, specifies a semantic relationship
between typified instances. Thus, if an entity is associated
with another entity, it will become aware of the other entity
with which it can interact [42].

B. INTERNAL AGENT DESIGN-TIME REPRESENTATION
In Fig. 4 the internal agent design-time representation explic-
itly describes the agent internal properties and their rela-
tionship. To express the mental state of an agent, the model
needs to capture itsmental components, such as beliefs, goals,
intentions, plans and actions [26].

The AgentDefinition entity has generic functions in the
system, which are used, for example, to initialize all agents
and specify a function of the role an agent intends to play. The
MentalState entity consists of components such as beliefs,
goals, intentions, desires, plans and actions. This is char-

acterized by the belief an agent has about itself and the
environment, its intentions and individual goals. Further, the
MentalState is responsible for checking the effects of a norm
over the beliefs and desires of an agent. This entity is also
used to capture the state and behavior of an agent at a given
moment.

A Plan is composed of actions and it is related to the
set of goals that an agent can access and run. When an
action is taken, the agent can change its mental state. For
example, it can send amessage or perform specific adaptation
steps. An agent may be able to choose a plan based on its
goals and the norms responsible for restricting its behavior.
The GoalCondition attribute characterizes the goals which
the plans can be applied to. The FailureCondiction attribute
characterizes a plan that cannot achieve a desired goal. The
SucessCondition attribute describes a plan that can be deemed
to have successfully achieved a goal.

An Action entity comprises the following attributes:
(i) PreCondition— it refers to the states (system events) that
must be met before an action is performed; (ii) PosCondition
— it refers to the states (system events) that must be met after
an action is performed, and (iii) Satisfaction — it describes
the level of satisfaction an agent will have by performing
a given action. Software agents should be able to support
adaptive plans, and therefore, through the PlanSpecification
entity we can set plans to monitor, analyze, decide and effect
internal changes of the agent so that it can reason about
norms.

In AgentGoal, theMotivation attribute describes the level
of motivation that an agent has to accomplish a specific
goal. An agent cannot call the enforcement actions of another
agent that is sending a message to it. The goals of an agent
are related to the future states or desires it intends to reach
or accomplish. It is important to note that these goals are
associated with at least one plan that the agent can perform to
accomplish it.

The different relationships represented in Fig. 4 describe
how the agent entities are connected. The connection of these
entities defines an agent’s mental state, with its beliefs, goals,
intentions, actions, and plans. Each agent instance can change
its initial mental state by adding, modifying or removing the
beliefs, goals, actions, and initial plans.

C. EXTERNAL AGENT RUNTIME REPRESENTATION
Fig. 5 depicts the classes related to the Environment where
agents ‘‘live’’ at runtime, that is, the external agent runtime
representation. These classes coexist with instances of the
agent design-time representation (see Figs. 3 and 4). The
classes related to Environment focus on features that exist
only in the runtime environment.

The abstractions supported by the metamodel at runtime
enable different functions: (i) the historical data about the
environment involves capturing of event and message reg-
istrations, in chronological order by using MessageSchema
and MessageEvent; (ii) the Event element supports dif-
ferent types of events, such as send or receive a message
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FIGURE 5. External agent runtime representation.

(MessageEvent); (iii) access points connect the system and
relationships with events, resources, organizations and its
norms, and (iv) agents and norms have an ‘‘inhabit’’ relation-
ship with organizations.

D. INTERNAL AGENT RUNTIME REPRESENTATION
In turn, Fig. 6 depicts classes related to the internal agent run-
time representation, which provide support for representing:
(i) plans and actions; (ii) relationships between actions and
messages; (iii) communication and the relationship between
messages and protocols; (iv) mental states and the relation-
ship with the BDI architecture; (v) the relationship between
the previous abstractions and the states of the environment,
and (vi) the adaptive reasoning performed by the agent to
adapt the norm-related activities in the system.

In contrast with other modeling approaches, the proposed
internal agent runtime representation provides several new
features. In fact, the proposed metamodel extends TAO rela-
tionships [14] in different ways. These extensions include, for
example, the possibility of using agents that support cogni-
tive reasoning based on BDI architecture, represented by the
classes MentalState and AgentGoal, and the introduction of
a more generic class for communication. Further, in contrast
with the FAML metamodel [12], we have introduced an
adaptive form of reasoning that an agent can perform to adapt
to changes and constraints (e.g., norms) of the environment.

The internal agent adaptation abstractions are represented
by the following classes: (i) Collect, which has the Sen-
sors attribute used to monitor the environment; (ii) Analyze,
which represents the different tactics to deal with changes
in the environment, given the Strategy type was created;
(iii) Decision, which is responsible for making adaptation
decisions by choosing the best set of plans given a specific
situation; (iv) Effector, which has the Actuator attribute
responsible for applying the actions in the environment.

The metamodel allows agents to perform cognitive reason-
ing, as well as recognize norms active in the environment.
This form of reasoning is possible because the relationships
between the beliefs, desires and intentions, are made explicit.

Agent desires can be determined independently of its beliefs,
but they can also be updated as its beliefs change. The inten-
tions are derived from a set of desires based on the agent
knowledge of the environment. Thus, agents can learn from
their experience as they deal with norms, being able to keep
and update their knowledge. These features not only allow
agents to learn but also makes it possible for them to create
and adopt adaptive plans as means to interact with the norms
imposed by the environment.

IV. ANA-ML
In this section, we introduce the proposed modeling lan-
guage, herein called ANA-ML (Adaptive Normative Agent
Modeling Language) as means to provide support for model-
ing adaptive normative agents. ANA-ML introduces adapta-
tion and norm-related abstractions in the modeling language
MAS-ML [42] through a UML extension [39]. The language
complies to a metamodel [38], which supports both structural
and behavioral software agent adaptations. One of the mech-
anisms adopted by ANA-ML was the addition of a profile
focusing on the definition of new classes, restrictions and
stereotypes based on MAS-ML.

Modeling languages are created to describe the graphical
representation of new abstractions, their semantics and rela-
tionships [14]. In addition, a modeling language for MASs
should include diagrams to model the structural aspects of a
system. Structural diagrams should be able to model: (i) the
entities usually defined in a MAS; (ii) the properties of
these entities and their association, and (iii) the relationships
between the entities. In contrast to ANA-ML, the modeling
languages proposed in the literature do not model adaptations
and norms explicitly, and therefore, relationships between
agents and entities and relationships that model these con-
cepts are not supported.

Moreover, the development of appropriate approaches to
implement agent-based systems is a key issue that needs to be
addressed when agent technology is used in the development
of a software system. To develop multi-agent systems using
a specific modeling language, it is necessary to transform the
MAS design models into code. These models are composed
of high-level agent-related abstractions. In turn, as a means
to derive source code out of those models, the agent-related
abstractions must be mapped into abstractions defined in a
certain programming language.

There are many advantages of using ANA-ML, which
include the ability to: (i) represent all abstractions associ-
ated with a MAS application both at design and runtime;
(ii) specify adaptation and norm-related static relationships;
(iii) represent adaptation and norm-related dynamic interac-
tions; and (iv) represent the dynamic interactions involving
abstractions related to adaptation, norms, agents, organiza-
tions and environments. Indeed, to the best of our knowledge,
it is not possible tomodel explicitly abstractions such as agent
adaptation and norms, and their relationships and interactions
using any existing modeling approach.

VOLUME 10, 2022 13983



M. Viana et al.: Creating Modeling Language Based on New Metamodel for Adaptive Normative Software Agents

FIGURE 6. Internal agent runtime representation.

Fig. 7 presents the main classes, restrictions and stereo-
types of ANA-ML. New classes include Agent Role, Organi-
zation, Plan, Goal, and Action. These classes are described in
the following paragraphs.

A. AGENT ROLE
An agent role guides the agent behavior by describing the
goals it needs to reach within an organization. On the other
hand, a role restricts the agents’ behavior so its tasks can be
performed more efficiently. If an agent agrees to play some
role, it will add the corresponding goals and beliefs to its
knowledge base. These new goals and beliefs can describe
constraints in its behavior. Moreover, we cannot guarantee an
agent, which is an autonomous entity, will always execute all
the actions associated with that role, because some actions
may be contrary to its individual goals. TAO concepts are
not enough to present an agent the need to comply with
the goals of the norm. This is because the agent has no
advantage if it decides to fulfill or violate the duties of that
role. If the agent does not see any advantage in achieving
the goals of the role, it will only fulfill its individual goals.
For this reason, the concept of norms has been introduced
in the ANA metamodel [57], as means of restricting the
behavior of agent roles. Norm properties include rewards and
punishments, leaving to the agent the task of deciding how
much it is interested in complying with the goals of the role.

B. ORGANIZATION
An organization classifies the agents of a MAS into groups
and roles, both defining the structure of different groups of

agents and sub-groups within an organization [23]. Establish-
ing an organization involves the specifications of social plans,
objectives and norms. Normative specifications are defined
using norms that connect agent roles to the organization’s
goals and restrict an agent behavior when it is performing a
certain role.

C. PLAN
A plan is composed of actions and it is related to a set of goals
the agent can access and run. When an action is taken, the
agent can change its mental state. For example, it can send a
message or perform specific adaptation steps. An agent may
be able to choose a plan based on its goals and the norms that
restrict its behavior.

D. GOAL
The goals of an agent are the future states or desires it intends
to reach. It is important to note these goals are associated
with, at least one plan the agent can perform to accomplish it.
TheMotivation attribute describes the level of motivation the
agent has to accomplish a specific goal. Each agent instance
can change its initial mental state by adding, modifying or
removing the beliefs, goals, actions, and initial plans. In order
to represent goals in the MAS-ML language, Silva [23] cre-
ated the metaclass Goal, which describes a tag linked to the
plans and restrictions. However, we observed the need to
include the concept of motivation, which is required so the
agent can reach a goal. The motivation for reaching a goal
is then defined by the stereotype motivation, which maps the
goal to an integer for representing the desire’s intensity for
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FIGURE 7. ANA-ML diagram.

reaching a given goal. The stereotype is based on the concept
of motivation described in [29].

We kept the belief stereotype not specifying any type
of restriction, but only identifying attributes that represent
beliefs. In turn, for ANA-ML we defined new concepts
observed in the entity MentalState of the conceptual
model [57] to deal with agents Belief-Desire-Intention.
Therefore, we created new stereotypes for desire and inten-
tion, where the first describes the desires an agent expect to
reach, while the second describes states an agent prioritized
when reaching its goals.

E. ACTION
It represents behavioral characteristics of a software agent.
Actions are associated with agents and never called by other
agents, but only executed within the agent’s own domain.
Thus, a metaclass called AgentBehavior has been created
and it extends Behavioral Feature aiming to represent the
agent’s behavior. The metaclass AgentAction, from MAS-
ML, is now an extension of the AgentBehavior, and it
keeps the same purpose of representing actions performed
by a software agent. In addition, we associated the metaclass
Constraint to AgentAction aiming to define pre-and post-
conditions that must be true to execute an action.

Besides the aforementioned characteristics, an action
defined within ANA-ML has a new stereotype satisfaction
associated with the metaclass AgentAction. The satisfaction
of a software agent is defined based on its rewards and pun-

ishments when executing an action. Therefore, Satisfaction
is defined by the function satisfaction that maps an action of
the type Action to an integer, which represents the intensity of
the agent’s satisfaction when executing the given action. The
satisfaction function is defined at design time and it is based
on the work developed in [33]. In addition, the behavioral
characteristics of an agent is also composed by its plans. The
metaclass AgentPlan of the MAS-ML has been extended so
that the creation of adaptive plans is supported. A plan is
associated with a goal and it can be represented as a sequence
of actions executed by a software agent to reach a goal. Other
metaclasses have been created to specify the adaptive behav-
ior of an agent, and include: (i) AgentCollect to monitor the
norms in the environment; (ii)AgentAnalyze to analyze what
possible plans can deal with the norms addressed to the agent;
(iii) AgentDecision to make decisions based on different
kinds of strategies and; (iv) AgentEffector to execute the
actions and plans in the setting of a specific agent behavior
considering the way an agent adapts to the environment based
on the active norms.

V. REAL CASE SCENARIO
In this section, we present a real case scenario that illustrates
how ANA-ML can be used to model a fire scenario involving
evacuation from hazardous areas [58]. This case scenario
emerged from the need to model situations in which people
need to be rescued because of floods, landslides or other natu-
ral phenomena caused by climate change. The case is a result
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of research based on our earlier work on using developing
agent-based models and tools for simulating planned evacua-
tions [58], [59], which led to agent-oriented models involving
normative agents [41]. This kind of simulation was relevant
especially for cities with a large concentration of population.
Landslides, for example, are difficult to predict since they
depend on many factors such as climate, soil properties and
humidity and their specific relationship [60]. The annual
number of landslides globally is estimated to be in the thou-
sands, and the associated infrastructure damage is billions of
dollars [58]. Planning evacuations from these areas of risk can
be assisted by simulations using the JSAN framework [41].
For example, these simulations can be used to implement
different scenarios in which firefighter agents regulated by
norms rescue civilians at risk. Our goal is to describe the
entities and relationships that comprise an evacuation plan,
which take into consideration people’s location given a disas-
ter management situation (e.g. fire, floods, landslides, earth-
quakes). To represent the MAS entities, we have used the
elements defined in section 3.Moreover, we have provided an
activity diagram to describe many different dynamic aspects
involved in this scenario.

When executing the evacuation plan, considering the best
scenario, firefighters should ideally rescue and give first aid
to the largest number of injured people. To do so, firefighters
have a set of limited resources regulated by the firefighters
chief. The regulation is performed through the definition of
norms that restrict the firefighter’s behavior so that the rescue
happens in a coordinated way, considering the best usage of
the available resources. These resources are, for example,
aerial vehicles such as helicopters, land vehicles, troops,
as well as excavation equipment. If the environment condi-
tions change during the rescue of civilians due to weather
instability - landslide, among other factors - there is a need
for the firefighters to adapt.

As such, the goal for each group would be to get more
resources to save people in areas of risk. Finally, we assume
each group has its own reputation, and each group can keep
or increase its reputation based on whether the goals are
performed successfully. This scenario takes into considera-
tion the firefighters’ behavior is defined by a set of norms,
as well as their ability to adapt under certain circumstances.
The importance of performing a behavior is evaluated based
either on what motivated the agent to reach the goal, or on the
feedback (satisfaction) it must provide regarding the execu-
tion of an action. Particularly, specific norms are considered
according to tables 3, 4 and 5.

The main goal of the firefighter chief is to provide assis-
tance to the group of firefighters that will rescue people, and
his/her motivation is scored as 10. Although the resources
have high costs associated to their usage, they are essential
for the firefighters to perform the rescue. Therefore, the
firefighter chief is scored according to the satisfaction of the
provided service. For example, this satisfaction is scored 3,
5 and 7 when firefighter chief requests the use of aerial vehi-
cles, land vehicles, and excavation equipment, respectively.

TABLE 3. Scenario description for norm 1.

TABLE 4. Scenario description for norm 2.

TABLE 5. Scenario description for norm 3.

Next, we introduce the user scenario where firefighters
rescue people from hazardous areas [3]. The entities in this
scenario will be identified in order to create both structural
and dynamic diagrams.

A. STRUCTURE DIAGRAMS
This section introduces the structural diagrams, which in this
case, illustrate the environment and Firefighter Organiza-
tion involved in the usage case (see Fig. 8). The main purpose
of this view is to represent organizational and environmental
classes, alongwith the elements and roles. The diagram repre-
sents the organization class Hazardous Area. There are two
different kinds of agents in the fire scenario: Civilian Agent
and Firefighter Agent. The diagram also represents the role
of the Person at Risk, Rescuer and Firefighter Chief. The
role of the person at risk is played by the civilian agent, given
the roles of the rescuer and the Firefighter chief are played
by the firefighter agent. In addition, we defined norms for the
main organization aiming to restrict the firefighters’ behavior
in the rescue mission.

1) PARTIAL DESCRIPTION OF ORGANIZATION AND
ENVIRONMENT
When analyzing the described scenario, we have noticed that
the organization Firefighter Organization is included in the
environment Hazardous Areas. Fig. 9 presents the environ-
ment modeled as an active environment where information
is added over time so attributes, such as weather forecast
and landslide, can be captured by the system. This class
implements the following methods: (i) addPerception for
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FIGURE 8. Diagram of the fire department.

FIGURE 9. Partial description of the class hazardous areas.

FIGURE 10. Partial description of the class firefighter organization.

new settings in the environment; (ii) executeAction to define
what actions the environment will execute, and (iii) stop to
end the execution of the MAS.

Fig. 10 shows the Firefighter Organization as the main
organization of the system. Only one instance of this class can
be created for each environment. The organization is mainly
concerned with rescuing people from hazardous areas, and
therefore, its motivation is a score of 10. To reach this goal,
the main organization defines a rescue plan to managing the
equipment, updating the environment to inform a civilian has
been saved, and evaluating the mission.

Moreover, the firefighter agents are organized into differ-
ent groups, depending on their role. That is, groups named
rescuerGroup and chiefGroup, have been created to repre-

FIGURE 11. Partial view—the role of a person at risk.

FIGURE 12. Partial view—the role of the rescuer.

sent agents playing a role of a rescuer or firefighter chief,
respectively. Remember that each group has an associated
reputation score, and that the goal of a group is to keep or
increase this score.

2) DESCRIPTION OF THE ROLES PLAYED BY THE AGENTS IN
THE MAIN ORGANIZATION
As previously mentioned, the organization defines the roles
of: (i) the person at hazardous areas; (ii) the firefighters,
and (iii) the firefighter chief. It also defines which goals
are related to saving people and managing limited resources
based on the reputation of each role. To reach these goals, the
firefighters interact with the norms to restrict their behavior,
i.e., the duty of a firefighter is to save peoples’ lives. The
norms managing the use of limited resources, as well as the
agent’s behavior must be extended to the firefighter agent.

Fig. 11 represents the role of a Person at risk, whose main
objective is to be safe, and whose motivation is to receive the
maximum score. In addition, a Person at risk has the right to
ask the firefighters for help.

In turn, Fig. 12 illustrates the role Rescuer of a firefighter
agent. Its motivation is to receive a score with the maximum
value. The duties related to this role specifically are: (i) be
safe, and (ii) keep people safe, i.e., not to put human life at
risk. Agents playing this role can ask for resources during the
execution of a rescue plan at hazardous areas.

Finally, Fig. 13 illustrates the role Firefighter Chief,
whose main goal is to manage resources during the exe-
cution of a rescue plan. The motivation is to receive a
score with the maximum value. That is, providing assis-
tance to the firefighters is not the agent’s main goal. The
goals related to this role are to keep people alive and cre-
ate norms. In this sense, the agent chief should not put
human life at risk and should restrict the behavior of his/her
subordinates.
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FIGURE 13. Partial view—firefighter chief class.

FIGURE 14. Partial view—the class firefighter agent.

FIGURE 15. The civilian agent class.

3) AGENT DESCRIPTION
Some agents play the role of a firefighter. To represent a
software agent playing this role, we use the class Firefighter
Agent as illustrated in Fig. 14. The Firefighter Agent con-
tains the following properties: (i) the goals that the agent has
in this scenario; (ii) the beliefs of an agent on how to deal with
problems the agent is trained to deal with on a daily basis,
taking into consideration rescue operations; (iii) the desire
to increase its reputation; and (iv) the list of intentions to be
performed.

The last section in the Firefighter Agent class presents
norms identified by the sensor agent and extended by
the agent playing the role performed by the organiza-
tion. The plans the agent needs to perform to save people and
the level of satisfaction resulting from possible actions are
associated to the tasks the Firefighter Agent needs to execute.
For example, in case of a bad weather, more vehicles should
be requested, and the satisfaction would have a score of 5,
which is an intermediate medium value defined for the case
scenario.

In turn, Fig. 15 shows Civilian Agent class representing
people at risk according to our study scenario. This class
describes only one goal and has the score 10 for motivation,
which reflects a high priority due to the danger of situation.
When the Civilian Agent is at risk, the belief is added to its
base, and the agent, whose main goal is to be safe and stay
alive, starts creating its list of intentions, such as asking for
help.

4) INTERACTION BETWEEN NORMS AND ADAPTATIONS
In fact, adaptation and norms may be conceded simultane-
ously, and adaptation may impact norms and norms may
impact adaptations. For example, consider Norm #2 in an
emergency rescue operation to be conducted by some agents
represent by Firefighter Agent. This norm states that ‘‘If the
fire department is not able to provide the resources required
to guarantee the minimum safe conditions, the firefighters
are not eligible to rescue civilians.’’ This norm may impact
the behaviour of the firefighter agents. In case these agents
are not provided the necessary resources, they are prevented
from rescuing the civilians. Normally, the agent adaptive
reasoning tends to decide to avoid the rescue operation if the
conditions are not safe. In this case, the norm does not impact
the firefighter agent behavior and, therefore, does not lead to
an agent adaptation. However, the agent adaptive behaviour
may decide based on its rewards that it should conduct the
rescue operation even in the absence of appropriate safety
conditions. In this case, the norm impacts adaptation in the
sense that although the norm is triggered, the agent decides
not to fulfill it and adapt.

B. DYNAMIC DIAGRAMS
A dynamic diagram is introduced to capture the activities
of the normative adaptive agents and their sequences. The
proposed activity diagram is a variation of the one proposed
by [11]. This diagram, which represents the behavior of the
agents, is shown in Fig. 16. Each activity is represented
as a rounded-corner rectangle, whereas the characteristics
are represented as squares, with the identification of what
stereotype corresponds to a specific agent. The goal of the
activity diagram is to represent the agent’s behavior when it
extends the norm addressed to it. The execution of the norma-
tive adaptive reasoning is possible through the modifications
performed in the process of the normative application.

The behavior of an adaptive normative agent starts when
it identifies the norms in the environment and performs
activities of the normative process, i.e., agents are able to
reason about norms [41]. The first activity,NormAwareness,
the software agent identifies the existing active norms in
the environment, and these norms are addressed to specific
agents. The second activity, NormDeliberation, the agent
recognizes the norms where its responsibility is specified.
The third activity, NormCompliance, norms are realized
through the agent’s reasoning to define which plans could be
performed when a given norm is accepted. In the last activity,
NormImpact, the agent will execute the norm and the goals
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FIGURE 16. Activity diagram—normative adaptive agent.

FIGURE 17. Activity diagram of ANA—detailed actions for norm
deliberation.

of the agent will be updated. After that, the cycle of the agent’s
reasoning continues, and the agent starts identifying other
norms to be adopted.

A diagram associated with the Firefighter Agent playing
the role of a Firefighter Chief is illustrated in Fig. 17. For
instance, the norm N3 regulates if the number of people to
be saved is higher than the number of firefighters (Rescuer),
so the Firefighter Chief has to continue the rescue opera-
tion by sending aerial vehicles. Given the fact resources are
reduced and insufficient, the self-adaptation process regard-

ing the norm N3 will be executed by the Firefighter Chief
agent. This process searches other ways to rescue people from
hazardous areas without the use of aerial vehicles, based on
the data the agent has perceived by sensing the environment.
Therefore, the agent will need to collect and analyze data
for the decision-making process, before an action is taken to
adapt the agent’s behavior to deal with the norm N3.

VI. EMPIRICAL EVALUATION
The main goal of this section is to investigate whether the
different modeling languages (ANA-ML andMAS-ML) pose
some influence on the correct creation and maintenance of
the agent models. Similar to related efforts [61], [62], three
dimensions were evaluated in this empirical study: (i) cor-
rectness (errors); (ii) time, and (iii) difficulty. We evaluated
whether the subjects could create and maintain the agent
models correctly, how fast they got the information they
needed, and the difficulties they faced. We have defined the
following research questions:

• #RQ1: Does the availability of specific modeling lan-
guage increase the correct understanding of the creation
and maintenance of the agent models?

• #RQ2: Does the availability of specific modeling lan-
guage reduce the time that is needed to correctly under-
stand the creation and maintenance of the agent models?

• #RQ3: Does the availability of specific modeling lan-
guage decrease the difficulty to understand the creation
and maintenance of the agent models?

Associated with the first three research questions are three
null hypotheses:

• H10: The correct understanding of the creation and
maintenance of the agent models does not depend on
the different modeling languages.

• H20: The time to correctly understand the creation and
maintenance of the agent models does not depend on
the different modeling languages.

• H30: The difficult to correctly understand the creation
and maintenance of the agent models does not depend
on the different modeling languages.

For the sake of completion, the defined three alternative
hypotheses H1, H2 and H3. They are, respectively, defined
by replacing ‘‘does not depend’’ to ‘‘depend’’ in H10, H20,
and H30.

Our initial results revealed that our approach is feasible
and less difficult to be applied in a real-world application,
and requires less time than a traditional approach. We discuss
the results of our empirical evaluation at the end of this
section.

In order to analyze the hypotheses previously described,
we considered the following independent variables: (i) the
participants; (ii) the training sessions using UML, MAS-ML,
and ANA-ML; and (iii) the activities that the participants
performed to create the models. Moreover, we considered as
dependent variables (i) the time (effort) spent to perform the
activities; (ii) the number of errors made by the participants
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when performing each activity – the quality of the models
(correctness), and (iii) the difficulties encountered when per-
forming the activities. This section describes how we con-
ducted the empirical evaluation concerning the creation and
maintenance of the agent models, presents and discusses the
evaluation results, and describes threats to validity.

A. APPLICATION DOMAIN
The chosen application domain was crime prevention [63].
This domain is an alternative to traditional approaches as
criminologists have started to collaborate with Computer
Science and Artificial Intelligence researchers to explore
the benefits of social simulations that use agents to inves-
tigate the spatial distribution of crimes. This new approach
aims at using simulation environments to predict the dynam-
ics of crime distribution in the future and to analyze past
distributions.

The simulation of crime prevention was modeled as an
organization that dwells in the environment of a city and
introduces the following roles as people agents: citizen, crim-
inal and police. Agents playing the role of citizens move
around different locations in the city to go to shopping malls,
museums, big events, that is, places with a high concentration
of people. In contrast, agents playing the role of criminals
such as thieves usually try to find these places in order to
commit the highest number of robberies as possible. The
police agents move around different areas of the city aiming
to prevent the highest number of crimes as possible and
imprison the criminals.

B. EMPIRICAL EVALUATION PROCESS AND DESIGN
The empirical evaluation involved 14 participants who had
different knowledge and experience levels with respect to
MASs. These participants were graduate students from dif-
ferent post-secondary academic institutions. Further, all of
them had taken a graduate course on MASs. Therefore, they
were previously exposed to methods for modeling and devel-
oping multiagent-based applications. The participants were
divided into two groups: Group A (G-A); and Group B (G-B).
While one group underwent a phase and had to perform the
activities using the MAS-ML to answer the questionnaire,
the other group underwent the same phase but had to answer
the questionnaire performing the activities using the ANA-
ML. The designed questionnaires included questions about
the creation and maintenance of models based on MAS-ML
and ANA-ML. The questionnaires were conducted by all
participants at different times on the same day without tool
support. The participants agreed not to share any information
about the questionnaire so that they would not influence one
another, and the results would not be compromised. G-A and
G-B answered the questionnaires in different rooms.

1) QUESTIONNAIRE PROCESS
The questionnaire application involved six phases. In the first
phase, G-A was trained to create models using MAS-ML and
UML elements (e.g., stereotypes and comments). In contrast,

TABLE 6. Latin square.

G-B was trained in ANA-ML. In the second phase a ques-
tionnaire was applied to both groups. The first part of the
questionnaire contains questions about each participant and
includes questions about their education, specific knowledge,
and experience in modeling MASs. The second part of the
questionnaire is divided into two sub-parts, each one involv-
ing two modeling activities that require the different groups
to create diagrams based on MAS-ML and ANA-ML. In the
third phase the focus is on the inverted training of the groups,
that is, G-A was trained in ANA-ML and G-B was trained in
MAS-ML. The training session took from 30 to 60 minutes.

In the fourth phase another questionnaire was applied to
both groups and it required G-A to create models based
on ANA-ML and G-B to create models based on MAS-
ML. The structure and complexity of this questionnaire is
similar to the questionnaire applied in the second phase.
To avoid any adverse influence in the questions posed in the
questionnaires three experts in modeling and experimental
software engineering validated them. In the fifth phase, each
of the participants was interviewed to identify the easy parts
and difficulties faced when creating the requested diagrams.
Finally, in the sixth phase, the participants provided the data
that were gathered and analyzed.

2) DESIGN
We designed our empirical evaluation with the Latin
Square [64] to maximize statistical power with a relatively
small number of subjects. Table 6 presents the configuration
of the Latin Square design. The Latin square design also
alleviated some effects of learning and heterogeneity among
subjects [65]. The size of the Latin square is 2 × 2, in which
the x-axis are the subjects and the y-axis are themodeling lan-
guages. Therefore, the experimental design gave us a random
allocation of questionnaire in such a way that they questions
were answered once by each subject and once with each mod-
eling language. As the study involved 14 subjects, we were
able to replicate the 2 × 2 Latin square 7 times, obtaining
28 independent observations for each comprehension task.

This design also allowed a comparison of the results con-
sidering the same phases (horizontal comparison). That is
an analysis involving the activities performed by the G-A
and G-B using the different modeling languages. A vertical
comparison was also conducted (between phases). In this
case, the analysis considered the results across phases.

C. RESULTS
The analysis of the data and the presentation of the results
were divided into two subsections. The first subsection ana-
lyzes the profile of the participants. The second subsection
analyzes the Latin Square in a vertical manner by phase
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FIGURE 18. Modeling expertise of each participant in years.

FIGURE 19. Participants profile.

and in a horizontal manner by group. Both quantitative and
qualitative aspects are examined in the analysis.

1) VARIABLES AND ANALYSIS
The metrics averages were initially calculated by (Table 7):
(i) the percentage of errors per activity (correctness); (ii) the
time spent on the activities in minutes, and (iii) the difficulty
level of each activity. To test our hypotheses, we first test
whether the sample distribution is normal (Shapiro-Wilk) and
has equal variance (Levene). If these tests pass, we use the
ANOVA test to evaluate our hypotheses, that is, whether there
is any evidence that the means of the populations differ;
otherwise, we use the non-parametric Kruskal-Wallis test.
If these tests lead to a conclusion that there is evidence that
the group means differ, we then are interested in investigating
which of the means are different. To this end, we use the
Tukey multiple comparison test in the case of the sample
distribution is normal and have equal variance. This test
compares the difference between each pair of means with
appropriate adjustment for the multiple testing. Otherwise,
we use the Nemenyi-Damico-Wolfe-Dunn test. For the cor-
rectness, difficulty and time variables, we maintain a typical
confidence level of 95 percent (alfa = 0.05).

a: BACKGROUND OF THE PARTICIPANTS
Fig. 18 presents the modeling experience of each participant
in years and Fig. 19 presents the knowledge of the participants
based on their knowledge of: (i) the UMLmodeling language;
(ii) multi-agent systems, (iii) and the modeling language
MAS-ML.We consider expertise as a value ranging from 1 to
4 in a Likert scale, with 1 being a beginner (no expertise) and
6 being an expert.

FIGURE 20. Boxplot errors.

FIGURE 21. Boxplot difficult.

FIGURE 22. Boxplot time.

In general, the 14 selected subjects have at least the
basic skills. They have the necessary expertise on software
modeling with UML and MAS-ML, and the development
of Multi-agent systems. The most of subjects claimed to
have a medium degree of expertise in UML, and low to
medium expertise in development ofMulti-agent systems and
MAS-ML.

b: ANALYSIS AND INTERPRETATIONS
In the empirical evaluation we answer the questions #RQ1,
#RQ2 and #RQ3. This section presents the results and dis-
cusses some general observations.
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TABLE 7. Descriptive statistics of the experimental results.

TABLE 8. ANOVA test for participants answers—error.

i) Descriptive Statistics and Hypotheses Testing
We start our discussion by presenting descriptive statistics
and hypothesis testing. The Fig. 20, Fig. 22, and Fig. 21 shows
box plot for the scores that were obtained by the subjects,
considering their overall scores. They shows that there is a
difference in terms of time and difficulty to model agents
using ANA-NL or MAS-ML. The box plots are comple-
mented by Table 7, which shows descriptive statistics of the
measurements.

We start by testing null hypothesis H10, which states the
errors per activity to understand the creation and maintenance
of the agent models do not depend on the different modeling
languages. Fig. 20 depicts a box plot for the scores that were
obtained by the subjects. The Shapiro-Wilk and Levene tests
succeeded for the answers data, which means that ANOVA
may be used to test H10.

Table 8, therefore, shows the results for ANOVA. The
average correctness by the ANA-ML was clearly lower and
the p-value = 0.00115 is lower than 0.05, which means that
H10 can be rejected in favor of the alternative hypothesis
H1, stating that the correctness to modeling normative MASs
depends on the different modeling languages.

Next we test null hypothesis H20, which states the time
to correctly understand the creation and maintenance of the
agent models does not depend on the different modeling
languages. Fig. 22 shows box plot for the scores that were
obtained by the subjects.

Because the Shapiro-Wilk and Levene tests succeeded for
the answered data, ANOVA may be used to testH20. Table 9
shows the ANOVA results. The average time spent by the
ANA-ML was clearly lower and the p-value = 0.00315 is
lower than 0.05, which means that H20 can be rejected in
favor of the alternative hypothesis H2, stating that the time
to correctly understand the modeling of normative MASs
depends on the different modeling languages.

We also test the null hypothesis H30, which states that the
difficulty to correctly understand the creation and mainte-
nance of the agent models does not depend on the different
modeling languages. Fig. 21 shows box plot for the scores that
were obtained by the subjects. Note that we consider overall

TABLE 9. ANOVA test for participants answers—time.

FIGURE 23. Measure of time answers.

scores rather than scores per questions. The box plot shows
that there is no explicit difference in terms of correctness. The
Shapiro-Wilk test did not succeed for the answers data, which
means that ANOVA cannot be used to test H30.

Consequently, we used the nonparametric Kruskal-Wallis
test. As a chi-squared = 17.266, degree-of-freedom = 1, and
a p-value= 0.335e-05, the Kruskal-Wallis indicates that there
is a statistically significant difference among the investigated
modeling languages in terms of difficulty, meaning that H30
can be rejected in favor of our alternative hypothesisH3, and
that the difficulty to model the agent, indeed, depends on the
different modeling languages.

ii) MODELING LANGUAGES VS. CORRECT ANSWERS
Based on these results, we also observe that hypothesis H2
might hold, but only with respect to some of themodeling lan-
guages. By comparing the time spent to answer questions cor-
rectly with ANA-ML and MAS-ML (Fig. 23), we observed
the use of the modeling agents that are capable of adapt-
ing their behavior to understand normative systems. How-
ever, it seems that there is no significant difference between
ANA-ML and MAS-ML in terms of the number of errors for
modeling adaptive behaviors and norms.

iii) EXPERTISE AND DIFFICULTY
Finally, we analyzed whether the modeling expertise of par-
ticipants was essential to correctly answer the questionnaires.
Fig. 24 depicts the chart that relates the degree of difficulty
of each participant and his/her number of errors (wrong
answers) per activity. Each bar in this chart indicates the
difficulty (y-axis) of the participants (x-axis) with respect to
the modeling languages (lines). The bullets exhibit the total
number of incorrect answers of each participant. Note that
there is a dependence between the difficulty and the number
of incorrect answers.
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FIGURE 24. Measure of difficulty and errors answers.

For MAS-ML, a high degree of difficulty and incorrect
answers in modeling the questions was not fundamental to
correctly answer the questionnaire. As a result, we could
observe that there is indeed a correlation between the diffi-
culty and the number of incorrect answers.

iv) REASONS FOR DIFFERENT DIFFICULTY
The lower difficulty achieved by ANA-ML subjects can be
attributed to several factors. First, all information required for
correctly understanding the modeling language was shown in
the training of models, which eliminates the need to interpret
the model examples.

The participants considered the use of ANA-ML easier
than the original MAS-ML, both being based on UML. One
of the main reasons for this conclusion was that MAS-ML
does not provide support to model the adaptive and norma-
tive concepts that the participants were requested to create.
In addition, some participants who had better knowledge
about the concepts of norms and adaptation considered the
ANA-ML approach more accessible and more intuitive to
use.

Next, we provide some examples of sentences mentioned
by the participants during the interview that happened after
answering the questionnaires:

Participant #1: ‘‘Using ANA-ML it was possible to create
norms and understand the adaptation process, although I had
some doubts the characteristics of these abstractions.’’

Participant #2:‘‘I noticed that some requests were difficult
to be performed using only the available resources, that is, the
resources shown in the presentation about MAS-ML.’’

Participant #3:‘‘The problems I had in my first modeling
phase with MAS-ML were solved with the use of the mod-
els available in ANA-ML to model norms and the adaptive
process of the agent.’’

v) ERRORS FOUND IN THE ANSWERS
Table 10 presents the errors found in the answers reported
by the participants in the study. The most common errors
reported when modeling using MAS-ML were related to the
lack of abstractions to support modeling norms and how
norms were interpreted internally by the agents. In contrast,
the most common errors related to the ANA-MLmodels were

TABLE 10. Errors found.

related to the lack of concepts to support the notions of norms
and adaptation.

c: THREATS TO VALIDITY
This subsection discusses the study constraints. For each cate-
gory we describe both the possible threats and the procedures
we have used to alleviate their risks.

i) CONCLUSION VALIDITY
The major external risk was related to the engagement of the
subjects to be part of the experiments, due to the length (time)
of the questionnaires, which took almost two hours for each
participant. However, there was a rotation in the order of the
approaches given that we adopted the Latin square. Another
threat is the heterogeneity of participants. We have not used
any mechanism to select the participants and so they may
represent random choices. Although the heterogeneity of the
subjects can also be considered a threat to the conclusion
validity, it helps to promote the external validity of the study.
Finally, the quality of the investigated modeling languages is
also a risk related to conclusion validity. However, we did not
observe bugs that hampered the understanding of specifica-
tions or forced the participants to spend more time answering
a question.

ii) CONSTRUCT VALIDITY
We identified the following threats to the construct valid-
ity: confounding questions, and insufficient training session.
To minimize these problems, we answered the questions
from participants as they were arising. To avoid biases in
the experiment results, we limited the explanations of the
representation models to what was demonstrated during the
training session and limited the questions to include only the
clarifications that were absolutely necessary.

iii) INTERNAL VALIDITY
Threats to internal validity involve the specification of adap-
tive agents and normative systems with different modeling
languages. We have made sure that each adaptive agents and
normative systems had specified following the same patterns
in all models by triple-checking each specification and by
using the model developers to model the system.
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iv) EXTERNAL VALIDITY
The major external risk was related to the user scenario.
The selected modeling language might not be representative
of industrial practices. To reduce this risk, we selected a
modeling language that was a UML extension, given that
UML is heavily used on industry.

VII. CONCLUSION AND FUTURE WORK
Agent-based software engineering (AOSE) is a powerful
paradigm for software design and implementation [11], [30].
Systems developed with AOSE technology require method-
ologies, modeling languages, development platforms and
programming languages that explore their benefits and their
own characteristics. After analyzing many of the MAS mod-
eling languages published in the literature [11], [12], [15],
[16], [17]–[20], [21] we have realized that there is a lack
of modeling languages that support abstractions related to
norms and adaptation, and promote the refinement of design
models into code.

In addition, most modeling languages do not model the
structural aspects (entities and relationships) neither the
dynamic aspects (domain independent behavior) normally
described in MASs and defined in the ANA conceptual
model, such as those related to norms and adaptation. Some
existing proposals only describe a subset of these abstrac-
tions, and others do not model the interaction between the
defined entities. In order to define a modeling language for
MASs that encompasses all the concepts described in ANA,
the ANA-ML modeling language [66] was proposed. ANA-
ML is a modeling language that extends MAS-ML based
on the structural and dynamic aspects presented in the ANA
conceptual model.

The presented approach exhibits a very interesting fea-
ture, that is, agents are able to adapt to deal with restrictive
norms. This means that an agent can be modeled in a way
that achieves a balance between the agent’s desires and the
organizational goals of the environment he resides by having
its behavior and adaptation regulated by explicit norms.

Regarding limitations, the modeling language ANA-ML
presented in this paper was based on the ANA metamodel
and, as consequence, it is necessary to extend all concepts
defined by ANA. There are a lot of new abstracts defined
in the metamodel – to extend all definitions, relationships
and different types of interactions is a complex task. Fur-
thermore, ANA-ML diagrams can become very large when
large systems are modeled and all elements of the diagram
are expressed. For example, the activity diagram can become
very complex given the number of actions and plans that are
realized taking into account the conditions and constraints of
the environment.

For future work, we plan to create an automated modeling
tool to help the developers of multi-agent systems during the
modeling and implementation of their applications. The goals
of the modeling tool are to simplify and accelerate the designs
of ANA-ML diagrams. In addition, the formalization of the

ANA-ML language would bring forth several benefits of a
precise semantics: clarity, equivalence, consistency, ability to
extend, refinement and proof [67].

We also believe that including the concept of governance
systems [51] could bring a greater transparency to the inter-
action between agents, and also help to regulate the system
resources by means of the norms that can be created by enti-
ties of the system. Furthermore, it would be possible to ensure
that agents are punished based on other agents, because the
evaluation of an agent’s behavior could be based on the
testimonies it receives from other agents about violations of
norms.

Last but not least, we could differentiate between organiza-
tional norms and individual norms. The organizational norms
that are defined by the organization restrict the behavior of
agents who play roles in the organization and are punished
for their violations. The individual norms are related to the
expectations agents have about the behavior of other agents.
Therefore, it becomes important to understand how these
norms are defined and how to identify the agents that best
meet these expectations. In this case, norms can be defined
by an agent and their violations would not receive the pun-
ishments coming from the organization.

In conclusion, as software applications become more
dynamic and adaptive, we believe it is essential to support
developers to modelMASs with abstractions such as adaptive
agents, norms and their relationships. Such information can
be foundational to steer future research on modeling adaptive
agents capable of understanding and dealing with norms and
adaptation.
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