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ABSTRACT Traditionally used mutual coupling (MC) reduction techniques such as electromagnetic
bandgap structures, isolators and neutralization lines require extra space between radiators. Besides,
metamaterial-based techniques require multi-layer arrangements. However, the proposed meta-grid lines
overcomes the above demerits by integrating meta-grid lines in the ground plane itself. As a proof-of-
concept, two-port CPW-fed monopole antenna array (TPCFMAA) and two-port DRA array (TPDRAA)
are designed, fabricated and tested. It has been observed that the TPCFMAA has mutual coupling below
-20 dB for frequency between 2.6 to 4.4 GHz. The envelope correlation coefficient reduces from 0.072 to
0.026 by integrating meta-grid lines in the ground plane of the TPCFMAA. At 3.5 GHz, the inter-element
distance between the antennas is noted to be 0.0151y, (A, = highest operating wavelength). The TPDRAA’s
operating frequency can be tuned by changing the parameters of the annular ring slot in the excitation patch.
The bandwidth of TPDRAA can be further increased by merging the two resonances of the two annular
ring slots in the excitation patch. For TPDRAA, the measured -10 dB impedance bandwidth is from 5.65 to
6.55 GHz. The mutual coupling between the antenna elements is seen to be below -16 dB for an inter-element
spacing of 4.8 mm, which is 0.090Ay,. The measured gain of TPDRAA within the bandwidth is from 4.17 dBi
to 5.2 dBi. The TPCFMAA can be used in 3.5 GHz Internet of Vehicles (IoV) multi-user MIMO service,
whereas the TPDRAA can be used for satellite communication in the 5.925 to 6.425 GHz frequency band,
WiMAX in the 5.7 to 5.85 GHz band, ISM in the 5.725 to 5.85 GHz band, and WLAN in the 5.8 GHz band.

INDEX TERMS MIMO antenna, CPW-fed printed monopole antenna array, cylindrical dielectric resonator
antenna (CDRA) array, single negative (SNG) meta-grid lines.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) communication
system fulfills the demand for higher data rate and better
quality of service in modern communication systems.
MIMO system’s channel capacity increases linearly with
the number of the antenna elements for rich Rayleigh scat-
tering environments [1], [2]. Compact MIMO communi-
cation systems generally deploy closely spaced multiple
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antennas at the transmitter and receiver sides. However,
this results in an undesired mutual coupling (MC) effect,
which is inversely proportional to the distance between the
antenna array elements [3]. Therefore, designing a com-
pact MIMO antenna with small inter-element spacing and
low mutual coupling between antenna array elements is
challenging.

In the literature, several methods have been proposed
to reduce the MC between planar and dielectric resonator
antenna (DRA) elements. For MC reduction in planar anten-
nas, electromagnetic band gap (EBG) [4] structures in [5]-[9]
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and isolators in [10] and [11] are used. Neutralization
Lines (NLs) are used for isolation enhancement in [12]
and [13] for planar monopole antennas. However, EBG struc-
tures, isolators and NLs require extra space between the
antenna elements and therefore increase the inter-element
spacing between them. Mushroom type EBG unit cells used
for MC reduction in [5], are spread on 13.5 mm x 48.5 mm
space. EBG surface composed of short-circuited microstrips
is used in [6] for MC reduction and occupies two times more
area than that of the single radiating patch. Uniplanar compact
EBG structure of 13.2 mm x 72.6 mm size is used in [7] for
MC reduction in another layer that also increases the vertical
profile of the two-port antenna by 1.27 mm. In [8], EBG unit
cells occupy 33.3 % of the total antenna area. EBG based
fractal isolator is used for MC reduction in [9], which takes
a size of 16 mm x 23 mm while the single radiating patch
occupies a space of 23 mm x 23 mm. Similarly, NLs and
isolators also occupy area which increase the edge-to-edge
spacing between antenna elements. A ring-shaped defected
ground structure is demonstrated to suppress the MC between
two cylindrical DRAs (CDRAs) in [14]. In [15], mushroom-
shaped DRAs are arranged orthogonally to reduce the MC
between them. Triple-port, two-element CDRA with orthog-
onal modes for MIMO applications is presented in [16]. Two-
port low MC antenna array comprising two A-shaped DRAs
are excited by means of conformal strip for wideband applica-
tions in [17]. Three decoupled modes in a single rectangular
DRA are excited using three separate ports to achieve low
inter-port coupling in [18]. Metal strips are printed on the
dielectric block (DB) in [19] and vias are inserted in the
DBs in [20] for enhancing the decoupling. Exotic proper-
ties of metamaterials have been exploited for MC reduction
[21]-[25]. Waveguide metamaterial (MTM) is placed in the
same layer as that of patches for reduction of MC in [21]
but this decoupling structure uses extra space between the
antennas. Double layer MTM mushroom wall in [22] and
polarization-rotator wall in [23] are used for MC reduction in
planar antennas and DRASs respectively though these meth-
ods increase the height and therefore vertical profile of the
antenna array. Capacitively loaded loop based MTM super-
strate and metasurface (MS)-based decoupling techniques
are used for isolation enhancement in [24] and [25]. The
decoupling in [26] is realized by adding a pure DB above
the coupled array, and a ceramic superstrate in [27]. All these
four designs have decoupling structures between or above the
antenna elements, which significantly increase the antenna
footprint. It is noted that the array antenna-decoupling sur-
faces (ADSs) or superstrates enable the partially reflected
signal to interact out of phase with the coupled signal and
hence nullify the effect of the latter thus ensuring better
isolation. Intuitively, the height of the ADS above the antenna
determines the phase of the partially reflected wave and the
size of the metal reflection patches on the ADS controls
the intensity of the partial reflected wave [28]. Therefore,
ADSs or superstrates [29] are placed at some height above the
antenna array that increase the overall height of the antenna.
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In this paper, a novel single negative (SNG: u and € are of
opposite signs) meta-grid line (MGL) structure is presented,
which is used for the following two low MC MIMO antenna
configurations:

1. Two-port coplanar waveguide (CPW)-fed monopole
antenna array (TPCFMAA)

2. Two-port DRA array (TPDRAA)

The novel aspect presented in this article is the use of
meta-grid lines (MGLs) integrated with the ground plane
for suppression of the surface wave linkage between the
antenna elements and hence achieve a satisfactory isolation
level. Unlike EBGs, isolators or NLs for MC reduction, this
approach obviates the need for any extra space between
antennas to accommodate the decoupling unit. Also, inte-
gration of MGLs in the ground plane does not require any
additional layers unlike ADSs or superstrates that increase the
height of the antenna. Therefore, integration of MGLs in the
ground plane helps to realize compact design and TPCFMAA
has a minimal (0.015A;) edge-to-edge spacing between the
antenna elements.

It is noted that for TPCFMAA, the unit cell periodicity
(p) of MGL structure is 6.35 mm, guided wavelength (A,) is
57.7 mm whereas, for TPDRAA, p is 6 mm, A, is 34.85 mm
at 5.8 GHz. Hence, p is much smaller than the guided wave-
length A, of the propagating wave (i.e. p < Ag) [30], [31],
so that fields are averaged across the unit cells and see the
structure as a homogenous medium at a macroscopic scale.
Also, from the extracted permittivity and permeability curves
of MGLs for TPCFMAA and TPDRAA, it is noted that the
MGLs shows wideband SNG behaviour. Therefore, although
the presented structure bears resemblance to a DGS (both
being etched copper patterns on the ground plane), due to
the characteristic properties discussed above, the former is
significantly different from a DGS that uses slot (of length
comparable to the guided wavelength [32], [33] or half of the
guided wavelength [34]).

It may also be noted that most of the MC reduction tech-
niques employing EBG and superstrates do not generally
show portability or interoperability among different types
of radiators (patch antenna<>DRA). This means that EBG
and superstrates for MC reduction in patch antennas are
generally very difficult to be employable in DRAs without
major modifications in their structures and vice-versa. How-
ever, this is not the case with presented technique because
in TPDRAA, the dielectric blocks are excited by means of
microstrip patch feed which are printed over an MGL (with
wideband SNG characteristics) backed substrate. Therefore,
MGLs effectively deal with the MC in both printed and
dielectric resonator antennas. One may also note that an
important feature of this decoupling structure is that by
varying its geometric parameter, it is possible to make the
TPCFMAA resonate over a wide range of frequencies while
ensuring minimal offset between the return loss and mutual
coupling i.e. the antenna resonating frequency can be posi-
tioned at any value lying from 2.6 to 4.4 GHz keeping the MC
performance undisturbed. In the TPDRAA design as well, the
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For TPCFMAA:

R =5.0 mm P=535mm
h=1.57 mm W =0.5 mm
For TPDRAA:

R=5.0 mm
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FIGURE 1. Meta-grid lines in the ground plane (a) unit cell (b) simulation
set-up for effective material parameter extraction.

resonating frequency can be made to lie at any value between
5.78 and 6.55 GHz by changing the dimensions of annular
ring slots in the patch which excites the DRA. Even in the
TPDRAA, the MC performance is preserved with varying
antenna resonating frequency.

Section II presents the unit cell analysis of the pro-
posed MGL structure. Section III contains the TPCFMAA,
Section IV discusses the TPDRAA. Conclusions are drawn
in Section V.

II. UNIT CELL ANALYSIS

An isolated unit cell (single unit cell) of MGLs integrated
with the ground plane is shown in Fig. 1(a). The MGLs are
printed on the back of Rogers RT-Duroid 5870 with €, =
2.33 and tan(§) = 0.0012. The simulation set-up illustrating
wave-guide ports and boundary conditions for extracting the
real parts of the complex permeability and permittivity of
such a unit cell is shown in Fig. 1(b). Permeability and
permittivity curves are plotted in Fig. 2(a) and Fig. 2(b)
using parameter retrieval option in CST Microwave Studio
Suite 2018.

From Fig. 2(a) and Fig. 2(b), it can be seen that the unit cell
shows the behavior of SNG MTM (e-negative). Refractive
index (n = ,/ue€) becomes imaginary if u and € are of
opposite sign. Electromagnetic waves can not propagate in
such mediums, and therefore can be used for the isolation
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FIGURE 2. Extracted effective permittivity and permeability of the unit
cell for (a) TPCFMAA and (b) TPDRAA.

L1

W
- Copper (top and bottom layers)
FIGURE 3. Geometry of 2-port CPW-fed monopole antenna array.

Substrate

enhancement in the multi-port MIMO antennas by suppress-
ing the propagation of the surface waves from one antenna
to another. Gray shaded regions in Fig. 2(a) and Fig. 2(b)
indicate the operating frequency ranges of TPCFMAA and
TPDRAA respectively.

Ill. 2-PORT CPW-FED PLANAR MONOPOLE ANTENNA
ARRAY USING SNG META-GRID LINES
In this section, a TPCFMAA employing the SNG MGLs
integrated with the ground plane for MC reduction shown
in Fig. 3 is discussed. The values of all the geometrical
dimensions (in mm) corresponding to Fig. 3 are given below:
L1 =38.75,L2=25,P1 =535 Rl =5,G=5,a=4.38,
b=432,w=1,Lgl =45,L3=35W1=16,W2=0.7,
r=a/b.

The top layer consists of two CPW-fed elliptical printed
monopole patches which are used as radiators whereas the
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FIGURE 4. Fabricated prototype of 2-port CPW-fed monopole antenna
array (a) top view and (b) bottom view.
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FIGURE 5. S-parameters with and without MGLs integration in ground
plane.

bottom layer consists of a MGL structure (5 x 4 unit cells).
The photographs of the top view and the bottom view of the
fabricated prototype of TPCFMAA are shown in Fig. 4(a)
and Fig. 4(b), respectively. All simulation results are gener-
ated using High-frequency structure simulator (HFSS) 14.0.
To understand the contribution of the proposed MGL struc-
ture in MC reduction, the S-parameters without and with this
structure are plotted in Fig. 5. It is apparent from these plots
that integrating the MGLs in the ground plane at 3.5 GHz
reduces the MC by 20 dB. MGLs reduces MC at the expense
of reduction in antenna bandwidth. Two important design
parameters (M and G as in Fig. 3) are found to be vital in
positioning the antenna resonating frequency. In case of G as
shown in Fig. 6, increasing or decreasing the values of G shift
the frequency upward or downward respectively. However,
in case of M as shown in Fig. 7, itis reversed, i.e. increasing or
decreasing the values of M shift the frequency downward or
upward respectively. In both the cases, the MC performance
remains intact. Retaining the MC performance with varied
resonating frequencies is one of the novel aspects of proposed
two-port antenna. For M = 6.85 mm and G = 5 mm, the
antenna can be designed for 3.5 GHz WiMAX application.
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FIGURE 8. S-parameters for the various combinations of the M, G and r.

At 3.5 GHz design frequency, the electrical size of the antenna
is noted to be 0.45 g x 0.30A¢.

Fig. 8 shows the S-parameter variations corresponding
to the various combinations of the M, G and r named as
Combination A (M = 12.85, G = 7, r = 0.9), Combination
BM=11.85,G=7,r=0.9), Combination C (M = 9.85,
G =5,r=0.9), Combination DM =5.85,G=5,r=0.9),
Combination E(M = 3.85, G = 5, r = 0.3) and Combination
FM =285, G =5, r=0.3). It is seen that by selecting
the proper combination of these parameters, optimum mutual
coupling performance can be obtained and the antenna can
be designed to resonate at any frequency from 2.6 GHz to
4.4 GHz. For example, using Combination B (M = 11.85,
G =7,r=0.9)isolation close to —45 dB can be achieved. For
Combination A, the MC is below —17.27 dB while for rest of
the combinations, the MC is noted to be below —20 dB.

Table 1 shows that the proposed TPCFMAA has the
minimum inter-element spacing (1) except that in [25]
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TABLE 1. Comparison of the proposed TPCFMAA with other EBG, MTM, MS and DB based two-port antenna designs.

Ref. Bandwidth (GHz) Size (Af’l) Multi-Layer | Excess height Edge to edge spacing | Mutual Coupling
5.75 center frequency,

[7] bandwidth not mentioned 1.50x1.50x0.049 | Yes 1.27 mm 0.5\, <-20dB

[8] 4.85-5.08 0.87x0.43x0.024 | No 0.00 mm 0.13\p, <-23dB
8.7-11.7,11.9-14.6,

[9] 15.6-17.1.22-26.29-34.2 1.07x2.03x0.046 | No 0.00 mm 0.58\p, <-28dB

[24] 3.3t03.34 1.6x0.9x0.16 Yes 14.3 mm 0.12)\p, <-40dB

[25] 2.5-2.77,3.4-3.6 0.83x1.25x0.14 Yes 11 mm 0.008\p, <-25dB

[26] 4.6-5.29 1.53x0.92x0.38 Yes 16.5 mm 0.092\;, <-20dB

[27] 3.3-3.7 1.1x1.1x0.385 Yes 35 mm 0.264\, <-25dB

TPCFMAA | 3.46-3.56 0.28x0.45x0.018 | No No extra height | 0.015\p, <-20dB
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FIGURE 9. Radiation patterns for (a) ¢ = 0° plane and (b) ¢ = 90° plane.
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FIGURE 10. Measured and simulated gain, ECC of the TPCFMAA.

but [25] occupies 64 times more volume (in Ai) than
TPCFMAA. The TPCFMAA has broader percentage band-
width than [24], comparable percentage bandwidth with [7]
but lesser percentage bandwidth than [8], [9], [25], [26]
and [27]. However, excellent bandwidth improvements will
be shown for TPDRAA employing meta-grid lines in the
ground plane as discussed in section IV. The TPCFMAA
is a very low profile antenna which occupies 48.6, 3.95,
44, 101.6, 64, 236 and 205 times lower volume than that
of [7]-[9], [24]-[27], respectively. In fact, elements of this
highly compact MIMO antenna satisfy criterion (ka < 1)
for electrically small antennas [35]. Furthermore, the TPCF-
MAA design is simple, compact and especially, does not have
a multi-layer arrangement contrary to the antennas of [7],
[24]-[27] that add excess heights to these antenna profiles.
Normalized radiation patterns at 3.5 GHz (Combination D)
for ¢ = 0° plane and ¢ = 90° plane are plotted in Fig. 9. The
peak gain is noted to be lying from 1.53 dBi to 1.68 dBi within
the antenna bandwidth from 3.46 GHz to 3.56 GHz (Fig. 10).
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It can be observed that the measured gain slightly deviates
from the simulated gain which may be due to fabrication
tolerances.

The ECC is a measure of isolation and correlation between
communication channels and is an important performance
metric to be considered in MIMO communication. The ECC
between the antenna ports is calculated using equation (1)
from [36] and plotted in Fig. 10.

ir [Fi0.9)%F;6.9)] dszf
(ffzm ’ﬁi (9,¢>)‘2dQ> (ffém ‘ﬁ}‘(@,qﬁ)‘de)

Here, F i (0, ¢) is simulated 3-D radiation field corresponding
to the i antenna element and € is the solid angle.

It is obvious from Fig. 10 that the ECC is significantly
reduced from 0.072 to 0.026 over the entire operation band
when MGLs are integrated in the ground plane. The ECC for
the TPCFMAA is found to be below 0.026 within the opera-
tional bandwidth. The antenna correlation coefficient (ACC)
is approximately equal to the square root of the ECC [37].
Hence, the ACC matrix of this two-element MIMO antenna

18 0 1161 0'1161 . The channel capacity loss (CCL) [38] for

point-to-point N x N MIMO system is
CCL = —loga(det(Rgx)) — loga(det(Rry)), @)

where Rpgx and Rpy are the ACC matrix of the MIMO
antenna deployed at the transmitter and the receiver respec-
tively. For a 2 x 2 MIMO system deploying two-element
MIMO antenna of Fig. 3 at the transmitter as well as at the
receiver, the CCL is calculated to be just 0.0758 b/s/Hz. Such
a low CCL is a desirable characteristic of MIMO antenna.
Since the ACC matrix for this MIMO antenna is full rank
(rank = 2), 2 x 2 MIMO system deploying the TPCFMAA
will achieve maximum diversity gain of 4.

Considering the practical deployment of this antenna and
to understand the effect of the large ground plane on antenna
performance, simulation with an extended ground plane
(50 mm in the +Y axis, +X axis and -X axis direction as
per Fig. 3) in the plane containing the bottom layer of the
antenna is carried out. It is noted that the cross-polarization
discrimination (XPD) performance and antenna gain both
improve with the usage of extended ground plane. Another
simulation is carried out with a large ground plane (50 mm

pij = ey
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Substrate

Dielectric

FIGURE 11. Antenna geometry: 2-port DRA array.

in the +Y axis, +X axis and -X axis direction as per Fig. 3),
which is placed 10 mm below the plane containing the bottom
layer of the TPCFMAA. It is seen that the gain improves
from 1.65 dBi to 2.91 dBi. However, the XPD does not
improve. In both the cases, impedance matching and isolation
performances remain almost unaffected.

The TPCFMAA can be mounted over a vehicle roof where
it can utilize the large metallic roof of the vehicle as extended
large ground plane or as a reflector below the antenna. There-
fore, this antenna can be used for the 3.5 GHz Internet of
Vehicles (IoV) multi-user MIMO service.

IV. 2-PORT DRA ARRAY USING SNG META-GRID LINES
This section contains the TPDRAA as shown in Fig. 11.
It uses two CDRA blocks of €, = 25 as radiating elements.
These dielectric blocks are excited by means of two con-
centric annular rings in the circular patches placed above
the substrate (Rogers RT-Duroid 5870 with ¢, = 2.33 and
tan(6) = 0.0012). These circular patches are connected to the
microstrip line through which signal is fed to the antenna ele-
ments. The ground plane (in maroon) has an MGL structure
(7 x 4 unit cells) integrated between two uniform rectangular
sections of dimensions Ly x W at its two ends. The values
of all the geometrical dimensions (in mm) corresponding to
Fig. 11 are: D =144, H=38,L =45 W =25,L, = 7.2,
Wi=24,1f=77,R; =44,R; =104,P=337,R=35,
di=04,dy =0.6,s=1,h=1.57.

Using equations (3) and (4) from [39], resonating fre-
quency of the circular patch of radius a = 5.2 mm is calculated
to be 9.8 GHz which is much higher than the frequency
range of the proposed antenna. Therefore, it is concluded that
the non-radiating patches with annular ring slots are used
for exciting the HEM 125 mode in the cylindrical dielectric
blocks.

F o 8791 x 10° 3
fr x e,
F
a= )
\/ 1+ 2t (log,(ZE + 1.7726))
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FIGURE 13. S-parameters for different values of radius for the OARS.

Here, h and a are in cm and f, is the resonant frequency of
the circular patch.

Without annular ring slots, the bandwidth of the antenna is
noted to be very less (refer Fig. 12). This is mainly because of
high dielectric constant of CDRA blocks i.e. 25. Therefore,
attempts are made to increase the bandwidth of the antenna
by employing the annular ring slots in the circular patch to
excite the CDRA blocks.

It is clearly shown in [40] that increasing the radius of
the feeding slot decreases the resonating frequency and vice-
versa. The same is noted in the S-parameters of the antenna
with only the outer annular ring slot (OARS) and only the
inner annular ring slot (IARS) by varying the radius of the
slots, which are plotted in Fig. 13 and Fig. 14 respectively.
It has been observed that by varying the radius of OARS and
IARS, the resonance can be adjusted in the lower frequency
region and higher frequency region respectively. By choosing
the radius of the OARS as 3.8 mm and IARS as 2.2 mm, the
bandwidth of the antenna can be significantly increased when
compared to the excitation of the DRA blocks without the
annular slots in the circular patch. It can be inferred from
Fig. 12 that the lower resonance occurring at 5.78 GHz is
because of the OARS and the higher resonance at 6.5 GHz
is because of the IARS. When both the IARS and the OARS
are used together, these two resonances merge and lead to
a wider bandwidth from 5.68 GHz to 6.7 GHz as shown
in Fig. 12.

The dimensions of the circular dielectric block to excite
the HEM 155 at the 5.8 GHz, is calculated using equa-
tion (5) from [41] and turn out to be H = 3.8 mm
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FIGURE 15. Electric field distribution at 5.78 GHz for (a) top and (b) side
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FIGURE 16. Fabricated antenna prototype (top and bottom views).

and D = 14.4 mm.

_ 30koa
f(GHz) = m )

where,

koa
_3.72+0.4464x 4 0.2232x? 4 0.0521x> — 2.65exp

Je

a= %, X = % and N = 1.25x(1 4+ 4.7x), f is the resonating
frequency and €, is the relative permittivity of DRA.

From Fig. 13, it is observed that the mutual coupling curves
have valleys just below the resonance for the OARS and same
is observed for the IARS in Fig. 14. This is mainly because
of the integration of the MGLs in the ground plane.

Electric field patterns at 5.78 GHz are shown in Fig. 15 and
confirms the excitation of HEM 125 mode [42].

The simulated and measured S-parameters versus fre-
quency of the fabricated prototype (as depicted in Fig. 16)
are plotted in Fig. 17. The measured impedance bandwidth
of the antenna is observed to lie from 5.65 GHz to 6.55 GHz,
whereas the simulated bandwidth is from 5.68 GHz to
6.7 GHz. The slight difference in the measured and simulated
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bandwidth of this antenna is because of various tolerances
such as imperfections in the cutting of DRA blocks and PCB
fabrication. The measured isolation between the antenna ele-
ments is found to be more than 16 dB for the entire bandwidth
and the maximum isolation is noted to be 38.6 dB.

The measured and simulated co-polar and cross-polar radi-
ation patterns for ¢ = 0° and ¢ = 90° planes at 5.8 GHz
are plotted in Fig. 18. During pattern measurements, port P;
is excited whereas port P; is terminated with a matched load.
The measured cross-polarization discrimination (XPD) in the
broadside direction is greater than 11.5 dB in both planes. The
difference in the cross polarized results between simulation
and experiment could be due to the detector sensitivity. The
measured and the simulated gain with respect to frequency
are plotted in Fig. 19. Peak measured gain is noted to be from
4.17 dBi to 5.2 dBi, while the simulated gain is observed to
lie between 3.97 dBi and 5.4 dBi.
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TABLE 2. Comparison of the proposed work with the state of the art.

References | Bandwidth (GHz) | Antenna size (A;‘,) No. of ports | Inter-element spacing (Ap) | Mutual Coupling
[16] 5.15-6 1.03x0.68x0.148 | 3 0.291\;, <-20dB
[18] 9.04-9.92 1.7x1.7x0.424 3 Not applicable <-18dB
[19] 27.25-28.35 1.8x1.8x0.25 2 0.117\p <-24dB
[20] 25.2-27.1 1.8%x0.92x0.13 2 0.11)p <-30dB
This work 5.65-6.55 0.84x0.46x0.091 | 2 0.091\; <-16dB
The ECC as a function of the frequency is plotted in Fig. 19 REFERENCES

and its value is noted to be < 0.046 in the entire operating

frequency range of the antenna array. Hence, the ACC matrix

. . 1 0214
of this two-element MIMO antenna is <0.2 14 1 . For

a 2 x 2 MIMO system deploying two-element MIMO
antenna of Fig. 11, the CCL is calculated to be 0.1727 b/s/Hz,
which is low and desirable. The ACC matrix of this MIMO
antenna is full rank (rank = 2) and hence 2 x 2 MIMO system
employing the TPDRAA will achieve maximum diversity
gain of 4.

The comparison of the proposed work (TPDRAA) with
other contemporary works is listed in Table 2. It has been
observed that MIMO antennas in [16], [18]-[20] occupy 3,
34.8, 23 and 6.1 times more volumes than the TPDRAA,
respectively. Moreover, the TPDRAA has the largest per-
centage bandwidth except [16] and the lowest inter-element
spacing (in terms of Ap).

V. CONCLUSION

In this paper, meta-grid lines are integrated in the ground
plane for effectively reducing the MC in a TPCFMAA which
is further extended for MC reduction in case of a TPDRAA
as well. The proposed MC reduction approach does not add
any extra foot print to the TPCFMAA and the TPDRAA
profile. The TPCFMAA and the TPDRAA are fabricated and
tested as proofs-of-concept. For the TPCFMAA, at 3.5 GHz
center frequency (bandwidth from 3.46 GHz to 3.56 GHz),
the MC is -28 dB and the ECC is below 0.026. Therefore, the
TPCFMAA is a suitable candidate for 2-port MIMO WiMAX
application. The MC in the TPDRAA, is noted to be less than
-16 dB with the ECC less than 0.046, therefore satisfying the
criteria of low correlation, making this compact TPDRAA a
suitable candidate for MIMO application in the operating fre-
quency range from 5.65 GHz to 6.55 GHz that covers 5.925 to
6.425 GHz frequency band for satellite communication, 5.7 to
5.85 GHz for WiMAX, 5.725 to 5.85 GHz for ISM band and
5.8 GHz for WLAN application.
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