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ABSTRACT In this study, a framework for Android malware detection based on permissions is presented.
This framework uses multiple linear regression methods. Application permissions, which are one of the
most critical building blocks in the security of the Android operating system, are extracted through static
analysis, and security analyzes of applications are carried out with machine learning techniques. Based on
the multiple linear regression techniques, two classifiers are proposed for permission-based Android malware
detection. These classifiers are compared on four different datasets with basic machine learning techniques
such as support vector machine, k-nearest neighbor, Naive Bayes, and decision trees. In addition, using the
bagging method, which is one of the ensemble learning, different classifiers are created, and the classification
performance is increased. As a result, remarkable performances are obtained with classification algorithms
based on linear regression models without the need for very complex classification algorithms.

INDEX TERMS Ensemble learning, linear regression, machine learning, malware analysis, permission-

based android malware detection, static analysis.

I. INTRODUCTION

When the first mobile phones were considered, generally
speaking or short message transactions were carried out with
mobile phones in daily life. However, with mobile phones
used today, remarkable transactions such as banking transac-
tions, social media use, and personal data storage take place.
Because of these essential processes, mobile devices are the
main target of malware developers.

Android is an open-source Linux-based mobile operat-
ing system. Since it is open-source and free, mobile device
manufacturers prefer this operating system on their devices.
Therefore, the majority of the market consists of Android
devices. According to Statista’s data, 30% of the market in
the fourth quarter of 2010 consisted of the Android operating
system. In the second quarter of 2018, 88% of the market was
Android operating systems [1]. In addition to Android being
an open-source operating system, it is very flexible for users
that applications are provided to devices such as other stores
or third-party applications apart from the official application
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stores. For this reason, Android is frequently preferred by
many people around the world.

Although applications from unofficial application reposi-
tories or third-party application developers are very advanta-
geous for users, it should not be ignored that some of these
applications are malware. Apps in official app repositories are
carefully analyzed and published in app repositories. How-
ever, malware is common even in official application repos-
itories [2]. In the research conducted by Wang et al., more
than 6 million applications downloaded from 17 application
stores are evaluated [3]. While 16 of these stores are widely
used in China, the first place is Google Play. In general,
it is revealed that Google Play is more reliable than other
application stores. However, it is possible to see malware in
almost all stores [3].

While 1 million new malware were detected in the first six
months of 2015, 1.85 million new malware were detected in
the first six months of 2019 [4]. Despite all the precautions,
there is aremarkable increase in the number of malicious soft-
ware. For this reason, both researchers and companies work-
ing on computer security offer new approaches for detecting
mobile malware. In this study, a machine learning-based
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Android malware detection system is developed, in which
application permissions, which have an important place in
Android security, are used as attributes. After an application
is installed on the device, many permissions are requested
from the user. While the application is running in the back-
ground, the application can show its malicious feature in line
with the permissions given by the user. Therefore, users
should pay attention to the requested permissions. In this
study, the permissions requested by the applications are
evaluated with machine learning models, and it is decided
whether the application is malware or not.

A. RELATED WORKS

In recent years, many studies have been conducted to detect
Android malware using machine learning or deep learning
approaches. Detection methods differ according to the way in
which the features used in machine learning or deep learning
approaches are obtained. These are generally static, dynamic,
and hybrid analysis techniques [5]. In dynamic analysis,
features for machine learning approaches are obtained by
running applications on a real or virtual device. In static anal-
ysis, features are extracted for machine learning approaches
without running applications. Since applications are run in
dynamic analysis, it is challenging to create the necessary
infrastructure. However, they are successful against zero-day
attacks. In static analysis, the process is quite fast since appli-
cations are not run. In addition to static and dynamic analysis
techniques, there is also a hybrid analysis approach. In this
approach, features obtained from static and dynamic methods
are used together. Some Android malware detection systems
using static, dynamic, and hybrid analysis approaches are as
follows:

In [6], it was classified 2000 malicious applications con-
sisting of 18 families according to their families. Applications
were processed through the Cuckoo Sandbox, extracting the
most distinctive behavioral features that distinguish mali-
cious families from each other. The obtained features were
given to a system called online machine learning, and classi-
fication of malware according to their families is carried out.
In the experiments, all of the applications in 7 classes were
classified correctly. The class with the lowest performance
rate was determined as the android.trojan.smskey family.

In [7], a malware detection system based on dynamic
analysis was proposed. In total, more than 12000 applica-
tions were evaluated. While 4289 of these applications were
malicious, 8371 of them were benign. Malicious applica-
tions were obtained from the Drebin dataset, while benign
applications were downloaded from Google Play. System
calls were extracted dynamically and used as attributes for
machine learning algorithms. The generation of system calls
was handled by the sandbox. What applications do on the
operating system was recorded in log files. Thus, the behav-
iors of each application were formed chronologically. While
accessing system calls, malware was not allowed to affect
these calls. In this way, the situation of changing the behavior
of malicious software was also eliminated. Thanks to this
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feature, the proposed system was resistant to simple obfus-
cation techniques, which are often seen in malware. Feature
vectors were created by processing the obtained log files.
In the last step, these feature vectors were evaluated with
machine learning approaches, and classification of benign
and malicious software was carried out. In the classification
phase, machine learning techniques such as support vector
machines (SVM), random forest (RF), LASSO, and ridge
regularization were used. The best performance was obtained
from the RF algorithm.

In [8], the authors offered two different approaches based
on static analysis by making use of machine learning
approaches. In the first approach, application permissions
were extracted with static analysis. In the second approach,
source code analysis was done with the bag-of-words model.
It was stated that the computational cost of the first approach
is relatively low compared to the second approach. A large
number of experiments were carried out using both clustering
and classification algorithms. C4.5 decision tree, RF, Bayes
networks, sequential minimal optimization (SMO), repeated
incremental pruning (JRip), logistic regression were some
of the algorithms used. In addition, models based on bag-
ging techniques were developed by combining classifica-
tion algorithms. Machine learning algorithms were run on
the MODroid dataset, which consists of 200 malicious and
200 benign Android applications. The highest performance
obtained in the permission-based approach was obtained with
the SMO algorithm. This performance was 0.879 based on
the f-measure metric. By trying different bagging techniques,
this success was increased up to 0.894. In the source code
analysis, the highest performance was achieved with the
SMO algorithm. This performance was 0.951 according to
the f-measure metric. By trying different bagging techniques,
this success was increased up to 0.9560.

In [9], the authors provided the detection of Android mal-
ware with a dynamic analysis technique. In the dynamic
analysis phase, the behavior of the applications was ana-
lyzed by considering the system calls. The proposed architec-
ture was called ANDROIDETECT. ANDROIDETECT was a
machine learning-based Android malware detection method
that enables instant attack detection. The classification result
of the proposed detection method has a low false-positive
rate, thanks to the creation of effective feature vectors.
Feature vectors were created by extracting the system call
function. Classification algorithms then evaluated these fea-
ture vectors. The study used two different classification algo-
rithms, naive Bayes (NB) and J48 decision trees. Experiments
were carried out with 100 benign and 100 malicious applica-
tions. The result from the NB classifier is 0.825 according to
the f-measure metric. In contrast, the result obtained from the
J48 classifier is 0.86 according to the f-measure metric.

In [10], 1233 Android malware were classified according
to types. In total, 28 different types of Android malware were
classified according to their types. Application permissions
are given as input to machine learning algorithms. Some per-
missions were under the very dangerous group, while some
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permissions were under the relatively less dangerous group.
To digitize these differences and improve the performance
of classification algorithms, the authors proposed a tech-
nique they call an Extremely Randomized Tree. The proposed
method also satisfied the feature selection task. Six different
classification algorithms were used in the study. These are
SVM, ID3 decision trees, RF, neural networks, nearest neigh-
bor, and bagging algorithms. The best classification result
is obtained with the RF algorithm. The classification result
obtained with the RF is 95.97%.

In [11], a permission-based Android malware detection
system based on machine learning algorithms was presented.
With the method called significant permission identification
(SIGPID), instead of using all permissions, it was provided
to choose the permissions that will facilitate the separation
of malicious software from malicious software. With the
proposed method, 135 permissions were reduced to 22 per-
missions. When classification was made with 22 permissions,
more successful and faster results are obtained. In addition,
it was emphasized that over 90% classification success was
achieved with the SVM in the study.

In [12], 31185 benign and 15336 malicious Android appli-
cations were used. Permissions and API calls were extracted
as attributes in the malware detection system called MalPat.
RF algorithm was used in the classification phase of the study.
When the experimental results were examined, a classifica-
tion success rate of 98.24% was obtained according to the
f-measure.

In [13], an Android malware detection system based on
deep neural networks (DNN) was proposed. Application per-
missions extracted using the static analysis technique were
used as attributes. In the study, extensive experiments com-
pared deep neural networks with many traditional machine
learning approaches. In the experiments, 7622 applications
are evaluated. While 6661 of these applications were mali-
cious applications, 961 of them were benign applications.
80% of the dataset was split for training and 20% for test-
ing. The highest performance was achieved with deep neural
networks. This result was reported as 0.9820 according to
the f-measure metric. It was observed that deep neural net-
works give better results than traditional machine learning
approaches.

B. MOTIVATION

In [14], the authors reported how linear regression works in
permission-based Android malware detection. In the study,
the error rates of the prediction values produced by the
regression techniques were compared without performing
the classification process. The linear regression technique
comes into prominence with less error rate when compared
to methods that give good results, such as multilayer percep-
tron, support vector machine-based regression, and additive
regression. This study’s main motivation is to investigate how
a classifier based on linear regression will yield results in a
permission-based malware detection system since it produces
fewer errors than well-known techniques.
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There are many studies that convert and use linear regres-
sion techniques to classifiers. In [15], iris, statlog (heart), and
balance scale datasets in the UCI Machine Learning Reposi-
tory are classified with the classifier obtained from the linear
regression technique. Compared to the linear regression tech-
nique KNN, higher performances are obtained [15]. In [16],
a hybrid classification algorithm is proposed using artificial
neural networks and multiple linear regression. The proposed
technique is tested on datasets with different problems such as
the Fisher iris dataset, Forensic glass dataset, Japanese credit
dataset, and Pima Indian Diabetes dataset. Linear regression
is also frequently used in face recognition or classification
problems [17]-[20]. In general, it is seen that the linear
regression model is used in many pattern recognition and
machine learning problems. However, when the important
survey studies in the context of Android malware detection
based on machine learning are examined [21]-[23], no mal-
ware detection system based on a linear regression model is
found. This study uses the linear regression model to detect
malware detection with two different rule-based classifica-
tion algorithms. The proposed classification models have two
important advantages. First, the proposed models are more
successful than the KNN and NB algorithms. The second is
that a simple decision-maker can be obtained by only needing
the linear regression equation. In this way, a classifier that can
work directly on mobile devices can be used. The resource
consumption of mobile devices and battery consumption are
directly related. In other words, as resource consumption
increases, mobile devices consume more energy. Therefore,
the resource consumption of mobile devices will not be
adversely affected as the proposed classifier is quite simple.
As a result, the proposed detection system will work without
straining the mobile device.

C. CONTRIBUTION
The main contributions of the study can be summarized as
follows:

o This study is the first comprehensive in Android mal-
ware detection that uses a linear regression model to
detect Android malicious applications to the best of our
knowledge.

o A general framework for Android malware detection
based on permissions is proposed.

« Considering the equations produced as a result of linear
regression, two different rule-based classifiers are cre-
ated. The malware detection system obtained from the
first rule is LinRegDroid1, and the malware detection
system obtained from the second rule is LinRegDroid?2.

o Obtained classification algorithms are compared with
KNN, NB, SVM, decision trees (DT), and bagging
of decision trees (Bagging-DT) using 10-fold cross-
validation technique. The proposed classifiers are pretty
successful compared to KNN and NB techniques. When
the proposed approaches are compared with classifica-
tion algorithms that give good results, such as SVM and
decision trees, the results are comparable.
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o The most successful classification algorithms are used
together with the bagging technique based on majority
voting to increase the performance of the classification
algorithms.

« In linear regression, equations and coefficients are cre-
ated according to the least-squares method. In addition
to the least-squares technique, it is investigated how the
obtained equation yield results when the coefficients are
given random values.

o Experiments are carried out with two different evalua-
tion metrics using classification algorithms with varying
structures on four different datasets.

D. ORGANIZATION

The remaining parts of the study are organized as follows:
In Section II, data preprocessing and classifiers based on
linear regression techniques are discussed. In addition, bag-
ging techniques created by combining the most successful
classifiers are mentioned. In Section III, the datasets used,
classification algorithms used, and the metrics used to evalu-
ate the performance of the classifiers are given. In Section IV,
the results from the study are detailed. In Section V, a general
evaluation is made, and future works are discussed.

Il. METHODOLOGY

This section consists of three subsections. In Section II-A,
the structure of APK files and how permissions are extracted
with the static analysis technique are discussed. The pro-
posed classification approaches are detailed in Section II-B.
In Section II-C, permission-based Android malware detection
architecture is given.

A. DATA PREPROCESSING AND PREPARATION

Android Package Kit (APK) is known as the package file
format used by the Android operating system to distribute and
install mobile applications. Therefore, APK files are needed
in the Android operating system. APK files can be thought of
as compressed files. In general, these files include application
source codes, application permissions, image and video files
in applications.

Android applications are usually written using the Java
programming language. Then, Java source codes are com-
piled and converted into byte codes. Considering computers
with a Windows or Linux-based operating system on which
the Java virtual machine is installed, these compiled byte
codes are converted into a structure that can be run on the
relevant operating system. However, byte codes cannot be
run directly in the Android operating system. Therefore,
bytecodes are converted to executable Dalvik bytecodes by
performing one more operation on bytecodes. Thus, these
Dalvik bytecodes can now be run with the help of the Dalvik
Virtual Machine. As a result, the written applications are run
on the device. Extracting information from APK files is the
reverse of compilation. This process is called decompilation.

The process of extracting information without running
APK files is called static analysis. When any APK file is
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FIGURE 1. Extraction of APK files.

TABLE 1. An example of the feature vector.

Permissiony | Permissiony | Permissions | ... | Permissionys | Permissionyg class
1 0 0 benign
0 0 0 1 0 malicious

extracted, some folders and files appear, as seen in Figure 1.
These obtained files or folders are processed, and static prop-
erties are revealed. In this study, application permissions are
accessed by evaluating AndroidManifest.xml files extracted
from APK files. This is done via the Android Asset Packaging
Tool (AAPT2) tool [24]. Figure 2 shows the permissions
in the AndroidManifest.xml file. By combining application
permissions, feature vectors are created. All the permissions
obtained are checked in the AndroidManifest.xml files of
the applications. If the relevant permission is included in the
AndroidManifest.xml file of an application, the feature vec-
tors of the applications are created as in Table 1 by assigning
a value of 1, and if not, 0. Table 1 shows the feature vectors
of a malicious application and a benign application randomly
taken from the MODroid dataset.

B. PROPOSED CLASSIFIERS

We firstly give classifiers obtained from linear regression in
Section II-B1. Then, we show combining the best algorithms
according to the bagging technique in Section II-B2.

1) LINEAR REGRESSION-BASED CLASSIFIERS

The linear regression technique is a frequently used method
in solving estimation problems. It is based on the theory that
samples in the same class belong to the same linear subspace
and can be represented by a linear equation [17]. Equation 1
shows the simple linear regression model.

y=Bo+p1X+e (1)

In Equation 1, y is called the dependent variable, and
X is called the independent variable. The point where the line
intersects the y-axis is 8o, while B; represents the regression
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<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="com.android.alarm.permission.SET_ALARM" />
<uses-permission android:name="android.permission.VIBRATE" />

FIGURE 2. Some permissions appearing in AndroidManifest.xml.

coefficient. Finally, ¢ represents the error of the obtained esti-
mate. Equation 1 is known as simple linear regression since it
contains only the independent variable X . If there is more than
one independent variable affecting the Equation 1, it is called
multiple linear regression. The multiple regression model is
given in Equation 2. Considering the Equality 2, there are
many independent variables consisting of X1, X», ..., X,.

y=PB+B81X1+B8Xo+...+8:Xn+ ¢ 2)

Considering the problem addressed in this study, while
attributes, in other words, permissions, represent the inde-
pendent variable, y represents the class of an application.
A multiple linear regression model is needed because a large
number of application permissions are used as attributes.
In Table 1, the type of application is shown as benign or
malicious. Since the systems of equations are solved in linear
regression, operations are performed by using 1 instead of
benign and 0 instead of malicious.

Suppose a dataset consists of N applications and M per-
missions (p1, p2, - .., py) obtained from these applications.
A system of equations can be created when there is a linear
relationship between permissions and applications, as shown
in Equation 3.

Yy =Bo+ Bipia+ Bopr2+ ...+ Bupim
Y5 = Bo+ Bip2.1 + Bap22 + ...+ Bupa.m
Y3 =PBo+ Bipsa1+ Paps2 + ...+ Bupsm (3)

Yy =Bo+Bipn1 + Bopn2 + ...+ Bupn.m

In Equation 3, y|, 5, ..., yy represents the result of lin-
ear combinations of permissions (p1, p2, ..., pm). Bi shows
the effect of permissions on y,y,,...,yy values.
In Equation 3, it is aimed to find the appropriate 8;(1 <
i < M) parameter for linear regression model. The actual
class values (y1, y2, ..., yn) will be approximately equal to
Vi Yas oo .5 Yy values.

The mean square error is usually used to measure the
quality of the linear regression model. The smaller the mean
square error, the closer the linear regression model will pro-
duce to the actual value. Therefore, in order to obtain a
good quality regression model, it is necessary to make the
mean square error of the model as small as possible. Hence,
quality regression models are created by finding the most
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appropriate §8; parameter. Equation 4 shows how the sum of
squares of errors (SSE) is calculated.

N M
= 0j—Bo— D Bpin)’ “)
j=1 k=1

In order to minimize the SSE function obtained
in Equation 4, the partial derivatives of this function with
respect to each of its B;(1 < i < M) unknowns must be taken.
Since it is aimed to minimize the error, the result of partial
derivatives is equal to 0. Equation 5 shows partial derivatives.

N M
] 2@;‘ —Bo — 121 Bkpjk)?

0SSE /= 0
aBo 3Bo
5 > Funia?
02 vj—Bo— 2 Brpjk)
0SSE =1 =
B 981 B
: % ; 2
02 (yj—Bo— 2 Bpjk)
asse =7 k; ’
- 0 ©®

0Bm 9Bm

Equation 6 is obtained when partial derivatives are applied
according to each of the 8; unknowns in Equation 5. A matrix
and Y vector shown in Equation 6 can be obtained directly
from the dataset. Since A and Y are known, the vector 8 can
be found with A~'Y operation. Each element of the resulting
B vector corresponds to B; unknowns, respectively. Eq. (6),
as shown at the bottom of the next page.

As a result of the calculation of the regression coeffi-
cients (f8;) in Equation 2, a linear regression model will
be obtained. When the feature vectors obtained from the
applications are given to this model, as shown in Table 1,
the class value of the application belonging to the feature
vector is determined. As a result of this calculation, the class
value of the relevant application emerges, not the class label.
Since the classification problem is handled in this study,
Algorithm 1 and Algorithm 2 are applied separately to the
obtained class value, resulting in two different results. The
first of these results is called LinRegDroid1, while the second
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is called LinRegDroid2. Both Algorithm 1 and Algorithm 2
provide the classification of applications by processing the
result of linear regression equation according to simple rules.
In Algorithm 1, if the class values obtained as a result of
linear regression are greater than or equal to 0.5, a value of
“1” is assigned to the class label, in other words, a benign
label. Otherwise, the class label of the application is assigned
as ““0”’, that is, the malicious label. A similar rule is included
in Algorithm 2. In Algorithm 2, it is determined whether
the class values obtained as a result of linear regression are
closer to O or 1. If the class value is closer to 0, the label of
the relevant application is assigned a “0”, that is, a malicious
label. Otherwise, the application is labeled with “1”°, that is,
benign.

2) BAGGING OF THE BEST CLASSIFIERS

Models based on ensemble learning are generally constructed
in two different ways. The first of these is the bagging
method, while the second is the boosting method. The advan-
tages and disadvantages of these methods relative to each
other are analyzed in detail by Dietterich [25]. In this study,
classification models based on ensemble learning are cre-
ated using bagging techniques. Models based on the bagging
method are generally created, as shown in Figure 3. As seen in
Figure 3, n random sub-datasets are created from the dataset
used for training. If classifiers are trained on each of these
n subsets, n different models will emerge. In the last case,
when a sample in the test set is tested with these n models,

n classification results are calculated. The class of the tested
sample is determined by majority voting. For example,
suppose there is a problem with two classes (labell, label2).
Let a tested sample be classified as labell by k models
and label2 by | model (where k + I = n). If the k value
is greater than /, the tested sample will be classified as
labell. Otherwise, the sample tested will be classified as
label2. By applying the same steps to all samples in the
test data, the classes of the samples in the test data are
estimated.

In this study, two different ensemble learning models
are created based on the bagging technique. In the first
model built, the training part of the dataset is randomly
divided into five subsets. Then, the linear regression model
is applied to each sub-part created. As a result, five differ-
ent models emerge. Each application in the testing phase
is passed through these models. Then, the types of applica-
tions are estimated by majority voting. This method is called
Ensemble-1. The infrastructure of Ensemble-1 includes the
decision-maker obtained from Algorithm 2. The second
ensemble learning model created is called Ensemble-2. Here,
the training part of the dataset is randomly divided into five
subsets. Then, linear-SVM is applied to two of the formed
parts while DT is applied to two of them. A linear regression
model is applied to the remaining part. First, each application
in the testing phase is evaluated with these five models. Then,
the types of applications are estimated by majority voting.
While creating both Ensemble-1 and Ensemble-2, care is
taken to ensure that the number of subsets is odd. The reason

N N
BoN +B1 Y pi1+B2d pin+-...

N N N
Bo Zpi,l + B Zpi LB Zpi,uvi,z +...

,302[7124-,312171117124',322]7,2

i=1 i=1 i=1

N N N
Bo > pim+ Bt Y pipim + B2 Y piopim+ ...
=1 i=1 i=1
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+Bu D pim= i

i=1 i=1 i=1
N

i=1
N

+ Bm Y piipim = Y pilyi
i=1
N
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i=1

N
N
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i=1

{4
B N N N T — N _
N Y. pit > pi Z pim > i
N iﬁl N B N !
N
> pil ZP,ZJ Y PilPi2 ZP; 1Pi.M Po 3 pityi
i~ 1 Nz=1 1:1N 1; Bi i=1
N
| —
Y Dpi2 Y Ppipin2 > > Pi2Pim '3 = | > pioyi (©)
i=1 i=1 i= i=1 : =
Bum
N N N "“ﬁ N
Z piM D Pi\PiM D Di2PiM > Pim > pimYi
Li=1 i=1 i=1 i=1 Li=1 -
| —
A Y
VOLUME 10, 2022 14251



IEEE Access

D. 0. Sahin et al.: LinRegDroid: Detection of Android Malware Using Multiple Linear Regression Models-Based Classifiers

Algorithm 1 Determining Class Labels With LinRegDroid1

Algorithm 2 Determining Class Labels With LinRegDroid2

Input: TestDatal ][ ] and B[ ] represent the dataset and the
regression coefficients, respectively.

Output: ClassificationLabel[ ] represents the predicted
class labels of each tested application.

1: function Classify(TestData[ 1[ 1, B[ 1)
2: N1 < number_of _applications

3 Ny <— number _of _permissions

4: results[ ] < 0

5: for i < 1to Ny do

6 sum < 0

7 forj < 1to N, do

8 sum < sum + TestData[i][j] * B[j]
9: end for

10: results[i] < B[0] + sum

11: end for

12: ClassificationLabel[ | < ()

13: for i < 1to N; do

14: if results[i] >= 0.5 then

15: ClassificationLabel[i] < 1
16: else

17: ClassificationLabel[i] < 0
18: end if

19: end for

20: return ClassificationLabel] |

21: end function

Input: TestDatal ][ ] and B[ ] represent the dataset and the
regression coefficients, respectively.

Output: ClassificationLabel[ ] represents the predicted
class labels of each tested application.

1: function Classify(TestData[ 1[ 1, B[ 1)
2: N1 < number_of _applications

3 Ny <— number _of _permissions

4: results[ ] < @

5: fori < 1to N; do

6 sum < 0

7 forj < 1to N, do

8 sum < sum + TestData[i][j] * B[j]
9: end for

10: results[i] < B[0] + sum

11: end for

12: ClassificationLabel[ | < ()

13: for i < 1to N; do

14: if abs(0 — results[i]) < abs(1 — results[i]) then
15: ClassificationLabel[i] < 0

16: else

17: ClassificationLabel[i] < 1

18: end if

19: end for

20: return ClassificationLabel]| |

21: end function

for this is that the equality situation does not occur in the
majority voting.

C. PERMISSION-BASED ANDROID MALWARE DETECTION
SYSTEM

The permission-based malware detection system that pro-
vides the classification of malware is given in Figure 4. Fig-
ure 4 is applied step by step to ensure that malicious software
is separated from benign software. First, datasets are created.
Details of the datasets used are discussed in Section III-A.
In this study, a 10-fold cross-validation technique is used.
First, the dataset is divided into ten parts. Nine of these parts
are used for training, and 1 for testing. In each iteration, the
parts reserved for testing are changed, and all applications
on the dataset are tested. This process is repeated ten times
to calculate the average performance. After the datasets are
created, the permissions are obtained from the applications
by applying a preprocessing step on the applications. After
this stage, each application is converted into a feature vector.
Obtaining the feature vector is very important for machine
learning algorithms. If the feature vectors specific to these
algorithms are not given as input, these algorithms cannot
calculate. Classification models are created by providing fea-
ture vectors to classification algorithms. Preprocessing steps
are also applied to the applications reserved for testing, and
they are converted into feature vectors. By introducing these
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vectors to classification models, the types of applications are
predicted.

IIl. EXPERIMENTAL SETTINGS

This section consists of three subsections. In Section III-A,
the datasets used are mentioned. In Section III-B, we give
more details about compared classifiers with which the pro-
posed classification approaches. In Section III-C, we present
the metrics used to measure the performance of classification
algorithms.

A. DATASETS USED

In this study, four different datasets are used. The first dataset
is shared by Ali Dehghantanha, one of the authors of study
MODroid [26]. In this dataset, there are 200 benign and
200 malicious applications. When the data preprocessing step
in Section II-A is applied to this dataset, 76 native permis-
sions are extracted as attributes. The second dataset is AMD.
There are 1000 malicious and 1000 benign applications in
this dataset. The malicious applications in this dataset are
obtained from [27], [28]. Benign applications are downloaded
from the APKPure app store [29]. We extract 102 native per-
missions from the AMD dataset. The third dataset is shared
in [30], [31]. There are 558 applications in total in this dataset.
Half of these applications are benign, while the remaining
half are malicious. There are 330 attributes in this dataset,
consisting of native and custom permissions. Finally, the
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FIGURE 3. The general framework of bagging models.

fourth dataset is shared in [13]. There are 7622 applications
in total in this dataset. While 6661 of these applications are
malicious, 961 of them are benign. This dataset contains
349 attributes consisting of native and custom permissions.

B. CLASSIFIERS USED IN COMPARISON
Basically, five different machine learning techniques are used
to compare the classification algorithms based on linear
regression proposed in this study. These are KNN, NB, SVM,
DT, and Bagging-DT algorithms. In addition, some of these
algorithms are preferred among the algorithm combination
methods based on the proposed bagging technique. MAT-
LAB R2016 is used for these algorithms. By trying different
parameters in NB and SVM algorithms, the results obtained
from these algorithms are expanded. The algorithms used in
the study and their parameters are detailed in Table 2.
According to Table 2, default parameters are used in the DT
algorithm. In the KNN algorithm, classification is performed
by choosing the k value as 1. In the NB algorithm, classifi-
cation is made using two different distributions. The first of
these is multinomial distribution (mn), while the second is
multivariate multinomial distribution (mvmn). Two different
kernel functions are used in the SVM algorithm. These are
linear and radial basis functions. Finally, the Bagging-DT
algorithm is implemented with a total of five trees.

C. PERFORMANCE MEASURE
The confusion matrix is frequently used to measure the per-
formance of machine learning approaches. An example of a
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TABLE 2. Algorithms and their parameters.

Function Name

Ckllsgs;f;icte;tgn of Algorithm Parameters of Algorithm
in MATLAB

KNN fitcknn "NumNeighbors’, T
mn-NB naivebayes.fit "Distribution’, 'mn”
mvmn-NB naivebayes.fit "Distribution’, ' mvmn’
linear-SVM fitcsvm "KernelFunction’, 'Linear”
rbf-SVM fitcsvm "KernelFunction’, rbf”
DT fitctree default parameter

. number_of_trees =5,
Bagging-DT TreeBagger ’OOBPrec{;ctorImportance’, ‘On’

TABLE 3. Example of confusion matrix.

Predicted Class
- +
Real | - True Negative | False Positive
Class ) (FP)
False Negative | True Positive

(FN) (TP)

confusion matrix is shown in Table 3. Some of the informa-
tion indicated in Table 3 are as follows:
TP: It is the number of samples that are actually in the “+”
class but classified with “+”” as a result of the classification.
TN: It is the number of samples that are actually in the “—"’
class but classified with “—" as a result of the classification.
FP: It is the number of samples that are actually in the “—
class but classified with “+* as a result of the classification.
FN: It is the number of samples that are actually in the “+”
class but classified with “—"" as a result of the classification.
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FIGURE 4. The general framework of permission-based Android malware detection system.

By using TP, TN, FP, and FN values, accuracy in
Equation 7, precision in Equation 8, and recall metrics in
Equation 9 are given.

TN 4+ TP
accuracy = @)
TN + FN + FP+ TP

. TP @)
Je n=——
precisio PP TP

TP

recall = ——— ©))

FN 4+ TP

Comparison with the accuracy metric may not be sufficient
in experiments performed on unbalanced datasets. For this
reason, it is more accurate to compare with the f-measure met-
ric, which is the harmonic mean of precision and recall values.
Equation 10 contains the mathematical representation of the
f-measure metric. Considering the Table 3, two different
values of precision, recall, and f-measure metrics, consisting
of () and (—) classes, emerge. For this reason, classification
algorithms are evaluated by averaging the values obtained for
both classes.

2 - Precision - Recall

f — measure =

10
Precision + Recall (10)
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IV. RESULTS AND DISCUSSIONS

This section consists of two subsections. In Section IV-A, the
results obtained from the study are detailed and interpreted.
In Section IV-B, the results of some studies in the literature
are compared with the results obtained from this study.

A. EXPERIMENTAL RESULTS

In this section, we interpret the results obtained from the
datasets. Table 4 contains the results from the AMD dataset.
These results are the average of 10-fold cross-validation.
On the AMD dataset, LinRegDroid1 and LinRegDroid2 show
0.9560 performance according to both the accuracy and the
f-measure metric. While the result obtained with the KNN
algorithm is 93.6% according to the accuracy metric, it is
0.9359 according to the f-measure metric. LinRegDroidl
and LinRegDroid2 provide 2% improvement over the KNN
algorithm. The mn-NB and mvmn-NB classifiers demon-
strate 0.9001 and 0.9320 performances, respectively, accord-
ing to the f-measure metric. The approaches based on the
proposed linear regression model show 2% to 5% higher per-
formance than the NB algorithm. linear-SVM and rbf-SVM
methods give 0.9655 and 0.9278 performances, respectively,
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TABLE 4. Results from the AMD dataset.

accuracy(%) | f_measure
LinRegDroidl | 95.6 0.956
LinRegDroid2 | 95.6 0.956
KNN 93.6 0.9359
mvmn-NB 93.2 0.932
mn-NB 90.05 0.9001
rbf-SVM 92.8 0.9278
linear-SVM 96.55 0.9655
DT 95.6 0.956
Bagging-DT 96.5 0.965
Ensemble-1 96.4 0.964
Ensemble-2 96.95 0.9695

according to the f-measure metric. The approaches based on
the proposed linear regression model are 3% more success-
ful than the rbf~-SVM model. However, these models show
1% less performance compared to the linear-SVM model.
LinRegDroidl, LinRegDroid2, and DT models show the
same results on the AMD dataset. In order to make a fair
comparison on the existing Bagging-DT and Ensemble-1 and
Ensemble-2 models, the training set is randomly divided into
five parts, and bagging techniques are compared. Bagging-
DT, Ensemble-1, and Ensemble-2 show nearly identical per-
formances on the AMD dataset. Considering all the results,
the highest performance achieved is from the Ensemble-2
model. This result is 0.9695 according to both the accuracy
metric and the f-measure metric.

Table 5 presents the results obtained from Lopez’s dataset.
This dataset has quite a lot of permissions given the number
of apps. Despite 558 applications, there are 330 permissions.
This makes it difficult to construct an excellent linear regres-
sion model in general. Therefore, it is a complex dataset to
classify. LinRegDroidl and LinRegDroid2 give 0.9187 per-
formance in Lopez’s dataset according to the accuracy metric
and the f-measure metric. While the result obtained with the
KNN algorithm is 83.75% according to the accuracy met-
ric, it is 0.8359 according to the f-measure metric. LinReg-
Droidl and LinRegDroid2 provide 8% improvement over the
KNN algorithm. The mn-NB and mvmn-NB classifiers yield
0.8553 and 0.8811 performances, respectively, according to
the f-measure metric. The approaches based on the proposed
linear regression model show 3% to 6% higher performance
than the NB algorithm. linear-SVM and rbf-SVM methods
give 0.9375 and 0.9123 performances, respectively, accord-
ing to the f-measure metric. The approaches based on the
proposed linear regression model show similar results with
the rbf-SVM model. However, these models show 2% less
performance when compared to the linear-SVM model. The
approaches based on the proposed linear regression model
show 1% less performance when compared to the DT model.
Bagging-DT, Ensemble-1, and Ensemble-2 bagging tech-
niques give lower results than the main classifiers on this
dataset. For example, the result obtained with the DT model
is 0.925 according to the f-measure metric, while the result
obtained with the Bagging-DT is 0.9150 according to the
f-measure metric. A similar situation is seen in the results of
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TABLE 5. Results from the Lopez’ dataset.

accuracy(%) | f_measure

LinRegDroidl | 91.87 0.9187
LinRegDroid2 | 91.87 0.9187
KNN 83.75 0.8359
mvmn-NB 88.12 0.8811
mn-NB 85.62 0.8553
rbf-SVM 91.25 0.9123
linear-SVM 93.75 0.9375
DT 92.5 0.925

Bagging-DT 91.5 0.915

Ensemble-1 91.25 0.9123
Ensemble-2 92.5 0.925

Ensemble-1 and Ensemble-2. Considering all the results, the
highest performance obtained is from the linear-SVM model.
This result is 0.9375 according to both the accuracy metric
and the f-measure metric.

Table 6 shows the results obtained from the MODroid
dataset. On the MODroid dataset, LinRegDroidl and LinReg-
Droid2 give 82.942% performance according to the accu-
racy metric, and 0.8287 according to the f-measure metric.
While the result obtained with the KNN algorithm is 82.69%
according to the accuracy metric, it is 0.8258 according to
the f-measure metric. Both LinRegDroidl, LinRegDroid2
and KNN produce similar results. The mn-NB and mvmn-
NB classifiers have 0.7733 and 0.7765 performances, respec-
tively, according to the f-measure metric. The approaches
based on the proposed linear regression model show 5%
higher performance than the NB algorithm. linear-SVM
and rbf-SVM methods give 0.8619 and 0.8673 perfor-
mances, respectively, according to the f-measure metric.
Unlike the datasets of AMD and Lopez, the rbf kernel func-
tion produces more successful results in this dataset. The
approaches based on the proposed linear regression model
give lower results than both the rbf-SVM model and the
linear-SVM model. In addition, the approaches based on
the proposed linear regression model show 4% less per-
formance when compared to the DT model. Bagging-DT,
Ensemble-1 and Ensemble-2 bagging techniques give
higher results than the main classifiers on this dataset.
For example, the result obtained with the DT model
is 0.8619 according to the f-measure metric, while the result
obtained with the Bagging-DT is 0.8712 according to the
f-measure metric. A similar situation is seen in the results
of Ensemble-1 and Ensemble-2. The result obtained with the
LinRegDroid2 model is 0.8287 according to the f-measure
metric, while the result obtained with the Ensemble-1 is
0.8348 according to the f-measure metric. Considering all
the results, the highest performance is obtained from the
Ensemble-2 model. This result is 89.22% according to the
accuracy metric and 0.8915 according to the f-measure
metric.

Table 7 shows the results obtained from Arslan’s dataset.
Unlike other datasets, the accuracy and f-measure metrics on
this dataset are quite different because this dataset is unbal-
anced. On this dataset, LinRegDroid]l and LinRegDroid2
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TABLE 6. Results from the M0ODroid dataset.

accuracy(%) | f_measure
LinRegDroidl | 82.942 0.8287
LinRegDroid2 | 82.942 0.8287
KNN 82.69 0.8258
mvmn-NB 77.923 0.7765
mn-NB 77.429 0.7733
rbf-SVM 86.962 0.8673
linear-SVM 86.212 0.8619
DT 86.212 0.8619
Bagging-DT 87.205 0.8712
Ensemble-1 83.74 0.8348
Ensemble-2 89.22 0.8915
TABLE 7. Results from the Arslan’ dataset.
accuracy(%) | f_measure
LinRegDroidl | 96.69 0.9172
LinRegDroid2 | 96.69 0.9172
KNN 96.54 0.9126
mvmn-NB 93.96 0.8571
mn-NB 94.74 0.8667
rbf-SVM 94.86 0.8617
linear-SVM 97.76 0.9470
DT 97.63 0.9443
Bagging-DT 97.01 0.9249
Ensemble-1 96.91 0.9229
Ensemble-2 98.53 0.9662

give 96.69% performance according to the accuracy metric
and 0.9172 according to the f-measure metric. While the
result obtained with the KNN algorithm is 96.54% accord-
ing to the accuracy metric, it is 0.9126 according to the
f-measure metric. The mn-NB and mvmn-NB classifiers
yield 0.8667 and 0.8571 performances, respectively, accord-
ing to the f-measure metric. The approaches based on the
proposed linear regression model show 6% higher perfor-
mance than the NB algorithm. linear-SVM and rbf-SVM
methods give 0.9470 and 0.8617 performances, respectively,
according to the f-measure metric. The approaches based
on the proposed linear regression model are 5% more suc-
cessful than the rbf-SVM model. However, these models
show 3% less performance when compared to the linear-
SVM model. Also, the approaches based on the proposed
linear regression model show 3% less performance when
compared to the DT model. On this dataset Ensemble-1, and
Ensemble-2 except Bagging-DT bagging techniques, gives
higher results than the main classifiers. However, Bagging-
DT gives a lower performance. For example, the result
obtained with the DT model is 0.9443 according to the
f-measure metric, while the result obtained with the
Bagging-DT is 0.9249 according to the f-measure metric.
On the other hand, the result obtained with the LinRegDroid2
model is 0.9172 according to the f-measure metric, while the
result obtained with the Ensemble-1 is 0.9229 according to
the f-measure metric. Considering all the results, the highest
performance is obtained from the Ensemble-2 model. While
this result is 98.53% according to the accuracy metric, it is
0.9662 according to the f-measure metric.
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It is seen that the classifiers based on the linear regression
model created according to the results obtained from the
datasets generally give good results. It is also shown that in
permission-based malware detection, data in the same class
will belong to the same linear subspace and can be expressed
by a linear equation. Since there is a linear relationship
between the dataset and the samples, it is possible to make
predictions for other samples through the linear regression
technique. Finally, it should not be ignored that the obtained
bagging techniques also give good results. In the creation of
bagging techniques, since the datasets are relatively small, the
training parts of the datasets are randomly divided into five
parts. It is possible to obtain higher performances by creating
more subsets in larger datasets. Also, in this study, different
regression models are created by assigning random values to
the regression coefficients. Findings of randomly generated
models are included in Remark 1.

Remark 1: The regression coefficients obtained in this
study generally vary between —1 and 1. 10000 regression
models are created by giving random values between —1I
and 1 to the regression coefficients. However, the error rates
of random models are higher than the actual model. For
example, in experiments on the AMD dataset, the Pear-
son correlation coefficient of the actual regression model
is 0.8836. The result of the best randomly generated model
is 0.8694 according to the Pearson correlation coefficient.
Only 3429 of these random models have Pearson correla-
tion coefficient above 0.80. Better models can be created
by developing smart search strategies instead of brute-force
searching.

B. COMPARISON WITH PREVIOUS WORKS

In this subsection, the results obtained will be compared with
some results in the literature. Table 8 compares the results of
existing studies with the results obtained in this study. While
making comparisons, not only static analysis is taken into
account, but also the results obtained from some dynamic
and hybrid studies are included. Comparisons are made with
the highest performances reported in existing studies and the
classification algorithms in which these performances are
obtained. In this study, since a permission-based Android
malware detection system is proposed, permission-based
models will be evaluated among themselves first. A general
comparison will then be made.

According to Table 8, there are 5 studies that only use per-
missions as an attribute. The highest performance obtained
from these studies is obtained from the AndroAnalyzer [13]
as 0.9820 according to the f-measure metric. Using the same
dataset, the result of 0.9662 is obtained according to the
f-measure metric with the Ensemble-2 technique. Our result
is approximately 2% lower than [13]. However, the computa-
tional cost of the DNN technique is quite high. In addition,
the creation of the network is quite complex as there are
many parameters. A distribution similar to this dataset is
used in [33]. The result obtained in [33] is 92% according
to the accuracy metric. In this study, when a dataset with
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TABLE 8. Comparison with previous studies.

Study

Feature Used

Dataset size

Classification Algorithm

Classification Performance

6661 Malware

IEEE Access

AndroAnalyzer [13] Permissions 961 Benign DNN 0.9820 (f-measure)
. . 5494 Malware
Lietal. [11] Permissions 5494 Beniv;;]nr SVM 95.63 (accuracy %)
Milosevic et al. [8] Permissions ggg Ig’éilivgire Ensemble learning 0.894 (f-measure)
Milosevic et al. [8] Source code analysis 288 Igﬁ]livgﬁre Ensemble learning 0.9560 (f-measure)
. 100 Malware
ANDROIDETECT [9] System call function 100 Benign J48 0.86 (f-measure)
Internet traffic
Kurniawan et al. [32] Battery level 588 I]\g/[alware RF 85.6 (accuracy %)
emgn
Battery temperature
Permissions 15336 Malware
MalPat [12] API calls 31185 Benign RF 0.9824 (f-measure)
Arslan et al. [33] Permissions ?8?2 I};/[;‘livg?‘re Random Tree 92 (accuracy %)
. . Permissions 5560 Malware . o
Androdialysis [34] Intent 1846 Benign Bayesian Network 95.5 (TP rate %)
. 13 static features 10000 Malware . . o
Sayfullina et al. [35] under 4 groups of files 10000 Benign Normalized Bernoulli NB  82.10 (TP rate %)
. .. 139 Malware
Liu [36] Permissions 231 Benivgvn SVM 89.68 (accuracy %)
Permissions 10000 Malware
ALDROID [37] Classes.dex file properties 30000 Benign SVM 98.8 (accuracy %)
Bidirectional long
Droidetec [38] ;tztz;l‘l:es ??;g%aex;;e short-term memory 97.22 (accuracy %)
(BiLSTM)
API call 33139 Malware  Convolutional neural
Pektas and Acarman [39] graph 25000 Benign network (CNN) 98.86 (accuracy %)
LinRegDroid 0.956 (f-measure)
Our results for AMD Permissions 1883 lg/le:liwire Ensemble-1 0.964 (f-measure)
g Ensemble-2 0.9695 (f-measure)
279 Malware LinRegDroid 0.9187 (f-measure)
Our results for Lopez’ dataset ~ Permissions 579 Benien Ensemble-1 0.9123 (f-measure)
& Ensemble-2 0.925 (f-measure)
200 Malware LinRegDroid 0.8287 (f-measure)
Our results for MODroid Permissions 500 Benien Ensemble-1 0.8348 (f-measure)
& Ensemble-2 0.8915 (f-measure)
6661 Malware LinRegDroid 0.9172 (f-measure)
Our results for Arslan’ dataset ~ Permissions 961 Benien Ensemble-1 0.9229 (f-measure)
& Ensemble-2 0.9662 (f-measure)

a similar distribution is used, 98.53% success is achieved
with Ensemble-2 according to the accuracy metric. When
classification is made with LinRegDroid, 96.69% success
is achieved according to the accuracy metric. According
to the results obtained from [33], improvement is made
between 4% and 6%. In the study conducted by Li et al. [11],
95.63% success is obtained according to the accuracy metric.
Similar results are obtained using the AMD dataset. When
the results of permission-based malware detection systems
on small datasets are examined, a performance of 0.894 is
obtained according to the f-measure metric in [8]. In [36],
an accuracy of 89.68% is obtained according to the accuracy
metric. MODroid dataset is used in [8]. Using this dataset,
we achieved 0.8915 performance according to the f-measure
metric. Although permission-based approach is used in our
study and [8], [36], different structures are presented in clas-
sification approaches. However, the results of these three
studies are very similar to each other. Lopez’s dataset used
in this study is also small in size. The performances obtained
on this dataset are better than the results obtained from other
small datasets since the benign and malware applications can
classified more easily in this dataset.

It is observed that performance increases when other
attributes such as API calls or intent filters are used together
with application permissions [12], [34], [37]. In [35], many
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static properties are extracted by evaluating 4 different files.
However, the performance in [35] is not as high as [12],
[34], [37]. When the results of dynamic analysis approaches
on small datasets are evaluated, a performance of 0.86 is
obtained according to the f-measure metric in [9]. In [32],
on the other hand, an accuracy of 85.6% is obtained according
to the accuracy metric. When Table 8 is evaluated in general,
it is observed that the performance of deep learning tech-
niques is quite good [13], [38], [39]. When the results of the
experiments conducted in this study are examined, it is seen
that the proposed methods are as successful as the results in
the literature.

Remark 2: When the results are examined in general,
the researchers generally perform their experiments on the
unbalanced dataset. The distribution of the dataset is one of
the important factors affecting performance. In the experi-
ments conducted in this study, we usually use a balanced
dataset. Another important factor affecting classification per-
formance is feature extraction. Higher classification perfor-
mances can be achieved as more distinctive features are
discovered between benign and malicious applications. These
situations differentiate obtained results. For example, exper-
iments are performed using the MODroid dataset in [8].
Similarly, in this study, experiments are carried out with the
MODroid dataset. The results from both studies are almost
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same when extracting permissions from the MODroid dataset.
However, it has been shown that better performance is
achieved when the application source codes are used instead
of permission [8]. Finally, even if the distributions of the
datasets are the same, the characteristics of malware may
resemble those of benign. In this case, there may be differ-
ences in the performance of classification algorithms.

V. CONCLUSION AND FUTURE WORKS

Application permissions are significant in Android operat-
ing system security. These permissions, which are extracted
from applications, are used as attributes to detect malicious
software with machine learning algorithms in this study.
Android malware detection is carried out with two rule-based
classification models using multiple linear regression models.
The proposed rule-based classifiers are compared with pop-
ular classification algorithms such as KNN, NB, SVM, and
DT. Both approaches give more successful results than NB
and KNN. There are many parameters in SVM, KNN, and
NB algorithms. However, classifiers based on multiple linear
regression models are quite simple and easy to use. This is
the most significant advantage of the proposed approaches.
In addition, ensemble learning models based on the bagging
technique are also developed in this study. The use of these
models positively affects classification performance in gen-
eral. Finally, in the multiple linear regression model, a large
number of models are created by assigning random values to
the regression coefficients. However, positive results cannot
be obtained from these models. In future studies, it is aimed to
create more efficient regression models by developing intelli-
gent search strategies such as hybrid or heuristic techniques.
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