
Received January 3, 2022, accepted January 21, 2022, date of publication January 27, 2022, date of current version February 7, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146802

FakeAP Detector: An Android-Based Client-Side
Application for Detecting Wi-Fi Hotspot Spoofing
LUNODZO J. MWINUKA 1, ABEL Z. AGGHEY 2, SHUBI F. KAIJAGE 1, (Senior Member, IEEE),
AND JEMA D. NDIBWILE 3
1School of Computation and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Arusha 44740,
Tanzania
2Information Security and Communication Technology, Kamili Technologies Ltd., Dar es Salaam 20640, Tanzania
3College of Engineering, Carnegie Mellon University Africa, Kigali, Rwanda

Corresponding author: Lunodzo J. Mwinuka (mwinukal@nm-aist.ac.tz)

ABSTRACT Network spoofing is becoming a common attack in wireless networks. The trend is going
high due to an increase in Internet users. Similarly, there is a rapid growth of numbers in mobile devices
in the working environments and on most official occasions. The trends pose a huge threat to users since
they become the prime target of attackers. More unfortunately, mobile devices have weak security measures
due to their limited computational powers. Current approaches to detect spoofing attacks focus on personal
computers and rely on the network hosts’ capacity, leaving guest users with mobile devices at risk. Some
approaches on Android-based devices demand root privilege, which is highly discouraged. This paper
presents an Android-based client-side solution to detect the presence of fake access points in a perimeter
using details collected from probe responses. Our approach considers the difference in security information
and signal level of an access point (AP). We present the detection in three networks, (i) open networks,
(ii) closed networks and (iii) networks with captive portals. As a departure from existing works, our solution
does not require root access for detection, and it is developed for portability and better performance.
Experimental results show that our approach can detect fake access points with an accuracy of 99% and
99.7% at an average of 24.64 and 7.78 milliseconds in open and closed networks, respectively.

INDEX TERMS Android, client-side, intrusion detection, evil twin, network spoofing, rogue access point.

I. INTRODUCTION AND BACKGROUND
The global mobile population on the Internet is rapidly
expanding, accounting for 48% of global online page views
and 50.44% of Internet traffic [1], [2]. Mobile devices have
also become a preferred choice for usage in education [3], [4],
communication, and e-commerce [5] due to the sensitivity
of the information they store [6], as well as their ease of
use, portability, and reliable functions. On the other hand,
most mobile phone users opt for wireless networks as their
means to access the Internet. As a result, the use of wireless
networks is also exponentially growing [7]. Internet services,
voice over wireless, health care, education, and agriculture
services all make use of it. Security risks occur as wireless
communication becomes incorporated into important com-
mercial operations involving financial and personal data as
it becomes part of regular digital routines, including Internet
access. Furthermore, wireless routers actively broadcast the

The associate editor coordinating the review of this manuscript and

approving it for publication was Stefano Scanzio .

unencrypted beacon packets to associate a client access point
(AP), making the situation even more worrisome [8]. Thus,
wireless security has become more vital to Internet users as it
becomes the backbone of the Internet connection.

Because of the openness nature of wireless networks,
users are vulnerable to wireless attacks in which attackers
can readily access personal and financial information, which
could then be used to carry out various types of attacks [9].
One possible attack on wireless networks is the spoofing
attack, sometimes referred to as Evil Twin Attack (ETA),
KARMA, rogue access points (RAP) or network spoofing
attack. Spoofing attacks on the Internet work in an envi-
ronment where information is transmitted between network
users who are identified by Internet addresses. The sender or
receiver address of a successful spoofing attack is disguised
to appear legitimate. As a result, the receiver does not notice
the sender’s true address, and the sender sends packets to
a bogus or spoofed address [10]. An attack occurs when
an attacker successfully creates illegitimate Wi-Fi APs in
wireless networks, and a user connects to it. Rogue Wi-Fi

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 13611

https://orcid.org/0000-0002-9737-8514
https://orcid.org/0000-0002-2155-8981
https://orcid.org/0000-0002-9443-957X
https://orcid.org/0000-0002-7962-2237
https://orcid.org/0000-0001-7643-2342


L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

hotspots are one of the simplest ways for attacking users in
organisations, Internet cafés, universities, airports, and other
public areas. Hence this type of assault is considered risky.
Despite its simplicity, it has far-reaching consequences for
users that are as bad as any other spoofing assault [11].
The report by Kaspersky Lab [12] mentions network spoof-
ing as one of the major mobile security threats since they
give room for many other forms of attacks in a network
[13]–[15].

In the Wi-Fi hotspot spoofing attack, an attacker creates
an open hotspot with a name similar to the host organisation
or common public Wi-Fi or sometimes assigns deceiving
names such as FastWiFi, OpenAccess5G etc. Alternatively,
attackers may deauthenticate a user from AP and suppress
the original AP signals while boosting theirs with a duplicate
AP name. This is done to allow users to attempt reauthen-
tication with the RAP. In other forms, ETA could be cre-
ated to mimic the Service Set Identifier (SSID) and Media
Access Control (MAC) address of a legitimate AP [16]. The
MAC is sometimes referred to as Basic Service Set Identifier
(BSSID). Another approach is to broadcast the SSIDs of the
wireless location a user is connecting to [17], [18], or to
broadcast fake AP, which will make it appear as if a user
is connected to a Wi-Fi hotspot even if they are not [19].
Attackers then use AP information from a device’s preferred
network list (PNL) to generate phoney AP tricking devices to
connect [20].

For various reasons, including the growing number of users
and the sensitivity of the data they hold [6], [21], mobile
devices have become the primary target of these assaults.
In most business transactions, they have already replaced
desktop computers [12]. Since wireless services are available
at workplaces and other public places, Internet users prefer
wireless connections to get free and convenient Internet ser-
vice [12], [22]. Furthermore, most users prefer free Wi-Fi
over their typical data plans because they do not want to waste
their Internet resources [12]. Since users usually connect to
any Wi-Fi, their association with illegitimate hotspots poses
a high risk. An attacker could intercept data and inject mal-
ware into a connected device [22]. These factors increase the
chances and risks of Wi-Fi hotspot spoofing [11]. Further-
more, since mobile devices have small computing resources,
they do not offer the same level of built-in security mecha-
nisms as desktop computers [12], [23].

Usually, for a mobile device to establish a connection
to a wireless AP, it must first perform an active scan
which consists of three basic steps, (i) the discovery phase,
(ii) authentication, and (iii) association [16]. Initially, a client
device sends a request to join the network (probe request),
and the AP replies with a probe response. Finally, the client
acknowledges and establishes a connection [24]. However,
the association process does not distinguish between valid
and illegitimate APs in open networks; networks without
security protocol running on it. Authentication mechanism
used in the association procedure involves exchanging keys
with clients associated with them [25]. As a result, clients

could connect to any open hotspot due to a desperate
need for Internet access. Attackers could take advantage
of this flaw by deceiving clients into connecting to their
hotspots, and then use that connection to launch more attacks
[12], [26].

On the other hand, the network host has a list of devices,
and user accounts in authenticated Wi-Fi APs, which are
sometimes referred to as closed networks (networks that
authenticate clients for Internet access). Users are authenti-
cated based on registered information. Attackers may create
a fake hotspot with a fake captive portal to trick network users
into achieving authentication procedures. The networks with
a captive portal have a web page deployed on the network to
authenticate network users at which they are then compelled
to submit their login credentials. The login credentials may
later be used to launch other attacks in banking or other
services involving personal information [12]. Because of the
small size of the screen, distinguishing fake captive portals
from legitimate ones on mobile phones is much more diffi-
cult than on desktop/personal computers (PC) [27]. With a
plethora of online tools, such as the Kali Software Engineer-
ing Toolkit [28], any web page can be cloned with the same
quality as the original with little effort. As a result of this shift,
and with a combination of web page cloning and Domain
Name System (DNS) poisoning, even desktop users could
become victims. Despite efforts to prevent mobile devices
from connecting to RAP, spoofing attacks are still possible as
a result of mobile users’ carelessness with wireless commu-
nications [29]. Furthermore, mobile phone users are vulner-
able to wireless spoofing attacks due to their fast-on-service
behaviour when navigating through services on their phones.
This study proposes an Android application prototype that
detects hotspot spoofing attacks created by fake wireless
hotspots or ETA in wireless networks. The study recognises
the importance of preventing spoofing attacks from occurring
prior to the mobile device-to-AP association in order to avoid
any type of attacks that could be further extended following
a successful spoofing attack. The detection could be done
by determining the legitimacy of AP using details collected
from their broadcasts (probe responses). On the other hand,
we adopt the method proposed by [23] to detect fake APs
with a captive portal by deceiving the portal with fake login
credentials, which minimises the risk of users exposing their
true credentials to attackers. We do this by simulating a
fake captive portal on Android devices. The captive portal is
accessed using Android’s WebView package. This work has
the following main contributions:
• We propose a prototype for Android devices to detect
hotspot spoofing attacks using parameters collected
from broadcasting APs in the perimeter.

• We present a solution to detect fake hotspots in networks
with the captive portal by deceiving an attacker’s captive
portal with fake login credentials.

• We implement our prototype through the FakeAPDetec-
tor on Android-based devices and evaluate its effective-
ness based on accuracy and performance.

13612 VOLUME 10, 2022



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

• We present a testing experiment in three different
network structures and compare results with previous
studies.

II. RELATED WORKS
This section presents previous works in detecting fake
hotspots, upon which the foundation of our work is built—we
categorise the review into ETA, fake APs, and mobile-based
solutions.

The detection of fake hotspots has been well explored
in the existing literature. Ballai [30] presents a system and
method for detecting unauthorised APs to wireless networks.
The study collects the beacon information from the transmit-
ting AP and determines its validity. The measuring process
involves a comparison of the beacon information with a pre-
existing database of the communication network. Segura and
El-Moussa [31] present methods for authenticating APs as an
improvement of [30]. This approach demands that each AP is
authenticated first before it is authorised to use the network
services. The method has an authentication server, and two
identifiers are set on the host network (wired) and wireless
device. In addition, an information server is configured with
a comparator. If the details of the two matches, then the AP
is considered genuine. Bryksa and MacMillan [32] present
mechanisms to secure wireless networks using authentica-
tion of the wireless client device at the hotspots side. The
authentication includes an access controller to establish an
encrypted connection between nodes and hotspots. The work
by Al-Zubaidie et al. [33] presents a lightweight authentica-
tion scheme in healthcare applications. Among many other
approaches presented, the authors use MAC addresses to
verify the legitimacy of authenticating devices. On the other
hand, they present an improved approach for server-client
authentication to prevent spoofing attacks.

Unfortunately, these approaches rely on the power of the
host network. The first work, [30], relies on the database
hosted at the network host. The second [31] and third [32]
solutions have an authentication server at the host side,
which authenticates the client associating with the network.
An approach to determine the legitimacy of MAC addresses
in [33] relies on the power of the authentication server with
a series of operations including, signing the MAC addresses
with the PHOTON signatures. This approach demands the
authentication server to have a list of legitimate MAC
addresses which are signed and the signatures are used during
authentication. Since these approaches rely on the power of
host network, their implementation in resource-constrained
devices like Android devices would significantly affect the
performance of the detection ability, which demand high
performing algorithms [33].

Matte et al. [34] created RAPs to leverage geolocation
details available on geotagged services like Facebook and
Twitter and simulate other attacks. They also used the BSSID
and Received Signal Strength Indicator (RSSI) parameters to
predict the location of the AP. BSSID and RSSI make a good
combination for identifying spoofed APs. However, if the

goal is to identify spoofing attacks on client devices connect-
ing to hotspots, then this strategy is not practical since authen-
tic BSSIDs cannot be identified from end-users, despite the
ability to read them. Deshpande and Davenport [35] present
a mechanism to detect RAP. It uses messages sent from a
user’s device. Initially, the user sends the first AP discovery
message, including a prestored identifier of previously asso-
ciated APs. It then sends an additional message, including the
identifiers of a non-existent AP. Finally, using a combination
of these messages, the device detects the existence of RAPs.
However, this approach relies on prestored APs based on
previous connections, which might not be helpful when the
user is exposed to a new environment. Harmon [36] also
presents a system and method to detect illegitimate APs. The
approach works on a computer system by (i) detecting when a
device attempts to connect to the wireless AP that resembles
the legit one, (ii) identifying the location of the computing
devices and APs, and (iii) detecting the illegitimate APs by
comparing the geographical location of the APs. However,
the implementation of the given solution is contingent on
the availability of external devices, systems, or network host
capacity.

Tchakounté et al. [19], who demonstrated how to detect
wireless spoofing attacks by evaluating the SSID, BSSID,
communication mode, and security protocols, were among
the authors influenced our method. Their work assumes that
the administrator verifies legitimate APs and that the network
administrator knows the entire network and maintains the
legitimate, illegitimate, and suspected hosts database. How-
ever, Wi-Fi users are typically oblivious of the network’s
configuration and associated clients. On the other hand, RSSI
was not thought to produce accurate detection results in this
study. Besides this argument, the RSSI is one of the param-
eters that attackers cannot duplicate [37], [38] providing a
solid foundation for its use in detection algorithms. With the
exception of security protocols in closed networks, attackers
have complete control over the parameters that govern their
functioning. The work by Madani and Vlajic [37], presented
the RSSI-based MAC layer spoofing detection using the
Deep Learning approach. However, their approach assumes
the existence of a large number of scanning nodes which
is technically resource-intensive in Android devices since
it increases the amount of data collected for comparison.
We delved into the idea further, focusing on the client-side,
which formed the basis of our work. We begin by looking
at Kropeit’s work [16], which uses the ‘‘KARMA-Detector’’
and the ‘‘Wi-Fi Analyser’’ to detect hotspot spoofing on
smartphones. The author uses iw, and the Wireless Tools
software suite, which includes iwconfig and iwlist, all avail-
able in a Linux based environment. The author additionally
utilises the aircrack-ng suite to crack Wired Equivalent Pri-
vacy (WEP) andWireless ProtectedAccess (WPA), one of the
most widely used network auditing software. The detection
program sends multiple directed probe requests using ran-
domly generated SSIDs. They did this by using the ‘‘MAC
randomiser’’ that creates random combinations of SSID and

VOLUME 10, 2022 13613



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

TABLE 1. Comparison of detection approaches between the proposed system and existing approaches.

BSSID in every probe request. However, the implementation
of these methods demands root privilege.

Kim [39] suggests a system and method for detecting
RAPs and user devices. The invention uses common beacon
characteristics and a database to store beacon parameters. The
invention further uses a one-time Uniform Resource Loca-
tor (URL) to detect fake hotspots and address resolution pro-
tocol. However, with a combination of these parameters, the
invention demands a detection server (externally deployed) to
incorporate the prescribed elements.

Implementing the majority of approaches [19], [34]–[37]
in Android-based devices would increase the communica-
tion overhead of the application since limited computing
resources already challenge them. On the other hand, the
approach in [16] requires a root privilege and has left room
for further exploration by capturing and evaluating more
packets and getting more information from the packets. For
example, AP’s security protocol and encryption information
were not used. Furthermore, the methods for detecting RAPs
and honeypot AP usingWEPwere left undone. The invention
by [39] leaves room for exploration on RAP detection on
mobile devices without an external device.

In general, a review of previous research works based on
hotspot spoofing detection revealed the following research
gaps:

1) The client-side solutions have not explored the identi-
fication of fake hotspot spoofing using security infor-
mation (security protocol and encryption used).

2) Detection approaches in mobile devices are scarce, and
those available require root privilege, which is consid-
ered dangerous to end-users.

Comparisons between the proposed approach and existing
approaches are presented in Table 1. We develop a mobile
application prototype (the case of Android) that leverages
the advantage of captured hotspot parameters from probe
responses to determine their legitimacy. Furthermore, the
solution leverages the Wi-Fi beacon frames (SSID, BSSID,
RSSI and security information in Android, referred to as
capabilities) to detect spoofed hotspots. The probes are cap-
tured using Android’s built-in functionality, which eliminates
the need for external servers and dependence on the capacity
of what is known on the host side. We present a portable
solution that bridges the gap by eliminating the need for
root access while also developing a portable solution for
end-users.

III. PROPOSED SYSTEM: FakeAP DETECTOR
We present the FakeAPDetector that utilises built-in Android
capabilities to detect fake APs on wireless networks based on

the mentioned challenges. The solution collects the details of
broadcasting APs which are used to determine their legiti-
macy. On the other hand, the solution challenges the captive
portals by submitting randomly generated fake login cre-
dentials to the networks that have implemented them. This
method also checks if two or more APs are broadcasting with
the same SSID and BSSID, which indicates that one or more
APs mimics the legitimate AP. These APs are further com-
pared for their similarities in RSSI values and capabilities.
RSSI is the intensity of the received signal; the formula to
calculate its value is presented in (1). The RSSI is chosen
because it is difficult for an attacker to forge [37], [38] and
hence increases the chances to identify fake APs. Capabilities
store the authentication protocol, encryption algorithm and
cipher information of a broadcasting AP.

RSSI = TransmitPower + AntennaGain− Pathloss (1)

Usually, an attacker’s goal in network spoofing is to imper-
sonate the legitimate network to deceive users into connecting
to it. Then, they would advance with the Man in the Mid-
dle (MiTM) attack. As presented in Fig.1, an attacker may
create her network using random SSIDs that reflect the names
of the places in the perimeter. For instance, if an attack is
simulated at university premises, an attacker could name her
APs after the class names, hostel buildings, laboratories etc.
But, on the other hand, she could create APs with convincing
SSID such as Free Wi-Fi, Student-Wi-Fi, Student 5G Access
and the like. Alternatively, an attacker could simulate an ETA
based on the details of a legitimate network or de-authenticate
users from the network they are currently connected to using

FIGURE 1. Attack threat model.

13614 VOLUME 10, 2022



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

simple tools available in Kali Linux Operating System (OS)
like aircrack-ng. These networks would not have any notice-
able differences to end-users, so they would connect to them
if they have internet access.

A. SCOPE AND ASSUMPTIONS
We present our solution focusing on Android-based devices.
However, it might also be feasible for other mobile devices
as the challenges are similar, and users of most mobile device
OSs in themarket have demonstrated similar behaviours [40].
Furthermore, since our solution aims to use the built-in
Android phone features and development tools, few fea-
tures were extracted from broadcasting APs in the perimeter
due to the Android OS limitations. More features could be
extracted with the help of an external device or by rooting
the device. However, the few features we collected were
sufficient to develop the FakeAP Detector. The presented
prototype detects the presence of fake APs which broadcasts
during the scanning process period.

On the other hand, in the networks with captive portals,
we have assumed that a captive portal pops up automatically
after a user is connected to a network. The designed captive
portal is meant to read usernames and passwords from users.
The Hypertext Transfer Protocol (HTTP) responses could be
used to determine the legitimacy of broadcasting AP and its
captive portal. Throughout the exercise of scanning for broad-
casting APs and determining their legitimacy, the devices
involved in the process are assumed to be in a static position.

As we have discussed in Section I, network spoofing
attacks exist in various forms. Some behave differently based
on tools used to simulate attacks. This study did not cover
spoofing attacks created by deceiving SSIDs that do not
imitate the features of the legitimate AP. The study assumes
further that, an attacker creates fake APs mimicking AP
details from the legitimate network since it is unlikely for
an attacker to simulate ETA before the legitimate APs are
broadcasted.

B. SYSTEM MODEL
Wireless networks do not encrypt its transmissions during
communication, so wireless cards could easily capture details
of APs in the perimeter. Attackers utilise this benefit to mimic
legitimate networks and harvest personal information from
users connecting to their networks. The detection measures
are of no difference. They utilise the ability to capture wire-
less frames from APs and determine their legitimacy. We first
discuss methods for detecting network spoofing attacks based
on Evil Twin Attack (ETA), and second, we discuss methods
for detecting fake captive portals in a wireless network.

C. DETECTION OF SPOOFING ATTACKS
With the built-in Android Wi-Fi card we were able to capture
details of the broadcasting APs. Some that we were able to
capture and use for our detection prototype are SSID, BSSID,
capabilities and RSSI. The capabilities include encryption
referred to as ENC, CIPHER, and authentication type referred

to as AUTH. These details help us detect attacks in which
an attacker mimics features of legitimate APs. For example,
most attacks targeting wireless networks using aircrack-ng
suite, mimic SSID, MAC, Channel, and others but cannot
mimic RSSI since they are generated based on the power of
AP. So, they cannot be manipulated by adversaries in wireless
networks [37], [38], [41]. Additionally, despite the possibility
of creating an ETA with WEP, WPA or WPA2 in authen-
ticated APs, most attackers ignore capabilities information
because they want to leave their network open for clients to
associate.

The FakeAP Detector starts by scanning for available APs
in the perimeter. The details are then stored in the database as
they are captured. When the scan is complete, the AP details
are retrieved from the database and compared for similarities.
If two ormore APs broadcast with the same SSID andBSSID,
then one or more among them is questionable. To further
be sure, the remaining two features, RSSI and capabilities
of the twin-APs, are compared. If there are differences in
RSSI or capabilities, it is confirmed that fake AP(s) exist
in the perimeter. Unfortunately, the RSSI value is not con-
stant and is affected by several environmental factors such as
obstacles [37]. Furthermore, capabilities informationmay not
return the desired result since both legitimate and illegitimate
APs would broadcast with the same capabilities information.
To address these challenges, we use the difference in the
means of RSSI values to detect fake AP. The suggested
solutions are classified into two categories based on network
characteristics: detection in open networks and detection in
closed networks.

According to data captured from an Android phone during
our experiments in an open network, we observed that these
networks do not employ any security mechanisms. As a
result, both legitimate and bogus networks may have similar
capabilities because an attacker typically creates an open net-
work to which anyone can connect. In this case, the solution
is to rely on the RSSI value, which is not static. The problem
could be solved by scanning for broadcasting APs in multiple
rounds, resulting in a cluster of RSSI values for comparison.
The FakeAP Detector scans in ten rounds (the rounds could
be adjusted to any number depending on desired speed and
accuracy). The results were stored in the database after each
round. The solution works by comparing the average of RSSI
values of each duplicate broadcasting APs to the average of
RSSI value of the first broadcasting AP among the duplicates.
Because an ETA imitates the original networks, the second
broadcastingAP among the twin-APswith a different average
RSSI value could be a fake.

To work on this, we benchmark the RSSI value of the first
AP to broadcast among the duplicate APs. The benchmarked
value will then be used to retrieve the RSSI values from the
same SSID, which fall in the range of (+5 and −10) dBm.
The difference of the means for the collected RSSI val-
ues from duplicate APs will be calculated. If the difference
exceeds three units of dBm, then one of the duplicate APs
is fake. This range is defined based on RSSI fluctuations

VOLUME 10, 2022 13615



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

FIGURE 2. Signal strength fluctuations along with time in seconds.

captured in the experimental observation, as presented in
Fig. 2. The scanning was simulated in twenty rounds, each
round capturing broadcasts in one second.

For instance, with AP1, the benchmarked value is
−84 dBm, at which the strongest signal was −81 dBm, and
the weakest was −93 dBm making a difference of (+3 and
−9) dBm in the high and low signal fluctuations, respectively.
The AP2 had a difference of (+16 and −4) dBm from its
benchmarked value of−83. The AP3 had a difference of (+1
and −8) dBm. Lastly, the AP4 had a difference of (+1 and
−19) dBm, as presented in Table 2. The highest and lowest
signal strength range was calculated to be 12, 20, 9 and 19 for
the AP1, AP2, AP3 and AP4, respectively. These make an
average range of 15 units of dBm to which signal strength
could fluctuate. Our study used the +5 and −10 difference
to select RSSI values to calculate the mean for a specific AP.
This threshold falls into 15 dB units of the range determined
in our experimental study.

TABLE 2. The presentation of benchmark RSSI value, highest signal,
lowest signal and the range between highest and lowest signal.

In closed networks, the detection is straightforward under
the assumption that attackers create open fake APs for every-
one to connect. When this is the case, all closed networks
broadcast with security information indicating the protocol
and encryption used. Contrary, an open networkwould broad-
cast without indicating security protocols and encryption
used. Hence, to detect fake APs, we first check for twin-AP,
if they exist, then capabilities information is compared.When
the difference is noticed, the AP without security protocol
and encryption information and the one which came after the
other had started broadcasting is marked as fake. In cases
where an attacker creates an ETA with security information
similar to legitimate AP, the comparison of RSSI values is
done on top of capabilities (security) information to increase
efficiency in detecting fake APs. The detection flow is pre-
sented in Fig. 3.

FIGURE 3. Fake AP detection flowchart.

D. NETWORKS WITH CAPTIVE PORTAL
In this context, the solution is built under the foundation of
web protocols and Android’s WebView class. In other words,
the detection relies on response messages from Hypertext
Transfer Protocol (HTTP). Two HTTP responses are con-
sidered: the login attempt failure message and the success
message. During authentication on the web, error message
401 is given for unauthorised users and 403 for forbidden
requests [23]. Then, response code 200 is given when the
submitted request has succeeded. Therefore, we focus on
error response 401 captured by the WebResourceResponse
class of theWebView package.
To determine the legitimacy of the network, the FakeAP

Detector generates random login credentials using the
JavaScript code which follows the pseudo code presented in
Algorithm 1. The generated credentials are then submitted

Algorithm 1 Login Automation on the Fake Captive Portal
Input: username← randomString(10)
Input: password ← randomString(10)
1: Load captive portal URL
2: if pageLoaded then
3: Input username
4: Input password
5: Submit credentials
6: else
7: return Error
8: end if

13616 VOLUME 10, 2022



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

into a captive portal. Next, the response codes of the portal
are determined. The input lines of the algorithm generates
random username and password. Then, the first and second
lines load the captive portal and determine its status using
web response codes. The third and fourth lines auto-fill the
form inputs by identifying form input names and submit-
ting values generated in the input lines. Lastly, the values
are automatically submitted to the captive portal web server
in the fifth line. After submission, when the success code
is returned, or no error messages are received in the pro-
cess, then the captive portal originates from a fake network
(See Fig. 4).

FIGURE 4. Fake captive portal detection flowchart.

IV. MATERIALS AND METHODS
In this section, we present materials and methods used in
developing the FakeAP Detector. In addition, methods and
tools used in the two experiments are also presented in two
different network structures with consideration of attacks in
open and closed networks.

A. EXPERIMENTAL DESIGN
We created a network of fake APs with three considerations.
First, we considered a set of APs that mimics the characteris-
tics of an open legitimateAP. Second, a set of APs thatmimics
the details of a closed AP and third, a set of APs that deceive
clients with fake AP and a fake captive portal (captive portals
presented in Fig. 5). The first and the second broadcasts
were captured on Android devices and a personal computer
(PC). The packets in a PC were captured using Wireshark,
and two approaches were used in Android devices. First,
we used the Android Pcap library, which generate pcap files
that can be analysed using network analysis tools. Second,
we used WifiManager Java classes to capture AP details.
The captures in both devices were observed for noticeable
differences between legitimate AP and fakeAPs. Fig. 6 shows
sample results of captures in theFakeAPDetector. The details
in Fig. 6 (a) presents the APs scan results in a series of rounds.

On the other hand, fake APs with fake captive por-
tals were created to mimic the captive portal of the legit-
imate network. The fake captive portal was created in
basic HyperText Markup Language (HTML), Cascading

Style Sheet (CSS) and JavaScript (JS) with PHP running
in the backend and hosted at our own domain available at
http://fakeap.lunodzo.com/. The server was running under the
phpMyAdmin tool, which supports PHP and MySQL. Using
the Android’s WebView packages, we could view the fake
captive portal in Android as presented in Fig. 7. Mzumbe
University was chosen for this exercise, as they have imple-
mented a captive portal on their network.

A NETGEAR NighthawkrX6 AC4000 Tri-Band Wi-Fi
router was used for experiments. It is a tri-band Wi-Fi pro-
viding three (3) dedicated bands that are optimised for speed.
These features allowed us to broadcast up to six (6) APs
simultaneously with distinct SSIDs and configure them to be
open or closed. The router was useful in all experiments since
we used it to create a network of APs marked as legitimate in
our experiments.

We simulated an attack in our lab environment to study
visible patterns used in developing the FakeAP Detector.
The experimental setup involved two PCs, one installed with
the Kali Linux 2021.2 and another with Ubuntu 21.04. The
study used the Kali Linux 2021.2 to simulate the attacks with
the help of the Network Interface Card (NIC) that supports
monitor mode. The Alfa One AWUS036H 1000mW Chipset
RTL8187L was used. The PC running Ubuntu 21.04 OS had
a built-in wireless chipset running in monitor mode as well.
A list of commands used to simulate an attack is presented
in Table 3. Initially, the Wi-Fi chipset was set into monitor
mode using the airmon-ng command. The second step was to
check the broadcasting APs in the perimeter using airodump-
ng. The command enables the collection of AP details that
could be used to simulate an attack. Finally, the airbase-ng
command created an evil twin AP based on details collected
in the second step.

TABLE 3. List of commands for wireless ETA.

The second PC was used to capture packets in pcap format
and then analyse them using the Wireshark.1 The tool helps
network administrators to examine the live network data or
saved pcap files for troubleshooting network traffic or detect-
ing potential malicious activities.

B. APPLICATION DEVELOPMENT
We employed the Extreme Programming (XP) development
methodology to accommodate the constantly changing appli-
cation requirements. The implementation of the FakeAP
Detector is based on Android-based development tools.
We used the Android Studio as the Integrated Development
Environment (IDE). The backend implementation was based

1Wireshark

VOLUME 10, 2022 13617

https://www.wireshark.org/


L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

FIGURE 5. The captive portals screenshot. (a) Legitimate captive portal and (b) Fake captive portal.

FIGURE 6. (a) AP scan results and (b) Logged pcaps.

on the Java programming language, and the data were stored
in the Android’s SQLite database. The application’s inter-
faces were developed using the eXtensible Markup Language
(XML), making the application light and fast since XML is a
lightweight language and would not make our layout heavy.

Furthermore, the Android PCAP library2 from Kismet was
used to manage the packet capture within an application
with the help of the Alfa One wireless card. The Android
PCAP implements the Linux kernel RTL8187 driver using
the Android USB host API; hence it doesn’t require root

2Android Pcap library

FIGURE 7. Fake Captive portal view in the FakeAP Detector.

privileges. Furthermore, the Alfa One 802.11b/g wireless
card implements the RTL8187 drivers, making it suitable for
our experiments.

The SAMSUNG I9300 Galaxy SIII was used to deploy
and test an application. It supports up to Android 4.4, KitKat
GT-I9301I Neo only. In addition, the Galaxy SIII works
perfectly with the Android PCAP library and supports USB
host operation, allowing us to use an external NIC to capture
raw packets.

The Alfa One NIC was plugged into the Android device
with the help of an On-The-Go (OTG) cable to capture raw
pcap files. The captures were meant to be parsed in our detec-
tion prototype to determine their legitimacy. Figure 6 (b)

13618 VOLUME 10, 2022

https://www.kismetwireless.net/static/android-pcap/


L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

shows a screenshot of scan results of pcap files. The io.pkts3

was used to manipulate the captured packets. It is a package
capable of reading and writing from the pcap files. Figure 8
presents the flow of packet captures. Initially, packets from
the router are captured in our detection application with the
help of the Alfa One NIC. Then, the packets are handled by
the Android PCAP library.

FIGURE 8. The flow of pcap files in FakeAP Detector.

V. EXPERIMENTAL SETUP AND RESULTS
This section presents the results obtained during the testing
and deployment of the FakeAP Detector.

A. AP DETAILS CAPTURE
The initial step towards the detection of fake APs includes
scanning active APs broadcasting in the perimeter. We did
this in two ways, first by using an external NIC and second
by using the Android’s built-in NIC. The scan results with
an external NIC were presented in Fig. 6 (b). Each session
of scan stores the packets in a different file. This process
was adapted from the Android PCAP Library available in the
Google Play store. Figure 6 (a) shows the scan results using
the built-in wireless card to which SSID, BSSID, RSSI, and
capabilities were captured and stored in the SQLite database.

We could not work further with the raw pcap files due to the
limitation of the io.pkts. After the capture, we were supposed
to filter packets relevant for our detection application, i.e., the
probe response from APs. Unfortunately, the io.pkts did not
support parsing of the 802.11 protocol as of August 2021.

B. DATA STORAGE
The AP information captures were stored in a single table
of the SQLite database. The designed table covered basic

3io.pkts package

information from the AP and added a few, which helps
identify scans uniquely. Sample scan results are shown in
Fig. 9 as stored in the database. The probes are scanned in
ten rounds (the number of rounds could be adjusted to any)
to capture different RSSI values. Each round is then posted
into a database table. When the scan rounds are completed,
the detection process starts. The detection method retrieves
data from the database and uses the details to compare each
AP’s legitimacy based on the algorithm presented in Fig. 3.
To avoid overloading an application with useless data, the
database is wiped during the start of every scanning process.

FIGURE 9. Sample scan results (three rounds) as it can be seen in the
SQLite database.

C. FAKE AP DETECTION
Since the application collects information of the broadcasting
APs at a certain period and then stores them into a database,
the detection prototype fetches the scanned details from the
database. First, we use Structured Query Language (SQL)
statements to determine duplicate APs in each round based
on SSID and BSSID information. These statements are pre-
sented in Listings 1, 2 and 3. The duplicate APs are then com-
pared with their details to determine their legitimacy based on
the flowchart shown in Fig. 3. This process was categorised
into open networks and closed networks. In closed networks,
usually, the legitimate network has WEP, WPA or WPA2
enabled. The first line into the detection approach starts with
comparing the capabilities information. The SQL statement
to fetch duplicate APs with different capabilities is presented
in Listing 1.

LISTING 1. The SQL statement that returns duplicate APs with different
capabilities, abovecaptionskip=0pt, belowcaptionskip=0.

An attacker usually has most of the details similar to legit-
imate AP in open networks, including the capabilities. In this
case, we focus on RSSI. We created a temporary table (view)
in the database where AP details are stored. The view stored
all duplicate APs whose capabilities, SSID and BSSID, were
the same. The implementation is presented in Listing 2.

From the list of duplicate APs, we compare their RSSI
values determining the legitimacy of each AP. Listing 3

VOLUME 10, 2022 13619

https://www.javadoc.io/doc/io.pkts/pkts-core/3.0.2/io/pkts/packet/package-summary.html


L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

LISTING 2. The SQL statement that creates a view that stores duplicate
open APs.

LISTING 3. The SQL statement that returns results of APs with average
levels not falling in the defined range.

presents the SQL statement, which determines the difference
in average RSSI values based on the benchmarked RSSI
value. The duplicate APswith average RSSI values not falling
in a defined range are marked as fake.

D. TESTING
We have designed three experiments following the designed
attack detection methods developed. The first two setups
involve the testing approaches for the fake APs based on open
and closed network structures. The third setup was for the
network that has implemented a captive portal to authenticate
clients. As presented in Fig. 10, these experiments used a
wireless router, an Android device, and a PC. The attacking
device had a NIC supporting monitor mode giving it the abil-
ity to read parameters of APs in the perimeter and simulate an
ETA. The NETGEAR router could simultaneously broadcast
up to six (6) APs with different configurations. The tests
were simulated assuming a constant position of an adversary
(attacking device), legitimate APs and the detecting device.

In the first experiment, we broadcast APs (legitimate and
illegitimate) in a closed network. Thus, the illegitimate net-
work of APs was mimicking the legitimate network. Simi-
larly, we broadcast an open network with its details imitating
the legitimate network in the second experiment. To obtain
reliable results, we did a hundred test experiments, and in
each, we calculated accuracy and detection speed. Finally, the
average of each performance indicator was obtained.

In the third experiment, we simulated a network with the
captive portal. The fake captive portal was then tested with a
fake credential in the FakeAP Detector. Finally, the HTTP
response was captured to determine the legitimacy of the
captive portal.

FIGURE 10. Experimental setup topology.

On the other hand, we looked at how the number of rounds
could affect the performance of the detection prototype.
We tested the prototype by collecting AP details in two (2),
ten (10), and twenty (20) and fifty (50) rounds. The lower
number of rounds would reduce the time taken for scanning
and detection (better speed), however, it would affect the
detection accuracy. Contrary, scanning in many rounds would
negatively impact the detection time and speed but increase
the detection accuracy. For instance, scanning in two rounds
would take 1.5 seconds in scanning and storage. On the
other hand, scanning in ten rounds would take 11 seconds,
while scanning in twenty and fifty rounds would take 17 and
48 seconds. Similarly, the detection in two rounds scan results
would spend an average of 2 milliseconds with an accuracy of
40%. Ten rounds would spend an average of 24.98 millisec-
onds, while twenty and fifty rounds would spend an average
of 97 milliseconds and 2 seconds, respectively, with an accu-
racy of 99.6% for twenty rounds 99.8% for fifty rounds. Ten
roundswere chosen considering the trade-off between the two
metrics, as detection time is important in Intrusion Detection
Systems (IDS). Our experiments observed that adding the
number of rounds significantly affects detection time with
little improvement in detection accuracy.

E. EXPERIMENTAL EVALUATION
To obtain reliable results and build evident conclusions from
the detection prototype, we run the scans and detection in a
clean and attacked environments to see the test scores. The
experiment shows 2% and 1% false positives in open and
closed networks respectively and 98% and 99% true negatives
in open and closed networks respectively, as presented in
Table 4 and 5. During the tests in clean environment, the
average detection speed of the prototype was calculated to
be 24.98 milliseconds when AP scan results were already
stored in the database. We noticed further that; time spent in
detection is affected by the number of broadcasting APs. The
presented results are based on a network with a total of seven
broadcasting APs in the perimeter.

The same experiment was conducted in a network with
an attack. In this case, we considered two different attacks:
an attack targeting open APs and a second attack targeting

13620 VOLUME 10, 2022



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

TABLE 4. Detection test results in open network.

TABLE 5. Detection test results in closed network.

closed APs. In the open APs, the results show that the
FakeAP Detector has achieved 99% true positives and had
1% false negatives, as presented in Table 4 with an average
of 24.64 milliseconds of detection time. This experiment had
seven broadcasting APs with one being fake.

In a closed network, the results show that the FakeAP
Detector has achieved 99.7% of true positives and had 0.3%
of false negatives with an average of 5.78milliseconds of run-
ning time. The detection time in this attack was significantly
low since the algorithm first checks for differences in security
information. If the difference is noticed, then the process ends
(refer to Fig. 3). The detection accuracy for this experiment
is shown in Table 5.

In the captive portal, our detection accuracy was 88% in
one hundred tests done. The captive portal reads and returns
a success message immediately after the credential is suc-
cessfully posted into a database without verifying the details.
Here, the performance was highly affected by the availability
of the Internet and the server where the fake captive page was
hosted.

These results were also calculated to obtain precision,
recall and F1-Score metrics scores. The FakeAP Detector
achieved a 98% precision, 99% recall and 98.4% F1-score in
open networks. On the other hand, it has achieved 99% pre-
cision, 99.7% recall and 99.3% F1-score in a closed network.
These performances are competitive compared to similar
recent studies, including the work by Madani and Vlajic [37]
as presented in Table 6.

TABLE 6. Performance comparison between the FakeAP Detector and
Deep Learning Detection approach.

VI. LIMITATIONS AND FUTURE VENTURES
Android OS is a circular improving OS. Various improve-
ments are made in each of their releases. This makes it a

challenge for researchers to develop sustainable solutions
focusing on Android-based devices. Nevertheless, the studies
have the opportunity to contribute to the body of knowledge.
This study was conducted in the spirit of contributing to the
body of knowledge. So far, we have covered the detection
of fake APs that mimic legitimate networks. However, fake
APs created with random APs or those that do not mimic the
structure of legit networks were not covered in this study, and
they would demand a different approach to be detected. This
work did not manipulate details captured in pcap files; this
would result in more information relevant for detecting fake
APs by comparing legitimate APs from the fake APs pack-
ets. As a remedy, future works may need to redevelop their
classes following the guide provided io.pkts documentation,
which could result in rich features, including vendor-specific
information and round-trip time, which could strengthen the
detection effectiveness.

Our detection approach using RSSI values may sometimes
result in false positives if legitimate and fake APs broadcast
with similar RSSI values, especially in open networks. There-
fore, this approach has to be used in combination with other
parameters collected from the broadcasting APs. On the other
hand, an attacker could create an ETA with features similar
to legitimate AP, including security information. In this case,
the prototype relies on RSSI value only.

Determining the estimated location of legitimate APs using
the RSSI value also leaves a promising research gap. Since
RSSI is one of the features that an attacker cannot mimic,
a strong fake AP detection solution could be developed
based on an AP’s location. The detection of fake AP that
de-authenticates clients and lets them connect to their net-
work was not done due to limited features collected from
the broadcasting APs. A pcap file could easily help since the
packets are classified based on their types, including the de-
authentication packets. Furthermore, features currently avail-
able in 802.11ax, such as Basic Service Set (BSS) colouring,
also leave a promising possibility for detecting fake APs. The
study invites research work to build a prevention system for
network spoofing attacks.

The presented solution is subjected to possibilities of false
fake AP detection results, this happens when the detection
measures rely on the difference in average of RSSI values of
duplicate APs. There are trade offs in balancing the range to
be used to determine legitimacy of APs. The smaller range
puts the prototype in a good detection accuracy but with high
possibility of false positives. On the other hand, large range
may solve the problem of false positives but increases the
chances of missing out the existence of fake APs.

VII. CONCLUSION AND DISCUSSIONS
This paper proposed a prototype of an Android application
to detect hotspot spoofing attacks in wireless network set-
tings using features collected from broadcasting APs. The
proposed prototype collects SSID, BSSID, RSSI and capabil-
ities information which are being compared. The comparison
decisions are made depending on the nature of the network.

VOLUME 10, 2022 13621



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

Initially, AP is compared for the differences in capabili-
ties in closed networks, and later RSSI value is used when
capabilities information appears to be the same. In contrast,
a combination of capabilities and RSSI values is used in open
networks since both legitimate and illegitimate APs broadcast
similar capability information.

On the other hand, our method challenges the networks
with a fake captive portal by submitting fake login credentials
to test their legitimacy. We analysed the performance of the
FakeAP Detector, which had an accuracy detection of 98%
and 99% in open and closed networks, respectively. The pro-
totype had shown the best detection time when detecting in
a closed network where an average of 5.78 milliseconds was
spent. In the open network, an application had spent an aver-
age of 24.64 milliseconds in detection. The development of
the prototype focused on a lightweight solution on Android-
based devices; hence using the built-in Android resources
yields better results and performance without rooting the
device. We had used the WifiManager, WebView and SQLite
packages to make this possible.

REFERENCES
[1] J. Johnson. (2021). Global Digital Population as of January 2021.

Accessed: May 25, 2021. [Online]. Available: https://www.statista.com/
statistics/617136/digital-population-worldwide/

[2] S. O’Dea. (2021). Number of Smartphone Users From 2016 to 2021.
[Online]. Available: https://www.statista.com/statistics/330695/number-
of-smartphone-users-worldwide/

[3] A. Joyce-Gibbons, D. Galloway, A. Mollel, S. Mgoma, M. Pima, and
E. Deogratias, ‘‘Mobile phone use in two secondary schools in Tanzania,’’
Educ. Inf. Technol., vol. 23, no. 1, pp. 73–92, Jan. 2018.

[4] W. Suryasa, J. R. Z. Mendoza, T. M. Mera, M. E. M. Martinez, and
M. R. Gamez, ‘‘Mobile devices on teaching-learning process for high
school level,’’ Int. J. Psychosoc. Rehabil., vol. 24, no. 4, pp. 330–340,
Feb. 2020.

[5] L. Einav, J. Levin, I. Popov, and N. Sundaresan, ‘‘Growth, adoption,
and use of mobile E-commerce,’’ Amer. Econ. Rev., vol. 104, no. 5,
pp. 489–494, 2014.

[6] R. Bitton, A. Finkelshtein, L. Sidi, R. Puzis, L. Rokach, and A. Shabtai,
‘‘Taxonomy of mobile users’ security awareness,’’Comput. Secur., vol. 73,
pp. 266–293, Mar. 2018.

[7] Cisco. (Mar. 2020). Cisco Annual Internet Report (2018–2023) Report.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-
741490.html

[8] L. Lazos and M. Krunz, ‘‘Selective jamming/dropping insider attacks in
wireless mesh networks,’’ IEEE Netw., vol. 25, no. 1, pp. 30–34, Jan. 2011.

[9] D. Kidston and L. Li, ‘‘Management through cross-layer design in mobile
tactical networks,’’ in Proc. IEEE Netw. Oper. Manage. Symp., Osaka,
Japan, Apr. 2010, pp. 890–893.

[10] C. Wolfe, S. Graham, R. Mills, S. Nykl, and P. Simon, ‘‘Securing data
in power-limited sensor networks using two-channel communications,’’
in Proc. Int. Conf. Crit. Infrastruct. Protection. Arlington, VA, USA:
Springer, 2018, pp. 81–90.

[11] K. Jindal, S. Dalal, andK. K. Sharma, ‘‘Analyzing spoofing attacks in wire-
less networks,’’ in Proc. 4th Int. Conf. Adv. Comput. Commun. Technol.,
Washington, DC, USA, Feb. 2014, pp. 398–402.

[12] Kaspersky. Top 7 Mobile Security Threats in 2020. Accessed:
May 30, 2021. [Online]. Available: https://www.kaspersky.com/resource-
center/threats/top-seven-mobile-security-threats-smart-phones-tablets-
and-mobile-internet-devices-what-the-future-has-in-store

[13] J.-M. Seigneur, ‘‘Wi-trust: Computational trust and reputation manage-
ment for stronger hotspot 2.0 security,’’ J. ICT Standardization, vol. 4,
no. 3, pp. 213–236, 2017.

[14] P. Shrivastava, M. S. Jamal, and K. Kataoka, ‘‘EvilScout: Detection and
mitigation of evil twin attack in SDN enabled WiFi,’’ IEEE Trans. Netw.
Service Manage., vol. 17, no. 1, pp. 89–102, Mar. 2020.

[15] V. B. Srinivas and S. Umar, ‘‘Spoofing attacks in wireless sensor net-
works,’’ Int. J. Sci., Eng. Technol., Comput., vol. 3, no. 6, p. 201,
2013.

[16] T. Kropeit, ‘‘Don’t trust open hotspots: Wi-Fi hacker detection and privacy
protection via smartphone,’’ M.S. thesis, Dept. Embedded Secur., Ruhr-
Universität Bochum, Bochum, Germany, 2015.

[17] M.-W. Park, Y.-H. Choi, J.-H. Eom, and T.-M. Chung, ‘‘Dangerous Wi-Fi
access point: Attacks to benign smartphone applications,’’Pers. Ubiquitous
Comput., vol. 18, no. 6, pp. 1373–1386, Aug. 2014.

[18] K. Wang, S. Chen, and A. Pan, ‘‘Time and position spoofing with open
source projects,’’ Black Hat Eur., vol. 148, pp. 1–8, Nov. 2015.

[19] F. Tchakounte, M. Nakoe, B. O. Yenke, and K. P. Udagepola, ‘‘Recogniz-
ing illegitimate access points based on static features: A case study in a
campus WiFi network,’’ Int. J. Cyber-Secur. Digit. Forensics, vol. 8, no. 4,
pp. 279–291, 2019.

[20] G. Chatzisofroniou. The Known Beacons Attack (34th Chaos Communi-
cation Congress). Accessed: May 27, 2021. [Online]. Available: https://
census-labs.com/news/2018/02/01/known-beacons-attack-34c3/

[21] J.-S. Oh, M.-W. Park, and T.-M. Chung, ‘‘The multi-level security for the
Android OS,’’ in Proc. Int. Conf. Comput. Sci. Appl. Cham, Switzerland:
Springer, 2014, pp. 743–754.

[22] NortonLifeLock. (2019). Why Hackers Love Public Wi-Fi. Accessed:
Sep. 30, 2010. [Online]. Available: https://us.norton.com/internetsecurity-
wifi-why-hackers-love-public-wifi.html

[23] J. D. Ndibwile, Y. Kadobayashi, and D. Fall, ‘‘UnPhishMe: Phishing
attack detection by deceptive login simulation through an Android mobile
app,’’ in Proc. 12th Asia Joint Conf. Inf. Secur. (AsiaJCIS), Aug. 2017,
pp. 38–47.

[24] D. Jaisinghani, G. Singh, H. Fulara, M. Maity, and V. Naik, ‘‘Elixir: Effi-
cient data transfer inWiFi-based IoT nodes,’’ in Proc. 24th Annu. Int. Conf.
Mobile Comput. Netw., Oct. 2018, pp. 823–825.

[25] M. A. E. I. Mohammad, ‘‘Wireless LAN security (IEEE 802.11b),’’
M.S. thesis, Dept. Comput. Sci. Eng., BRAC Univ., Dhaka, Bangladesh,
2008.

[26] M. Bernaschi, F. Ferreri, and L. Valcamonici, ‘‘Access points vulnerabil-
ities to DoS attacks in 802.11 networks,’’ Wireless Netw., vol. 14, no. 2,
pp. 159–169, Apr. 2008.

[27] J. D. Ndibwile, E. T. Luhanga, D. Fall, D. Miyamoto, G. Blanc, and
Y. Kadobayashi, ‘‘An empirical approach to phishing countermeasures
through smart glasses and validation agents,’’ IEEE Access, vol. 7,
pp. 130758–130771, 2019.

[28] N. Pavković and L. Perkov, ‘‘Social engineering toolkit—A systematic
approach to social engineering,’’ in Proc. 34th Int. Conv. MIPRO, 2011,
pp. 1485–1489.

[29] R. Prasad and V. Rohokale, ‘‘Mobile device cyber security,’’ in Cyber
Security: The Lifeline of Information and Communication Technology.
Cham, Switzerland: Springer, 2020, pp. 217–229.

[30] P. N. Ballai, ‘‘System and method for detection of a rogue wireless access
point in a wireless communication network,’’ Jun. 27, 2006, U.S. Patent
7 068 999.

[31] X. J. Segura and F. El-Moussa, ‘‘Method and system for authenticating a
point of access,’’ Nov. 18, 2014, U.S. Patent 8 893 246.

[32] E. W. Bryksa and A. T. MacMillan, ‘‘Authorizing secured wireless access
at hotspot having open wireless network and secure wireless network,’’
Oct. 13, 2015, U.S. Patent 9 161 219.

[33] M. Al-Zubaidie, Z. Zhang, and J. Zhang, ‘‘RAMHU: A new robust
lightweight scheme for mutual users authentication in healthcare applica-
tions,’’ Secur. Commun. Netw., vol. 2019, pp. 1–26, Mar. 2019.

[34] C. Matte, J. P. Achara, and M. Cunche, ‘‘Device-to-identity linking attack
using targetedWi-Fi geolocation spoofing,’’ in Proc. 8th ACMConf. Secur.
Privacy Wireless Mobile Netw., Jun. 2015, pp. 1–6.

[35] S. D. Deshpande and T. J. Davenport, ‘‘Detection of rogue access point,’’
Dec. 4, 2018, U.S. Patent 10 148 672.

[36] J. Harmon, ‘‘Systems and methods for detecting potentially illegitimate
wireless access points,’’ Jan. 30, 2018, U.S. Patent 9 882 931.

[37] P. Madani and N. Vlajic, ‘‘RSSI-based MAC-layer spoofing detec-
tion: Deep learning approach,’’ J. Cybersecur. Privacy, vol. 1, no. 3,
pp. 453–469, Aug. 2021.

[38] Y. Chen and J. Yang, ‘‘Defending against identity-based attacks in wireless
networks,’’ in Handbook on Securing Cyber-Physical Critical Infrastruc-
ture. Amsterdam, The Netherlands: Elsevier, 2012, pp. 191–222.

[39] H.-Y. Kim, ‘‘System and method for detecting rogue access point and user
device and computer program for the same,’’ Mar. 31, 2020, U.S. Patent
10 609 564.

13622 VOLUME 10, 2022



L. J. Mwinuka et al.: FakeAP Detector: Android-Based Client-Side Application for Detecting Wi-Fi Hotspot Spoofing

[40] F. Breitinger, R. Tully-Doyle, and C. Hassenfeldt, ‘‘A survey on smart-
phone user’s security choices, awareness and education,’’ Comput. Secur.,
vol. 88, Jan. 2020, Art. no. 101647.

[41] Z. Tang, Y. Zhao, L. Yang, S. Qi, D. Fang, X. Chen, X. Gong, and Z. Wang,
‘‘Exploiting wireless received signal strength indicators to detect evil-
twin attacks in smart homes,’’ Mobile Inf. Syst., vol. 2017, Jan. 2017,
Art. no. 1248578.

LUNODZO J. MWINUKA received the bachelor’s
degree in information technology and systems
from Mzumbe University, Morogoro, Tanzania,
in 2017. He is currently pursuing the master’s
degree in wireless and mobile computing with The
NelsonMandela African Institution of Science and
Technology.

He joined Mzumbe University as an Academi-
cian in 2018, where he is currently teaching com-
puting science studies at the Faculty of Science

and Technology. His research interests include cyber-physical security, data
privacy and control, intrusion detection, wireless security, and software
coding security.

ABEL Z. AGGHEY received the degree in com-
puter science and engineering fromSt. JosephUni-
versity, Dar es Salaam, Tanzania, in 2017. He is
currently pursuing the master’s degree in infor-
mation systems and network security with The
NelsonMandela African Institution of Science and
Technology.

In 2018, he joined the Department of Infor-
mation Security and Communication Technology,
Kamili Technologies Ltd., as a Security Special-

ist, where he is currently working. His research interests include artificial
intelligence on cyber security, penetration testing/ethical hacking, intrusion
detection and prevention systems, and data science.

SHUBI F. KAIJAGE (Senior Member, IEEE) cur-
rently works as an Associate Professor and the
Dean of the School of Computational and Commu-
nications Science and Engineering (CoCSE), The
Nelson Mandela African Institution of Science
and Technology (NM-AIST), Arusha, Tanzania.
He has published over 40 scientific articles in inter-
national peer-reviewed journals and more than
50 research papers presented in various interna-
tional conferences. His research interests include

optics and photonics, optical fiber and photonic crystal fibers (PCFs), fiber
optics communication, terahertz wave technology, radio frequency identifi-
cation (RFID), the Internet of Things (IoT), and wireless sensor networks.

He was a recipient of numerous international awards and grants.

JEMA D. NDIBWILE received the Engineering
Doctorate degree in information security from the
Nara Institute of Science and Technology, Japan,
in 2019.

He is an Assistant Professor in cybersecurity
at Carnegie Mellon University Africa. In assist-
ing to address complex cyber security challenges,
his specializations include cybersecurity, military
intelligence, applied cryptography, ethical hack-
ing, the psychology of cybersecurity, digital foren-

sics, and cyber defenses. His current research interests include usable privacy
and security, hacking countermeasures, the impact of artificial and human
intelligence on cybersecurity, and social engineering approaches. He has
extensive experience in ethical hacking/penetration testing, digital forensics,
and project management leveraging tools, such as Kali Linux, Parrot OS, and
Cellebrite.

VOLUME 10, 2022 13623


