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ABSTRACT A robust algorithm for the extraction of reduced-order behavioral models from sampled
frequency responses is proposed. The system under investigation can be any Linear and Time Invariant
structure, although the main emphasis is on devices that are relevant for Signal and Power Integrity and
RF design, such as electrical interconnects and integrated passive components. We assume that the device
under modeling is parameterized by one or more design variables, which can be related to geometry or
materials. Therefore, we seek for multivariate macromodels that reproduce the dynamic behavior over a
predefined frequency band, with an explicit embedded dependence of the model equations on these external
parameters. Such parameterized macromodels may be used to construct component libraries and prove very
useful in fast system-level numerical simulations in time or frequency domain, including optimization, what-
if, and sensitivity analysis. The main novel contribution is the formulation of a finite set of convex constraints
that are applied during model identification, which provide sufficient conditions for uniform model stability
and passivity throughout the parameter space. Such constraints are characterized by an explicit control
allowing for a trade-off between model accuracy and runtime, thanks to some special properties of Bernstein
polynomials. In summary, we propose a method to systematically address the longstanding problem of
multivariate stability and passivity enforcement in data-driven model order reduction, which insofar has
been tackled only via either over-conservative or heuristic and possibly unreliable methods.

INDEX TERMS Passive macromodeling, reduced-order modeling, parameterized modeling, data-driven
model order reduction, Bernstein polynomials, linear matrix inequalities.

I. INTRODUCTION
Mathematical modeling is a cornerstone for modern tech-
nological advancement and industrial manufacturing. The
possibility of accurately predicting the behavior of a given
design allows engineers to perform preliminary testing and
verification stages without relying on the construction of
physical prototypes, which is highly consuming in terms
of strategical assets. In this view, the industrial interest for
mathematical models is moved not only by their effectiveness
in predicting physical phenomena, but also by their potential
for saving resources in terms of manpower and time-to-
market.

For this reason, reduced order models or ‘‘macromodels’’
gained an increasing importance in the field of Computer
Aided Design. The rationale behind such models is to predict
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the behavior of a given system with minimal computational
efforts, by accurately reproducing those physical quantities
that are of interest within a specific simulation, i.e. the
required system outputs [1]–[3]. The intrinsic complexity of
the first-principle physical laws (e.g. Maxwell’s equations)
is reduced to a small set of explanatory instrumental
variables that are sufficient to predict the input-output
relationship of interest. In particular, in the field of electronics
manufacturing, the enormous complexity of state-of-the-art
devices is such that behavioral models find major room
for practical exploitation, in particular when dealing with
passive electromagnetic devices [4]–[6] such as electrical
interconnects and integrated components.

The generation of a macromodel is usually performed by
following a well established workflow. A physical model for
the device is first instantiated within a CAD environment able
to provide a highly detailed description of the structure based
on the Maxwell’s equations. Once the interface electrical
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ports are defined, a finite-bandwidth characterization of the
system is obtained in terms of samples associated with
a specified network function, typically in the scattering
representation. A rational fitting process [7]–[10] is then
performed over this available data in order to obtain a
closed form expression which best explains the associated
input-output behavior. The resulting rational model of the
network function is then synthesized into an equivalent
and low-complexity SPICE netlist, that can be exploited to
perform fast numerical simulations at the system level.

The above procedure can be extended by requiring that the
macromodel mimics the behavior of the structure for different
configurations of a set of design or physical parameters,
whose value is not fixed a priori but is known to belong
to a prescribed set. In such a case, the network function
data are sampled in correspondence of a finite number
of parameters configurations, and a multivariate modeling
strategy is pursued to obtain a parameterized macromodel
that can replace the original structure for all of the parameters
configurations of interest [11]–[15].

When the macromodel is to be used within system-level
simulations, it is crucial that the associated equivalent circuit
preserves some fundamental structural properties of the true
device. In particular, passive components and interconnects,
which are unable to generate energy on their own, must
be represented by certified passive macromodels [6], [16].
Otherwise, the models can be the root cause of spurious insta-
bilities, thus impairing the entire modeling and simulation
workflow.

While the generation of passive univariate (non-
parameterized) macromodels can mostly be considered as
a solved problem [17]–[19], this is not true for the more
complex parameterized case, and the topic is still subject
of active research. Many different approaches have been
proposed in the literature to tackle the passive parameterized
macromodeling problem, but an ultimate fast, efficient and
robust methodology is still not available.

Among the available strategies, some [11], [12], [20],
[21] rely on passivity-preserving interpolation schemes.
These approaches aim at building multivariate macromodels
by interpolating a set of ‘‘root’’ univariate macromodels
constructed at several discrete parameter instances. In case
the root models are passive, the use of passivity preserving
interpolation schemes guarantees the uniform passivity
of the resulting multivariate model. The simplicity of
these approaches comes with some serious drawbacks.
For instance, the resulting multivariate model may show
nonphysical augmented complexity and/or incorrect model
behavior for parameter combinations that are different from
the training samples.

Other techniques waive these structural passivity pre-
serving properties in favor of more compact parameterized
macromodels, which are identified through awell-established
multivariate rational fitting procedure [14]. Uniform stability
can be enforced by embedding some constraints in the fitting
process. These constraints can be either based on (adaptive)

sampling in the parameter space [22], [23], or by imposing
some sign properties in the model coefficients [24]. The
former approach may miss small stability violations due to
the finite number of constraints that can be constructed, while
the latter is known to be over-conservative and may lead to
a model with reduced accuracy. In this framework, passivity
enforcement is usually performed by post-processing, so that
the model is iteratively perturbed until all the passivity
violations are removed [25]. Two main problems affect
this strategy: first, identification of passivity violations in a
multivariate setting requires sampling, so that it is possible
that some passivity violations are not identified and thus not
removed; second, removal of a passivity violation requires
the solution of a nonlinear optimization problem, whose
linearization during iterations may lead to further loss of
accuracy and possibly lack of convergence.

This work proposes a novel constrained multivariate ratio-
nal fitting framework, that overcomes all above limitations
and drawbacks. The approach can be summarized as follows.

1) The model structure is defined as a ratio between a
matrix numerator and a scalar denominator, which are
both expanded into a partial fraction basis (with stable
basis poles) along frequency and multivariate Bernstein
polynomials in the parameter space.

2) Stability conditions along frequency are expressed as
a (continuously) parameterized Kalman-Yakubovick-
Popov (KYP) linear matrix inequality, which depends
only on the model denominator.

3) A finite number of convex constraints providing a
sufficient condition for uniform stability is derived by
expanding all terms of the above KYP condition in
terms of Bernstein polynomials, and by exploiting some
unique properties of such polynomials.

4) Passivity conditions along frequency are expressed as a
parameterized KYP (similarly to point 2 above), which
depends only on the model numerator.

5) A finite number of convex constraints providing a
sufficient condition for uniform passivity is derived as
in point 3, through a Bernstein polynomial expansion of
the above KYP formulation.

6) The conservativity introduced by the discretization in
points 3 and 5 is reduced by exploiting a special degree
elevation property of Bernstein polynomials.

In the above list, points 1, 2 and 4 are reformulations of
known results. Preliminary ideas based on point 5 have been
recently published in [26] for parameterized macromodels
including a single external parameter; expanding on such
preliminary ideas, we present a full treatment of the theoret-
ical derivations that legitimate the validity of points 3 and
5 when generating macromodels that include an arbitrary
number of external parameters; the practical effectiveness of
the proposed approach is further enhanced by introducing the
conservativity reduction strategy of point 6.

We remark that the effectiveness of the constraints dis-
cretization strategy based on Bernstein polynomials involved
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in points 3 and 5 has been also recently discussed in [27] in a
more general setting.

From the computational standpoint, the proposed method
consists of
• an iterative low-complexity least squares identification
of the denominator of the model, where special Linear
Matrix Inequality (LMI) constraints are used to enforce
uniform stability;

• a single higher-complexity LMI-constrained least
squares problem for the identification of the numer-
ator (matrix) coefficients, which guarantees uniform
model passivity.

The resulting algorithm is thus fully deterministic and robust,
since it does not rely on sampling and is based on a convex
formulation which is solved in finite time using standard
optimization software.

The proposed approach has a single main limitation,
in terms of the overall complexity of the models that can
be processed. The scalability analysis and the numerical
examples that follow show that only small and medium-scale
models are tractable, thus providing an applicability limit
of proposed framework. This limit is in fact common to all
applications that are based on LMI constraints, not only in
model order reduction but also in the more general field
of modern control system engineering and numerical linear
algebra.

This paper is organized as follows. Section II introduces
some notation and general facts, considered as preliminaries
and background. Section III states the main considered
problem, defines the adopted model structure, and recalls
the existing model identification methods; also this section
is to be regarded as background material. Sections IV and V
provide a complete derivation of proposed uniform stability
and passivity conditions, respectively. Together with Sec. VI
dedicated to the reduction of conservativity, they form the
key novel material of this work. Section VII presents a set
of numerical results together with discussion on performance
and assessment of applicability limits. Conclusions are finally
drawn in section VIII.

II. PRELIMINARIES AND NOTATION
In the following, we denote with N, R, and C, the fields
of natural, real and complex numbers, respectively. The
symbol s is reserved for the Laplace variable, and j =
√
−1 is the imaginary unit. Scalars are denoted with a plain

lowercase font x, while uppercase fonts denote matrices X ,
whose size is specified if not clear from the context. Matrix
transpose and Hermitian transpose are denoted with X>

and X?, respectively. The set of symmetric matrices of size n
is denoted as Sn; accordingly, S−n denotes the cone of negative
semi-definite matrices of size n. A given transfer function is
denoted as H(s), and IP is reserved for the identity matrix of
size P.

We define a multi-index as a d-dimensional collection
of indices i = (i1, . . . , id ) ∈ Nd . Given two multi-indices j
and k, we write j ≤ k meaning j1 ≤ k1, . . . , jd ≤ kd . The

sum operation j + k between two multi-indices returns a
multi-index i = (j1 + k1, . . . , jd + kd ). The max(j, k) [resp.
min(j, k)] function returns the component-wise maximum
(resp. minimum) for each entry of its arguments. In this
context, we also define the multi-index binomial coefficient(

j
k

)
=

d∏
i=1

(
ji
ki

)
. (1)

Let p(ϑ) : Rd
→ R be a generic multivariate polynomial

in d variables ϑ = (ϑ1 . . . , ϑd ). In particular, we make
extensive use of Bernstein polynomials. For d = 1,

b ¯̀`(ϑ) =
(
¯̀

`

)
ϑ`(1− ϑ) ¯̀−`, ` = 0, . . . , ¯̀ (2)

defines the `-th Bernstein polynomial of degree ¯̀ in the
scalar variable ϑ . For d > 1, the `-th multivariate Bernstein
polynomial of multi-degree ` is defined as

b``(ϑ) = b
¯̀1
`1
(ϑ1)× · · · × b

¯̀d
`d
(ϑd ) (3)

where

` = ( ¯̀1, . . . , ¯̀d ) (4)

is the multi-index collecting the degrees of the polynomials
in each individual variable ϑk . For a given set of maximum
degrees `, we define the associated set of admissible indices
as

I` = {` ∈ Nd
: ` ≤ `}. (5)

For any multivariate polynomial matrix function in the
Bernstein basis

F(ϑ) : Rd
→ Rm×n

=

∑
`∈I`

F` b``(ϑ) (6)

we denote as control points the elements of the set {F` : ` ∈
I`}, in short {F`}.
We will exploit some notable properties of multivariate

Bernstein polynomials, which we report here following [28].
First, we recall that such polynomials are non-negative and
provide a partition of unity for any generic dimension d and
maximum degree `

b``(ϑ) ≥ 0 ∀` ∈ I`,
∑
`∈I`

b``(ϑ) = 1, ∀ϑ ∈ 2. (7)

These two properties imply that all the values attained by
functions (6) are obtained via a convex combination of the
control points {F`}.
A multivariate Bernstein polynomial of degree ` can

be equivalently rewritten in terms of another Bernstein
polynomial of higher degree, exploiting the so-called degree
elevation property. Consider a Bernstein polynomial p(ϑ) of
degree ` and a degree increment e = (e1, . . . , e2) ≥ 0. Then,
p(ϑ) admits the two following equivalent representations

p(ϑ) =
∑
`∈I`

p` b``(ϑ) =
∑
γ∈Iγ

gγ bγγ (ϑ), γ = `+ e (8)
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where the set of coefficients gγ are obtained as convex
combinations of the original coefficients p`

gγ =
∑
s∈S

(
`
s

)( e
γ−s

)
(
`+e
γ

) ps, γ ∈ Iγ , (9)

where the sum is performed over the set of multi-indices
S = {s : s = max(0, γ − e), . . . ,min(`, γ )}. Finally, given
two Bernstein polynomials p(ϑ), g(ϑ) having total degree `
and γ respectively, their product h(ϑ) can be expressed as a
polynomial of total degree β = `+ γ , whose coefficients hβ

are

hβ =
∑
s∈S

(
`
s

)( γ
β−s

)
(`+γ
β

) psgβ−s, β ∈ Iβ (10)

where S = {s : s = max(0,β − γ ), . . . ,min(`,β)}.

III. PROBLEM SETTING
A. GENERAL SETTING
We consider a generic P-port Linear and Time-Invariant
(LTI) system, whose behavior depends on d real-valued
physical or design parameters. Without loss of generality, the
parameter vector ϑ = (ϑ1, . . . , ϑd ) is assumed to belong to
a normalized d-dimensional hypercube 2 = [0, 1]1 × . . . ×
[0, 1]d , called the design space. Denoting with H̃(s,ϑ) the
P×P transfer function of the system, we assume that a highly
detailed first-principle model is available, which can be used
to evaluate the system response through its frequency-domain
samples over a finite bandwidth of interest and for any given
combination of the design variables

H̃k,m = H̃(jωk ,ϑm), k = 1, . . . k̄, m = 1, . . . , m̄. (11)

Most commonly, such data samples are available as the
scattering matrix of the reference device. When the structure
under modeling is known to be passive, it is assumed
that the data samples are compliant with the appropriate
passivity conditions. It is also assumed that the available
samples are sufficient to characterize the variations of the
frequency responses over the target frequency band: indeed,
any information that is not embedded in the input data cannot
be reproduced by any model constructed using such data.

The goal of parameterized macromodeling is to synthesize
a reduced-order rational model with a transfer function
H(s,ϑ) that matches the set of input training data

H(jωk ,ϑm) ≈ H̃k,m, k = 1, . . . k̄, m = 1, . . . , m̄. (12)

The rational structure of the model allows for a straightfor-
ward conversion of the transfer function into a parameterized
equivalent circuit of reduced order that can be exploited
within off-the-shelf SPICE environments (not discussed here,
see e.g. [6], [23]).

B. MODEL STRUCTURE
Consistently with most of the existing literature on this
subject [14], [29], we assume the following Parameterized-
Sanathanan-Koerner (PSK) model structure

H(s,ϑ) =
N(s,ϑ)
D(s,ϑ)

=

∑n̄
i=0

∑
`∈I`

Ri,` b``(ϑ)ϕi(s)∑n̄
i=0

∑
`∈I`

ri,` b``(ϑ)ϕi(s)
, (13)

where the basis functions ϕi(s) are constructed from a set of
predefined poles {q1, . . . , qn̄} with <{qi} < 0∀i as
ϕi(s) = (s− qi)−1, qi ∈ R
ϕi(s) = [(s− qi)−1 + (s− q?i )

−1] qi ∈ C
ϕi+1(s) = j[(s− qi)−1 − (s− q?i )

−1] qi+1 = q?i ∈ C
(14)

with ϕ0(s) = 1. Therefore, both N(s,ϑ) and D(s,ϑ) are
stable rational functions of the Laplace variable s, sharing
the same set of poles. The Bernstein bases are exploited to
parameterize N(s,ϑ) and D(s,ϑ) via the unknown model
coefficients ri,` ∈ R and Ri,` ∈ RP×P. As these two transfer
functions share the same set of common poles, the zeros
and the poles of H(s,ϑ) coincide with the zeros of N(s,ϑ)
and D(s,ϑ) respectively. The PSK model structure (13)
thus provides a parameterization of both zeros and poles of
each individual model response. Note that the basis poles qi
cancel out in (13) and are not poles of the model. They are
only instrumental for the definition of the barycentric basis
functions ϕi(s) uponwhich themodel structure is constructed.

C. MODEL IDENTIFICATION
The model coefficients are found by minimizing the
model-data error according to fitting condition (12), which
is solved through a sequence of linear least squares problems
based on the linearized approximation

Nµ(jωk ,ϑm)− Dµ(jωk ,ϑm)H̃k,m
Dµ−1(jωk ,ϑm)

≈ 0,

k = 1, . . . k̄, m = 1, . . . , m̄ (15)

where µ = 1, 2, . . . is the iteration index and Dµ−1 is known
at each iteration µ since based on estimates of the denomina-
tor coefficients ri,` at the previous iteration µ − 1. The first
iteration is initialized with D0(jω,ϑ) = 1. Condition (15)
is equivalent to (12) whenever Dµ(jω,ϑ) = Dµ−1(jω,ϑ),
which represents a convergence condition.

All the conditions (15) can be collected in a compact form[
9µx 9µy

] [ xµ
yµ

]
≈ 0 (16)

where vectors xµ, yµ collect the numerator and denominator
coefficients Ri,` and ri,`, respectively, and 9

µ
x and 9

µ
y

are constant (iteration-dependent) regressor matrix blocks.
System (16) is solved in least squares sense, suitably
complemented by a non-triviality constraint to rule out the
all-zero solution [30]. Due to the particular structure of the
regression matrix entering problem (16), each iteration can
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be split in two steps, which seek for xµ and yµ separately,
in order to improve the algorithm efficiency. The first step
finds yµ by solving a reduced least-squares system of the form

0µy y
µ
≈ 0, (17)

obtained by elimination of xµ in (16) through a QR
decomposition. Once yµ is available (e.g. as the singular
vector of 0µy associated to its least singular value), the
following system

9µx x
µ
≈ −9µy y

µ (18)

is solved to find the numerator unknowns xµ. See [31]
for further details about the algorithmic aspects of this
decoupling strategy.

Iterations are stopped when the denominator estimate
stabilizes, i.e., when the following condition is met

δµ =

∥∥yµ − yµ−1∥∥2
‖yµ‖2

≤ ε (19)

being ε a given threshold. Alternatively, the iteration is
stopped if amaximum prescribed iteration number is reached.
Notice that convergence criterion (19) does not involve the
numerator unknowns xµ; therefore, the solution of (18) can
be deferred to the last iteration, once (19) is met.

D. PROBLEM STATEMENT
The objective of this work is to guarantee that the parameter-
ized model (13) is uniformly stable and possibly uniformly
passive throughout the design space 2. We will achieve this
goal by modifying the model identification steps by adding a
set of semi-definite constraints providing provable sufficient
conditions for uniform stability and passivity. We anticipate
that uniform stability is achieved by constraining only
the denominator estimate (17) and provides a necessary
prerequisite to uniform passivity. The latter is controlled by
constraining all model coefficients.

Let us recall the general conditions for the uniform
passivity of a generic parameter-dependent scattering or
immittance LTI system in terms of its transfer matrix
1) H(s,ϑ) regular for <{s} > 0 ∀ϑ ∈ 2
2) H∗(s,ϑ) = H(s∗,ϑ) ∀s ∈ C, ∀ϑ ∈ 2
3) 8(s,ϑ) � 0 for <{s} > 0, ∀ϑ ∈ 2

where ∗ denotes the complex conjugate, and

8(s,ϑ) =

{
IP − H?(s,ϑ)H(s,ϑ) scattering,
H?(s,ϑ)+ H(s,ϑ) immittance.

(20)

Condition 1 is related to uniform stability, whereas the
realness condition 2 is enforced by construction by adopted
model structure (13). Condition 3 defines uniform dissipa-
tivity in terms of Bounded Realness (in the scattering case)
and Positive Realness (in the immittance case). Wihtout loss
of generality, we will only consider the Bounded Realness
conditions in the following, since Positive Realness can be
achieved with a straightforward adaptation.

In summary, we will propose a solution to the following
two problems:

Problem 1: Derive a numerically viable approach to
estimate the model coefficients ri,`, so that Condition 1 is
fulfilled (uniform stability)
Problem 2: Assuming uniform stability, derive a numeri-

cally viable approach to estimate the model coefficients Ri,`,
so that Condition 3 is fulfilled (uniform passivity).
The solution of these two problems requires a set

of state-space realizations for both model numerator and
denominator, seen as individual transfer functions, which are
introduced next.

E. STATE-SPACE REALIZATIONS
A state-space realization for the denominator transfer func-
tion can be constructed as follows [14]

D(s,ϑ)↔ 6D =

(
A1 B1

C1(ϑ) D1(ϑ)

)
, (21)

where the constant matrices A1, B1 are

A1 = blkdiag{A1,i} ∈ Rn̄×n̄ (22)

B1 = [. . . ,B1,i, . . . ]> ∈ Rn̄, (23)

with

A1,i =


qi, qi ∈ R[
σi ωi

−ωi σi

]
, qi = σi ± jωi ∈ C

(24)

B1,i =

{
1, qi ∈ R[
2 0

]
, qi = σi ± jωi ∈ C

(25)

Note that, by construction, the pair (A1,B1) is controllable
and A1 is Hurwitz, as<{qi} < 0 ∀i. The parameterized output
matrices are available as Bernstein polynomials and read

C1(ϑ) =
∑
`∈I`

C`1 b
`
`(ϑ), C`1 = [r1,`, . . . , rn̄,`] ∈ R1×n̄

(26)

D1(ϑ) =
∑
`∈I`

D`1 b
`
`(ϑ), D`1 = r0,` ∈ R. (27)

Using a similar construction, we can realize the numerator
transfer function as follows

N(s,ϑ)↔ 6N =

(
A B

C2(ϑ) D2(ϑ)

)
(28)

where A = IP ⊗ A1 and B = IP ⊗ B1 with ⊗ denoting the
matrix Kronecker product, and where

C2(ϑ) =
∑
`∈I`

C`2 b
`
`(ϑ) C`2 ∈ RP×n̄P, (29)

D2(ϑ) =
∑
`∈I`

D`2 b
`
`(ϑ) D`2 = R0,` ∈ RP×P. (30)

For fixed `, matrix C`2 collects the elements of the model
coefficients Ri,`, i > 0 with a compatible ordering. The pair
(A,B) inherits the controllability property from (A1,B1). All
of the eigenvalues of A are stable.
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IV. UNIFORM STABILITY CONDITIONS
This section presents a solution for Problem 1 and derives
a set of algebraic and convex constraints providing a
guaranteed uniform stability of the model.

Given the adoptedmodel structure (13), stability is attained
by constraining all the zeros of the denominator D(s,ϑ) to
have a negative real part, since these zeros coincide with the
parameter-dependent model poles. The denominator D(s,ϑ)
satisfies by construction Conditions 1, 2 of Sec. III-D being
a real rational and strictly stable function. If we are able
to additionally enforce the dissipativity Condition 3, then
D(s,ϑ) becomes a certified uniformly Positive Real function.
Since any Positive Real function is also minimum phase [32]
with stable zeros, we conclude that enforcing (31) guarantees
indirectly the uniform stability of the model H(s,ϑ). Note
that, under the working assumptions, Condition 3 can be
replaced by the simpler condition

D?(jω,ϑ)+ D(jω,ϑ) ≥ 0 ∀ϑ ∈ 2, ∀ω, (31)

since D(s,ϑ) is strictly stable and bounded for s → ∞,
without poles on the imaginary axis s = jω.
This consideration has been extensively exploited in the

literature to generate stable parameterized macromodels.
From the numerical standpoint, (31) cannot be enforced
directly, as it embeds an infinite number of constraints
that must be verified over the entire continuous frequency-
parameter space. Its enforcement has been addressed either
by discretization into a finite set via sampling-based
strategies [23], or by deriving over-conservative sufficient
conditions on the sign of individual terms in the denominator
expansion [24]. These two strategies are complementary from
the point of view of the modeling performances: while the
former guarantees high level of accuracy but does not provide
a theoretical guarantee for uniform stability, the latter leads
to provable stability and is very efficient but can result in
accuracy degradation due to the approximate nature of the
applied constraints. In what follows, we propose a scheme
that retains the advantages of both approaches.

Let us consider the state-space realization (21) and define
Z1(jω) = (jωIP − A1)−1B1. Condition (31) can be rewritten
as

Z1(jω)?C1(ϑ)> + C1(ϑ)Z1(jω)+ 2D1(ϑ) ≥ 0, (32)

that must hold ∀ϑ ∈ 2,∀ω, or in the more compact matrix
form[

Z1(jω)
IP

]? [
0 −C1(ϑ)>

−C1(ϑ) −2D1(ϑ)

] [
Z1(jω)
IP

]
≤ 0. (33)

Since the pair (A1,B1) is controllable, we can apply the
Yakubovich lemma [33], [34] to cast this frequency domain
inequality as the equivalent algebraic inequality

∀ϑ ∈ 2, ∃L(ϑ) ∈ Sn̄ :

�(A1,B1,L(ϑ))−
[

0 C1(ϑ)>

C1(ϑ) 2D1(ϑ)

]
� 0, (34)

where we define the auxiliary block matrix

�(P,Q,R) =
[
P>R+ RP RQ
Q>R 0

]
(35)

for any triplet of matrices P,Q,R = R> with compat-
ible size, and where L(ϑ) plays the role of an energy
storage function (Lyapunov matrix). Notice that (34) is a
parameterized version of the well-established Positive Real
Lemma [35], in which the additional requirement L(ϑ) � 0 is
automatically entailed by the fact that A1 is Hurwitz.
Condition (34) is a robust Linear Matrix Inequality (LMI)

condition on both the instrumental matrix L(ϑ) and the
denominator coefficients ri,`, which enter the various matrix
blocks according to (26)-(27). Although such conditions are
convex, solving (17) for the denominator coefficients while
enforcing (34) for all ϑ ∈ 2 is still a computationally
intractable task. We have removed dependence on frequency,
but a continuous dependence of the constraints in the
parameters ϑ remains.
This problem is addressed by restricting the class of

the storage functions L(ϑ) to a finite-dimensional space.
In particular, we adopt the following structure using an
expansion into Bernstein polynomials

L(ϑ) =
∑
`∈I`

L` b``(ϑ), L` ∈ Sn̄ ∀` ∈ I` (36)

based on a set of unknown symmetric matrix coefficients
{L`}. Using (36), (34) becomes

∀ϑ ∈ 2, ∃L` ∈ Sn̄, ` ∈ I` :

S(ϑ) =
∑
`∈I`

S` b``(ϑ) � 0, (37)

with

S` = �(A1,B1,L`)−
[

0 C`>1
C`1 2D`1

]
∈ Sn̄+1. (38)

As all Bernstein polynomials are nonnegative, b``(ϑ) ≥
0 ∀` ∈ I`, we see that (34) is implied by the following
sufficient conditions

S` � 0 ∀` ∈ I` (39)

which can be exploited as a set of standard non-parameterized
LMI constraints to be enforced during the estimation of
the model denominator coefficients. More precisely, our
proposed solution for uniform stability enforcement can be
cast as the following semi-definite program

min
yµ

∥∥0µyµ∥∥2 s.t. S` � 0 ∀` ∈ I` (40)

replacing the unconstrained least squares problem (17). The
optimization problem (40) is a semi-definite program that
can be solved through off-the-shelf convex optimization
solvers.

Some remarks about the computational cost are in
order. Let Card(I`) = V . The solution of (40) involves
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(n̄+ 1)V unknown model coefficients and V ((n̄+ 1)2 + n̄+
1)/2 instrumental variables. The size of the regressor matrix
is 0µ ∈ RP2V n̄×V n̄, as explained in [31]. The size of the
symmetric matrices involved in the constraints is n̄ + 1, and
the number of matrix constraints is V . As one could expect,
the proposed approach suffers from a curse of dimensionality
when the dimension of the design space d increases, as both
the number of denominator unknowns and the cardinality
V of the admissible indices grows exponentially with d .
However, as experimentally demonstrated in Section VII, the
numerical solution of (40) requires affordable (desktop-level)
computing resources when making use of state-of-the-art
convex optimization solvers, at least for moderate dimension
d (few units).

We conclude this section by noting that both (36)
and (39) do introduce some amount of conservativity in the
formulation with respect to the continuously parameterized
form (34). We will show in Sec. VI that this amount can
be effectively controlled and reduced thanks to the degree
elevation property of the Bernstein polynomials.

V. UNIFORM PASSIVITY CONDITIONS
This section proposes a solution to the Problem 2 of Sec. IV,
which aims at enforcing uniform dissipativity of the model.
In the assumed scattering representation, this is equivalent
to enforcing the model response H(s,ϑ) to be Bounded
Real throughout the design space 2. As Bounded Realness
requires as a prerequisite the uniform stability, we assume
that the coefficients yµ of the model denominator have
already been identified by solving the convex program (40).
Therefore, this section will focus on the identification of the
coefficients xµ of the model numerator, assuming as frozen
the denominator coefficients.

Let us consider the non-expansivity Condition 3 of
Sec. III-D, that we can equivalently restrict to the imaginary
axis similarly to (31) as

H?(jω,ϑ)H(jω,ϑ) � IP ∀ω ∈ R, ∀ϑ ∈ 2. (41)

Exploiting the model structure (13) provides the equivalent
form

N?(jω,ϑ)N(jω,ϑ)− IP D?(jω,ϑ)D(jω,ϑ) � 0,

∀ω ∈ R, ∀ϑ ∈ 2. (42)

We now replace numerator and denominator with their state-
space realization, as in Sec. IV. Before proceeding, we need
to construct a Multi-Input Multi-Output (MIMO) realization
of the auxiliary system IPD(s,ϑ) appearing in (42), which
replicates the (scalar) denominatorD(s,ϑ) along the diagonal
of a P× P matrix. This realization can be written as

IPD(s,ϑ) ↔
(

IP ⊗ A1 IP ⊗ B1
IP ⊗ C1(ϑ) IP ⊗ D1(ϑ)

)
(43)

=

(
A B

C⊗(ϑ) D⊗(ϑ)

)
, (44)

where all state-space matrices are known since the denom-
inator coefficients have already been determined. Note that

the state matrices A and B are the same as for the numerator
realization (28). Setting now Z (jω) = (jωIn̄P − A)−1B and
using (43), (28), allows to cast condition (42) as[

Z (jω)
IP

]? (
X2(ϑ)− X⊗(ϑ)

)[
Z (jω)
IP

]
� 0, (45)

which must hold ∀ϑ ∈ 2 and ∀ω, and where we have defined
the auxiliary matrices

Xν(ϑ) =
[
C>ν (ϑ)
D>ν (ϑ)

] [
Cν(ϑ) Dν(ϑ)

]
, (46)

being the symbol ν a place-holder for the subscripts
{2,⊗}. As the pair (A,B) is controllable, the application of
Yakubovich lemma [34] translates (45) into the following
equivalent parameterized algebraic condition

∀ϑ ∈ 2, ∃P(ϑ) ∈ Sn̄P :
X2(ϑ)− X⊗(ϑ)+�(A,B,P(ϑ)) � 0, (47)

which can be interpreted as a reformulation of the classical
Bounded Real lemma [35] for stable transfer functions
which are parameterized according to the proposed model
structure (13).

Condition (47) is similar to (34), with the additional
complication that the numerator unknowns xµ that are
embedded in the parameterization of C2(ϑ), D2(ϑ) appear
as quadratic terms in X2(ϑ). It is nonetheless possible to
reformulate (47) as a LMI. First, we write X⊗(ϑ) as a sum
of Bernstein polynomials of total degree m = 2`

X⊗(ϑ) =
∑
m∈Im

Xm bmm(ϑ) (48)

with symmetric matrix coefficients Xm. Since the denomina-
tor coefficients ri,` are available, each Xm can be computed in
closed form as the product of polynomials in Bernstein basis,
using formula (10). Note that this expansion is exact. Second,
we apply the inverse Schur complement to (47), obtaining the
equivalent LMI condition�(A,B,P(ϑ))− X⊗(ϑ)

[
C2(ϑ) D2(ϑ)

]>
[
C2(ϑ) D2(ϑ)

]
−IP

 � 0 (49)

which must be verified ∀ϑ ∈ 2. Third, we apply the
degree elevation property of Bernstein polynomials (8) to the
off-diagonal blocks of (49). More precisely, we rewriteC2(ϑ)
and D2(ϑ) as a sum of Bernstein polynomials of total degree
m starting from their original degree-` expansions (29)-(30),
and we cast the result in compact form as

Y (ϑ) =
∑
m∈Im

Ym bmm(ϑ) =
∑
`∈I`

[
C`>2
D`>2

]
b``(ϑ). (50)

The matrix coefficients Ym depend linearly on the numerator
coefficients Ri,`. Fourth, we enforce the following structure
for the instrumental matrix P(ϑ)

P(ϑ) =
∑
m∈Im

Pm bmm(ϑ), Pm ∈ Sn̄P ∀m ∈ Im. (51)
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Thanks to this assumption, all terms in (49) are Bernstein
polynomials of total degree m, so that (49) can be rewritten
in compact form using (50) and (51) as

F(ϑ) =
∑
m∈Im

Fm bmm(ϑ) � 0 ∀ϑ ∈ 2 (52)

with symmetric matrix coefficients

Fm =
[
�(A,B,Pm)− Xm Ym

Ym> −IP

]
∈ Sg (53)

of size g = Pn̄+ P. Finally, since Bernstein polynomials are
non-negative, we see that (49) is implied by the following set
of semi-definite constraints

Fm � 0, ∀m ∈ Im. (54)

The above conditions can be easily incorporated within
the numerator estimation procedure expressed by (18). This
unconstrained least squares system in the unknown variables
xµ is thus replaced by the following LMI-constrained convex
program

min
xµ

∥∥∥9µx xµ +9µy yµ∥∥∥2 s.t. Fm � 0, ∀m ∈ Im. (55)

The numerical solution (55) provides a set of numerator
coefficients xµ that guarantee uniform passivity of the model.
Due to the convex formulation with a finite number of
constraints, this solution is attained in polynomial time with
standard convex optimization solvers. The data matrices9µx,y
entering (55) have a row size depending on the amount of
training data samples. If the passive structure under modeling
is reciprocal, then the problem involves M (n̄ + 1)(P2/2 +
P/2) unknown model coefficients and M (P2n̄2/2 + Pn̄/2)
instrumental variables, where M = Card(Im). From these
expressions we see that the complexity of the problem
depends not only on the total number M of elements in the
multivariate Bernstein basis used to represent the dissipativity
constraints, but also on the number of interface ports P of
the model. This implies that the proposed approach is only
applicable to small-medium scale systems. This limitation is
common to all convex formulations of passivity constraints
based on the Positive and Bounded Real Lemmas.

As a final remark, we note that in our derivations we
assumed the output matrices associated with the transfer
functions N(s,ϑ) and IPD(s,ϑ) to be expressed as Bernstein
polynomials sharing the same total degree `. If one drops
this assumption, the proposed derivations are still valid,
as the elements of the matrix function (49) can always be
represented as Bernstein polynomial series of equal degree,
by exploiting the degree elevation property.

VI. DEGREE ELEVATION AND CONSERVATIVITY
REDUCTION
The derivations of Sec. IV-V led to the pair of convex
optimization problems (40) and (55) which, when solved
in sequence, provide a guarantee of uniform stability and
passivity of the parameterized model. All the derivations

leading to the LMI constraints (39) and (54) are based on
a chain of necessary and sufficient conditions, exception
made for two main steps. First, the imposition of a particular
polynomial structure for the instrumental matrices L(ϑ) and
P(ϑ) may restrict the class of storage functions that may
provide a stability or passivity certificate for the model. This
in turn may restrict the class of models that can be obtained.
In other words, these assumptions introduce some degree of
conservativity in the identification process.

A second source of conservativity arises from the dis-
cretization of (37) into (39) and of (52) into (54). Considering
the latter, the employed discretization is over-conservative
because F(ϑ) may be uniformly negative semi-definite even
in case some of theFm are not.We now analyze this limitation
in detail, and we propose an effective strategy to reduce
the amount of conservativity, thereby improving the overall
model accuracy.

We consider the replacement of (52) with the discretized
set (54). Let F be the set spanned by all matrices F(ϑ)
as ϑ spans the design space 2. By construction, this set
is embedded in the convex hull generated by all matrix
coefficients Fm

F = {x : x = F(ϑ),ϑ ∈ 2} ⊆ Conv({Fm}). (56)

Enforcing (54) guarantees uniform passivity by constraining
all individual matrix coefficients Fm to be negative semi-
definite, so that

Fm ∈ S−g ⇒ Conv({Fm}) ⊆ S−g ⇒ F ⊆ S−g . (57)

The degree of conservativity depends on the distance
between F and the boundary of Conv({Fm}). The larger
this distance, the larger the degree of conservativity in the
passivity (stability) enforcement. Therefore, reduction of this
distance will lead to a reduction of conservativity and to
an improved model accuracy. Fortunately, the properties of
Bernstein polynomials come at hand for this task, since it
is well known that, for any matrix function in form (6), the
set of control points (the matrix coefficients in the Bernstein
expansion) converge uniformly to the value of the expanded
function under repeated application of the degree elevation
property [36]–[38]. This is graphically illustrated in Fig 1.
Let us apply this property to the present passivity (stability)

enforcement case.We define e = m+(e, . . . , e). Then for any
e we can always write

F(ϑ) =
∑
m∈Im

Fm bmm(ϑ) =
∑
e∈Ie

Fe bee(ϑ), (58)

where the new control points {Fe} are obtained as convex
combinations of {Fm} according to (9). We have

F ⊆ Conv({Fe}) ⊆ Conv({Fm}), ∀e ∈ N. (59)

For increasing e, we have the uniform convergence prop-
erty [36]

lim
e→∞
{Fe} = F(ϑ). (60)
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FIGURE 1. Graphical demonstration of the degree elevation effects. The red line represents the set F of the values attained by a function
defined according to (6) for d = 1, ¯̀ = 4 and F ` ∈ R3; the purple volume is the convex hull of F ; the light blue polyhedra are the convex
hulls of the control points {F `} for different levels of degree elevation. As the degree of the representation increases, the polyhedron
approaches the underlying set F , thus providing better and better outer approximations.

with a convergence rate 1/e, see Fig. 1. For any given
e, we can therefore replace (55) with a less conservative
optimization problem

min
xµ

∥∥∥9µx xµ +9µy yµ∥∥∥2 s.t. Fe � 0, ∀e ∈ Ie (61)

where the constraint Fe � 0 becomes practically equivalent
to (52) for sufficiently large e.

Switching to (61) does not modify the number of decision
variables in the optimization. However, the number of LMI
constraints increases reaching E = Card(Ie), implying
that conservativity reduction comes with an increase in
computational cost. As a beneficial side effect, the degree
elevation property may also lead to a relaxation of the
structure imposed on the instrumental matrix P(ϑ), thereby
addressing the first source of conservativity discussed at the
beginning of this Section. If applying the degree elevation
after imposing a given structure of the storage function (51),
this structure will not change even if expressed as a higher
degree polynomial, and the dimension of the space spanned
by the allowed storage functions will remain the same.
Conversely, if a new degree-elevated structure

P(ϑ) =
∑
e∈Ie

Pe bee(ϑ), Pe ∈ Sn̄P ∀e ∈ Ie (62)

of total degree e is used, all the corresponding control
points Pe will provide independent degrees of freedom in
a degree-e expansion, therefore increasing the space of
allowed storage functions enabling certification of model
passivity (stability). Since polynomials converge to any
arbitrary smooth multivariate function on a compact domain,
this second strategy practically removes the limitations of

the imposed polynomial structure on P(ϑ), as far as e is
sufficiently large.

In our experiments, we observed that the degree elevation
process is very effective in reducing the conservativity of the
passivity constraints (54). Conversely, we did not observe
relevant advantages in applying the same strategy to improve
the stability constraints (40).

VII. EXPERIMENTS
We now report the results of various numerical tests of
increasing complexity, in order to investigate the performance
and the applicability limits of proposed approach. All exper-
iments have been performed using a workstation equipped
with 32 GB of memory and a 3.3 GHz Intel i9-X7900 CPU
using a prototypal MATLAB implementation.

All tests are based on the following settings. The
denominator coefficients yµ are always computed by solving
problem (40), while the numerator coefficients xµ are
estimated at the last iteration by solving problem (61) with
a given level of degree elevation e. When solving this
problem, we always define the structure of the matrix P(ϑ)
as in (62); this implies that the number of variables involved
in the problem is proportional to the number of considered
constraints, i.e. Card(Ie). The above mentioned semi-definite
programs are handled via the YALMIP toolbox [39],
exploiting the MOSEK interior point method for conic
problems [40].

Iterations are stopped when the convergence index δµ ≤
10−3; the evolution of δµ over iterations is displayed below
for each test case, in order to monitor convergence based on
the stabilization of denominator coefficients. With reference
to a given transfer function element Hi,j and the associated
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FIGURE 2. A 1.5-turn integrated inductor parameterized by the
side-length ϑ ∈ [1.02,1.52] mm. Drawing is not to scale.

FIGURE 3. Integrated inductor. Normalized deviation of the denominator
coefficients estimates, as a function of the iteration index µ.

reference data H̃ i,j, we also define the error index

εi,j = max
m=1,...,m̄

√√√√√1

k̄

k̄∑
k=1

∣∣∣∣∣Hi,j(jωk ,ϑm)− H̃
i,j
k,m

H̃ i,j
k,m

∣∣∣∣∣
2

, (63)

which is representative of the worst case relative error of the
model against the data over the design space.

In the considered datasets, the frequency-parameter spaces
are sampled over logarithmically or linearly spaced grids.
However, the proposed technique can be applied also in
case the data are obtained according to some adaptive sam-
pling strategy which leads to unstructured data distribution.
Additionally, in some application scenarios, some a priori
knowledge of the transfer function properties (e.g. degree
of smoothness or resonance and anti-resonance locations)
may be exploited to reduce the number k̄ of frequency
samples retrieved for each parameter configuration. This is
not restrictive for the applicability of the method, provided
that the data samples are sufficient to fully characterize the
structure behavior.

Finally, we remark that the automated selection of the
model hyper-parameters ¯̀ and n̄ is still an open problem.
In the following examples, this selection was performed in
a preprocessing stage with a basic trial and error strategy.

FIGURE 4. Integrated inductor. Residual norm of the constrained
numerator coefficients estimation problem, as a function of the degree
elevation level e. The experimental results are compared to a reference
asymptotic 1/e trend, which is expected based on the theory [36].

FIGURE 5. Integrated inductor. Time required to solve problem (61) as a
function of the number of decision variables; the latter is directly
proportional to the degree elevation e.

A. AN INTEGRATED INDUCTOR
We consider a 2-port, 1.5 turns integrated inductor, parame-
terized by its side-length ϑ ∈ [1.02, 1.52] mm. The structure,
depicted in Fig. 2, is characterized in terms of its scattering
parameters in the bandwidth [0.1, 12] GHz. A total of m̄ =
11 parameter configurations are available as training data
from a field solver sweep, with each dataset including k̄ =
477 logarithmically distributed frequency samples.

This training data is used to generate a passive parame-
terized macromodel of dynamic order n̄ = 7, using degree
¯̀ = 2 polynomials to represent the dependence of the model
responses on the inductor side-length.With these settings, the
solution of the semi-definite program (40) required 0.22 s
on average for the 10 performed iterations. Figure 3 shows
the evolution of the convergence index (19) as the iteration
number increases.

At the last iteration µ = 7, we solve problem (61) for
different values of the degree elevation level e = 1, . . . , 50,
in order to show the effect of the proposed conservativity
reduction. Fig. 4 reports the trend of the optimal cost function
resulting from the solution of (61), as a function of e.
This figure confirms the effectiveness of degree elevation in
the reduction of the conservativity of passivity constraints,
since the residual norm of the cost function is reduced by
almost one order of magnitude. The corresponding CPU time
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FIGURE 6. Integrated inductor. Comparison between parameterized model responses and training data for a degree elevation level e = 50; all the
m̄ = 11 parameter configurations are shown.

requirements are depicted in Fig. 5, as a function of the total
number of variables involved in the optimization, which in
turn depends on the degree elevation order e. For this small-
scale example, the computational time is modest even in the
case e = 50, which is associated to a total of 5847 unknowns.
Considering as an example the model obtained for e = 50,

we verified a-posteriori the non-expansivity condition 3 of
the model. Therefore, we computed the model singular
values over a finely sampled frequency-parameter grid,
using 3000 log-spaced frequency values in the bandwidth
[0, 1011] Hz, and 3000 linearly spaced samples in the design
space. The maximum observed singular value resulted less
than one, with a passivity margin 1− σmax = 3× 10−10.

The quality of the resulting model (for the case e =
50) is confirmed by comparing the model responses to the
training data in Fig. 6. Finally, Fig. 7 reports the relative error
index ε2,1 as a function of the degree elevation e. The figure
reports also the error that would be obtained by generating
a model without enforcing any passivity constraint. We see
that starting from e ≈ 6 the proposed approach is able
to achieve a model accuracy that is not distinguishable
from the unconstrained case. We conclude that proposed
framework is able to guarantee uniform model passivity by
construction, with no accuracy degradation, and with limited
overhead in computing time, at least for this small-scale
example.
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FIGURE 7. Integrated inductor. Relative error ε2,1 for different degree
elevation levels e. The blue line reports the corresponding error for a
model generated without enforcing any passivity constraint.

FIGURE 8. A partially-coupled multiconductor transmission line system.
The parameter ϑ represents the length of the coupling. The drawing is not
to scale.

FIGURE 9. Coupled transmission line. Evolution of the convergence index
δµ through iterations.

B. MULTICONDUCTOR TRANSMISSION LINE WITH
VARIABLE COUPLING LENGTH
This second test case provides an academic example with a
distributed coupling parameter.We consider amulticonductor
transmission line with two differential pairs, each made of
two equal parallel wires (radius of copper core rw = 0.5 mm
and dielectric coating re = 0.8 mm). The two differential
pairs are placed next to each other, so that the wire centers

FIGURE 10. Coupled transmission line. Optimal values of the cost
function in (61) for various degree elevation levels.

FIGURE 11. Coupled transmission line. Time required to solve
problem (61) as a function of the number of decision variables
corresponding to the various degree elevation levels reported in Fig. 10.
The increase in the number of variables is mostly due to the increased
order of the instrumental polynomial matrix P(ϑ).

form a square with adjacent center-to-center distance equal to
1.61 mm. The total length of the interconnect is L = 10 cm,
but the coupling between the two pairs in the corresponding
per-unit-length matrices is considered only over a portion
of the length Lc = ϑ ∈ 2 = [20, 40] mm, which is
the independent parameter considered for this study. The
lines are considered as uncoupled for the remaining length
L − Lc. Figure 8 provides a graphical description for the
structure. This example is selected to illustrate the shifting of
the resonances as ϑ changes, and the capability of the model
to track such resonances (the parameterized model poles)
thanks to the adopted model structure.

The design space is sampled with m̄ = 11 linearly
spaced values. For each parameter configuration a total of
k̄ = 499 logarithmically spaced frequency samples of
the 4 × 4 scattering matrix are extracted in the bandwidth
[0.01, 5] GHz. These samples are used to generate a model
of dynamic order n̄ = 28, whereas numerator N(s,ϑ)
and denominator D(s,ϑ) are parameterized by Bernstein
polynomials of order 4 and 2, respectively.

The convergence of the identification algorithm is demon-
strated in Fig. 9, where the value of δµ for µ ≥ 1 is
reported. For this example, we built 10 different models,
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FIGURE 12. Coupled transmission line. Fitting results for the first-column of the transfer matrix. The elements that are not shown here exhibit similar
trends and a comparable model accuracy.

solving each time problem (61) with different levels of degree
elevation e = 1, 2, . . . , 10. Figure 10 reports the optimal cost

function value from the solution of problem (61) for different
degree elevation levels e. The average time required to solve
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FIGURE 13. Coupled transmission line. Relative error ε2,1 for the passive
models based on different degree elevations, compared to the error of
the model obtained without enforcing any passivity constraint.

FIGURE 14. Parameterized poles trajectories of the coupled transmission
line model. Left panel: in-band poles. Right panel: enlarged view on the
low-frequency region.

FIGURE 15. High-speed PCB stripline interconnect parameterized by via
pad and antipad radii. Drawing for illustration only and not to scale.

problem (40) is 0.72 s, while the time required to solve (61)
depends on the degree elevation level. The actual runtimes for
this test case are reported in Fig. 11.
Figure 12 reports the modeling results obtained with e =

10 for the entire first column of the scattering matrix, while
Fig. 13 depicts the model relative error ε2,1 as a function
of the degree elevation e. These results confirm that also

FIGURE 16. High-speed link. Convergence of denominator coefficients
estimates through iterations.

FIGURE 17. High-speed link. Time required to enforce the model
passivity, as a function of the number of variables required by different
degree elevation levels.

FIGURE 18. High-speed link. Cost function reduction for increasing
degree elevation during passivity enforcement.

for this case the error approaches the limit corresponding
to the unconstrained (hence not guaranteed passive) model,
computed using the same training dataset. A graphical
representation of the model parameterized poles trajectories
is given in Fig 14, computed over a very fine sweep of the free
parameter ϑ ∈ 2. As expected, all the poles are stable with
a negative real part, uniformly in the parameter space. The
presence of bifurcations further confirms the effectiveness
of the proposed approach in modeling non-smooth poles
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FIGURE 19. High-speed link. Comparison of model responses (e = 25) with the corresponding raw data over a random subset of 14 out of the total
81 available frequency responses.

behaviors, thanks to the implicit parameterization provided
by the adopted model structure.

C. A TWO-PARAMETER HIGH-SPEED PCB LINK
This test case considers a 2-parameter structure, namely a
high-speed stripline link running through two PCBs attached
by a connector and the corresponding via fields, first
presented in [41]. A schematic layout of the structure is
depicted in Fig. 15. The PCB substrate has permittivity εr =
3 and tanδ = 0.002. The vertical vias are parameterized by
the pad radius ϑ1 ∈ [100, 300]µm and the associated antipad
radius ϑ2 ∈ [400, 600] µm. See [41] for full details.

The scattering parameters of the structure are available
from a field solver (courtesy of Prof. Schuster, TUHH,
Germany) at k̄ = 250 frequency points linearly spaced in

the interval [0.02, 5] GHz, and over a 9 × 9 uniform grid
in the parameter space. These data are used to generate
a parameterized macromodel with n̄ = 25 poles and
polynomial order of numerator and denominator ` = (3, 2).
The convergence of the denominator coefficient estimation

is illustrated by plotting δµ in Fig. 16. With the considered
model structure, the time required to solve (40), averaged
over the 8 PSK iterations amounts to 1.5 s. For this example,
we considered a number of possible degree elevations levels
e ranging from 1 to 25. The time required to build each
of the 25 models is depicted in Fig. 17. We observe that,
although the time requirements for this example are larger,
the solver scales favourably with the increase in the number
of instrumental variables induced by the higher degree
elevations (almost linearly, at least up to 105 variables).
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FIGURE 20. High-speed link. Evolution of the relative error ε1,1 for the
passive models with different degree elevations, compared to the
unconstrained model error.

The value of the optimal cost function value of the semi-
definite program (55) for different values of e is reported in
Fig. 18, and confirms the same decreasing trend that has been
observed in single-parameter test cases.

For the case e = 25, a visual comparison between the
parameterized model frequency response and the reference
data is provided in Fig. 19, considering a subset of 14 random
parameter configurations out of the available 81. Also in this
case, the accuracy of the model is remarkable throughout the
considered frequency band, with no visual difference between
model and data on this scale. Finally, Fig. 20 reports the
relative error ε1,1 for different degree elevations. Also for this
case the error stabilizes to the same error of the unconstrained
(non-passive) model; this occurs at about e = 15.

In order to assess the influence of the design parameters
on the time-domain responses, and to demonstrate the
efficiency of the parameterized models in a typical use
case scenario, we performed a transient simulation of the
equivalent parameterized SPICE circuit synthesized from the
model. The simulation setup includes a 50� voltage driver
launching a pulse sequence with amplitude 1 V, period T =
3 ns, rise and fall time 200 ps, and bit duration 0.8 ns. The
receiver side is instead terminated by a RC parallel load,
with R = 1 k� and C = 2 pF. We considered a fixed pad
radius ϑ1 = 300 µm, and we let the antipad radius vary,
by considering a linear sweep of 8 configurations within its
allowed range. The results of the simulation are depicted in
Fig. 21, where the voltage signals at the receiver are shown.
The time requirements of each simulation amounted to 0.5 s
using a freeware SPICE solver.

D. AN ACTIVE DEVICE
In this last example we generate a reduced-order small-signal
model of the LowNoise Amplifier (LNA) depicted in Fig. 22,
which includes both lumped elements and lossy transmission
lines. The circuit depends on d = 7 design parameters,
which are listed in Table 1. The device was first presented
in [42]; additionally, it was considered as a test-bench for the
generation of uniformly stable parameterized macromodels
in [24].

FIGURE 21. Parameterized transient analysis of the high-speed link
equivalent circuit. The simulation is performed by considering eight
different antipad radius configurations in the interval [400,600]µm, while
keeping fixed the pad radius to 300µm. Two periods of the output signal
are shown.

FIGURE 22. The LNA circuit schematic.

The purpose of this test case is two-fold. First, we show
that even in case of high-dimensional design spaces, the
generation of uniformly stable parameterized macromodels
can be efficiently tackled by solving problem (40). Second,
we show how the proposed approach is less conservative than
the current state-of-the-art method [24] providing a formal
guarantee of uniform stability given model structure (13).
Of course, uniform passivity is not applicable since this is
an active device.

We consider a fixed operating point VSUP = 4.5 V and
we construct a small-signal linearized model. A total of
m̄ = 1400 parameter configurations are considered according
to a latin-hypercube distribution in the design space. For
each fixed configuration, the reflection coefficient at the
amplifier input port is sampled at k̄ = 701 logarithmically
spaced frequency points in the interval [1, 10] GHz. Only
595 parameter configurations are exploited to generate a
parameterized macromodel with n̄ = 10 and ` =

(1, 1, 1, 1, 1, 1, 2), while the remaining samples are left for
model validation.

With this configuration, the modeling algorithm reaches
the stopping threshold δµ = 10−3 in only 3 iterations. The
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FIGURE 23. LNA example. Comparison between model responses and
validation data over 19 different frequency responses, randomly selected
in the design space.

TABLE 1. Free parameters considered for the modeling of the LNA test
case. First six parameters: parasitic inductances and capacitances of the
transistor. Parameter h is the substrate thickness for lines TL1, TL2, TL3.

average time to solve (40) is 6 s, and the relative error index
results ε = 1.42× 10−3, confirming that the model is highly
accurate also in correspondence of the validation samples. In
Fig. 23, we provide a visual comparison between the model
and the data, for 19 different randomly-selected validation
responses.

In order to show the low degree of conservativity of
the proposed stability constraints, we repeated the same
experiment performed in [24], where the uniform stability
is enforced by imposing a sign inequality directly on the
denominator coefficients rn,` during the model generation.
For this purpose, we considered the same LNA device and
restricted the dimension of the design space to d = 5,
by taking into account only the first five parameters listed
in Table 1. We built a model by setting n̄ = 16 and ` =
(1, 1, 1, 1, 1), as in the referenced article.

The stop criterion δµ = 10−3 was met after 4 iterations,
with an average computing time required to solve (40) equal
to 1.2 s. We computed the relative error index of the resulting
model, obtaining ε = 6.36 × 10−5; the same index for
a model based on [24] was ε = 1.94 × 10−2. Thus,
the proposed technique provides a decrease of the worst
case relative error of about 3 orders of magnitude, while
guaranteeing the uniform model stability by construction.
This improvement is attained in approximately the same
runtime.

VIII. CONCLUSION
This work presented a passive macromodeling strategy that
can be successfully used to generate surrogates of small-
to-medium size passive multiport structures characterized
by a limited number of degrees of freedom. The approach
combines the desirable model compactness feature, typical
of approaches based on multivariate rational fitting, with the
theoretical warranty of uniform model passivity throughout
the design space. As a particular case, removing passivity
conditions enables parameterized (linearized small-signal)
macromodeling of active devices with uniform stability
constraints.

The proposed stability and passivity constraints are
conservative since based on a discretization of continuous
positive and/or bounded realness conditions in a multidi-
mensional parameter space. However, the amount of the
conservativity in the stability and passivity constraints can be
effectively controlled in terms of the Bernstein polynomial
degree elevation, which provides an algorithm control knob.
Therefore, the proposed method naturally allows users to
select the most appropriate trade-off between computational
time requirements for the model extraction and model
accuracy.

Various numerical examples show that stability enforce-
ment is attained in seconds for typical small-medium scale
problems, whereas passivity enforcement requires a larger
runtime, which depends on the cumulative number of
decision variables. The latter depends on the number of
model poles, the degree of polynomials providing model
parameterization, as well as the number of instrumental
variables that are required to cast the proposed constraints
in a convex form. Future research directions will be devoted
to the reduction of the computational burden required by
the proposed strategy, with the objective of handling larger
and more complex electrical, electronic or electromagnetic
structures, and/or the concurrent dependence on more free
parameters.
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