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ABSTRACT Physical unclonable functions (PUFs) exploit randomness in the hardware for the derivation
of cryptographic keys. In the literature, usually the readout is two-level quantized and hard-decision channel
decoding is used to stabilize the extracted key. In this paper, we assess soft-decision decoding of binary PUFs.
It is well known in the literature on channel coding that soft-decision decoding provides significant gains
over hard-decision decoding since reliability information about the symbols is utilized. The PUF readout
process is interpreted as digital transmission over a noisy channel, the respective capacity is calculated,
and the optimum decoding metric is derived. In addition, we propose an augmented helper data scheme
which is suited for soft-decision decoding. This scheme utilizes the fact that operations on the analog
readout values are possible, opposed to operations on hard-decided binary symbols in classical PUFs. The
security of the new scheme is proven and a possible realization is discussed. The performance is covered
by numerical simulations and by applying the scheme to measurement data from FPGA implementations of
ring oscillator PUFs.

INDEX TERMS Physical unclonable functions, helper data scheme, channel capacity.

I. INTRODUCTION
Physical unclonable functions (PUFs) are hardware primi-
tives that can be used to securely generate and store cryp-
tographic keys. Randomness that occurs from uncontrollable
variations in manufacturing processes of physical objects is
exploited to extract a response from the hardware, which
classically is a binary sequence that is unique for each PUF.
Based on the response, a key can be derived. Since the
exploited randomness is static over the object’s lifetime, a
key can be reproduced at any time. Hence, an implicit key
storage is implemented, thereby avoiding additional cost and
chip area, and increasing the security compared to a protected
non-volatile memory for key storage. Since reproducing the
key might be erroneous due to environmental effects like
changing temperature or supply voltage, channel coding has
to be applied to guarantee stable keys.

Strategies for channel decoding differentiate between
hard-decision decoding and soft-decision decoding. In hard-
decision decoding, tentative decisions are produced by a
threshold device (i.e., a quantization operation). Based on
these ‘‘hard’’ symbols, the decoder aims to estimate the
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transmitted codeword. In contrast, in soft-decision decod-
ing reliability information about the symbols is present or
can be extracted; these ‘‘soft’’ values are utilized in the
decoder. In practical schemes, the reliability information is
often expressed as so-called log-likelihood ratios.

Traditionally, PUFs employ hard-decision decoding; the
PUF readout is quantized (threshold operation) and all further
operations are based on these quantized symbols. To enable
decoding, during initialization, helper data is generated. Via
the helper data, the original PUF response is transferred
to a codeword of the desired error-correcting code. During
reproduction, the readout may differ from the original PUF
response. However, applying the helper data, the response is
transferred to the form of codeword plus superimposed error
word. If the error word has a small enough Hamming weight,
decoding will be possible, cf., e.g., [1]–[4]. Note that in the
classical setting, responses, helper data, and codewords are
all assumed to be binary.

The concept of soft-decision decoding has also been trans-
ferred to PUFs. Essentially two methods for gathering soft
information from PUF measurements gained interest in the
literature. First, reliability information about the individual
PUF cells can be obtained by repeatedly extracting the binary
PUF response during initialization and evaluating the fraction
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of ones for each position. These reliability information
can be used to calculate the decoding metric, e.g., [5]–[7],
or to improve the channel by only using highly reliable
response bits, e.g., [8], [9]. Second, instead of deriving a
quantized binary response, depending on the PUF construc-
tion, real numbers can directly be extracted. For example,
real-valued frequency differences of ring oscillators may be
exploited, cf. [8].

In the present paper, we follow the second line of work and
deal with soft-decision decoding of binary PUFs. To that end,
we interpret the PUF readout process as digital transmission
over a noisy channel and calculate the respective capacity.
In addition, the optimum decoding metric is derived. Based
on these information-theoretic considerations, the code rates
can be chosen. Moreover, we propose an augmented helper
data scheme which is suited for soft-decision decoding. This
scheme utilizes the fact that operations on the analog (non-
quantized) readout values are possible, opposed to operations
on hard-decided binary symbols in classical PUFs. The secu-
rity of the new scheme is proven and a possible realization is
discussed. The performance is covered by numerical simula-
tions and by applying the scheme to measurement data from
FPGA implementations of ring oscillator PUFs.

PUFs are usually categorized into weak and strong PUFs.
We primarily address weak PUFs (typically used for key
generation, i.e., a unique fingerprint is delivered based on
the properties of the hardware), although the discussed con-
cepts can be translated to strong PUFs (for example used
for authentication, i.e., the unique response is additionally
dependent on a challenge). In addition, we consider the
coding/decoding scheme and do not study attacks, as, e.g.,
done in [10], [11], and do not address countermeasures as, e.g,
done in configurable ROPUFs or transformer PUF, cf. [12].

The paper is organized as follows: In Sec. II, PUFs are
reviewed and the use of soft information is discussed. The
capacity is calculated and the optimum soft-decision decod-
ing metric is derived. A new helper data scheme which
exploits the degrees of freedom additionally present when
operating on the analog readout is presented in Sec. III. Its
security is proven and its free parameters are optimized for
achieving best performance. Numerical examples are given.
The paper closes in Sec. IV with a brief summary.

II. PHYSICAL UNCLONABLE FUNCTIONS EMPLOYING
SOFT-DECISION DECODING
In this section we review classical PUFs and study those
which directly employ an analog quantity which is extracted
from the hardware. Based on an information-theoretic
analysis—in particular considering the capacity when inter-
preting the readout process of PUFs as digital transmission
over a noisy channel—we compare the potential performance
when using hard decisions and soft information, respectively.

A. RING OSCILLATOR PUFs
PUFs, introduced in [13], exploit intrinsic randomness that
occurs due to variations in the manufacturing process of

physical items. Since the extracted randomness is usually
static over the lifetime of the PUF, keys can be regenerated
when required by a cryptosystem, and hence, no non-volatile,
protected memory is needed to implement a key storage.
Thereby PUFs replace pseudo random number generators and
non-volatile memories to provide secure key generation and
storage, respectively.

Essentially, the randomness in PUFs is either extracted
from delays in electronic components or from the behavior of
memory cells. We focus on ring oscillator PUFs (ROPUFs),
the most prominent member from the group of delay-based
PUFs, cf. [14], [15]. A ring oscillator (RO) is a loop con-
sisting of an odd number of inverters. If a signal propagates
through the RO, it oscillates with a frequency whose actual
value depends on the random delays in its inverters and wires.
Fig. 1 visualizes the structure of a ROPUF.

FIGURE 1. Structure of a ring oscillator PUF with quantized (binary)
readout r and (suitably scaled) analog readout r , respectively.

In a PUF implementation, pairs of ROs are selected by
a multiplexer. The frequencies of the ROs are measured by
counters and the frequency difference rdiff is calculated. In the
classical description of ROPUFs, depending on the sign of
rdiff either the binary symbol1 0 or 1 is derived. The symbols
of n RO pairs are combined into a vector r = [r1, . . . , rn]
which establishes the extracted information.

When re-extracting this information again in a reproduc-
tion phase, due to variations in the environmental conditions
(e.g., temperature or supply voltage), errors might occur, i.e.,
the word rwill differ from theword rref derived during initial-
ization. In the literature, this behavior is traditionallymodeled
by rref, the nominal/reference readout being transmitted over
a binary symmetric channel (BSC); its bit error probability is
often approximated by p ≈ 0.14, e.g., [2], [16], [17].

Hence, in order to guarantee a stable result, channel coding
has to be employed to correct the readout errors. However,
the nominal readout rref is in general not a valid codeword
from a given binary channel code. This problem is solved
by employing a so-called helper data scheme (HDS); the
most-often used in practical applications is the code-offset
algorithm according to [18]–[20].

1Notation: We distinguish between quantities from the set of real numbers
R (conventional font) and variables over the binary field F2 (fraktur font,
e.g., mi = 0). In addition, we distinguish between scalars (normal font) and
vectors (bold font). Real vectors, e.g., r = [r1, . . . , rn]T, are column vectors,
however, as usual in channel coding, vectors over the finite field, e.g., c =
[c1, . . . , cn], are row vectors.
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There, in an initialization phase which is carried out in
a secure environment, a k-bit message m is randomly, uni-
formly drawn and encoded (ENC) into a codeword c =
ENC(m) employing a given binary error-correcting code C.
The wordh = rref⊕c established the helper data (⊕: addition
over the binary field F2); it may be stored publicly. In the
reproduction phase, the (erroneous) word r is extracted from
the hardware andy = r⊕h is calculated. Due to construction,
y = c ⊕ (rref ⊕ r) = c ⊕ e, i.e., the codeword plus an
additive error given by the deviation between rref and r is
present. If the Hamming weight of e is below the error cor-
recting capability, a (hard-decision) channel decoder is able
to recover the correct codeword c and, thus, the associated
messagem.

B. SOFT-DECISION DECODING
Alternatively, as done in [21], the real-valued frequency
differences rdiff can be utilized directly in a soft-decision
decoder. It is well known in the literature that soft-
decision decoding provides significant gains over hard-
decision decoding since reliability information about the
symbols is utilized.

To that end, we suitably normalize the (analog) fre-
quency difference rdiff by multiplying with a scaling factor c
(additionally a possible mean is removed). The normalized,
real-valued readout symbols are denoted as r . As shown
in [21] for ROPUFs, the readout vector which combines n
PUF cells is very well modeled by

r = rref + eref, (1)

where both, the reference/nominal readout rref and the error
word eref, are zero-mean Gaussian distributed. W.l.o.g. the
normalization factor c can be chosen such that rref has unit
variance (per element, i.e., σ 2

x = 1). The error vector eref
has variance σ 2

e per element. As shown in [21], over a wide
range of temperatures the error variance is not larger than
σ 2

e = 0.01; the corresponding signal-to-noise ratio (SNR) is
thus at least 10 log10(1/σ

2
e ) = 20 dB. We expect the scheme

to produce reliable outputs for SNRs larger than this worst
case.

The above discussed code-offset algorithm can easily be
adapted to the case of soft readout [21]. To that end, we define
a mapping of the binary (finite-field) symbols ‘‘0’’ and ‘‘1’’
to the real-valued elements of a binary phase shift-keying
(BPSK) alphabet. The mapping is done according to

M(0) = +1, M(1) = −1. (2)

Since M(c1 ⊕ c2) = M(c1) · M(c2), a homomorphism
between addition over F2 and multiplication of BPSK sym-
bols exists; the addition of ‘‘1’’ over F2 is equivalently
done by a sign flip (multiplication with −1) over the real
numbers.

As the sign of the readout represents the extracted informa-
tion, the sign has to be adjusted such that it matches the sign
of the desired codeword c which is mapped (element-wise)
to a BPSK constellation, i.e., a =M(c). The sign flip for the

entire word can be represented by a signed identity matrix
S (±1 on the main diagonal; zero else). In the initialization
phase, this matrix (which is equivalent to h) is calculated and
stored publicly.

In the reproduction phase,

y = Sr = S
(
rref + eref

)
= x+ e, (3)

is calculated. As can be seen, the useful (error-free) signal x =
Srref is distorted by the error e = Seref. Still both quantities
are zero-mean Gaussian distributed with variances σ 2

x = 1
and σ 2

e , respectively.

C. SIGNAL/CHANNEL MODEL AND CAPACITY
1) STATISTICS OF THE SIGNALS
We start with the model (3) of the processed PUF readout
(after application of the helper data), and aim at deriving the
optimum decoding metric and the capacity of the scheme.
To that end, in Fig. 2, the probability density function (pdf)
of the useful (error-free) PUF readout x is depicted; it is zero-
mean, unit variance Gaussian distributed.

FIGURE 2. Regions of the pdf of the PUF readout representing the binary
information 0 and 1, respectively. Gray Diracs: Situation in BPSK.

In BPSK, the binary 0 is represented by the real number
(signal point) +1; the binary 1 by −1. Each binary symbol
is thus represented by a unique number; the pdf of the BPSK
data symbols is discrete (gray Diracs in Fig. 2). When con-
sidering soft-output PUFs, this unique representation is no
longer present. Instead, any number from the region R0 =

{x | x ≥ 0} represents a binary 0 and any number from the
region R1 = {x | x < 0} represents a binary 1, i.e., since
both regions are used with probability 1/2, we have

fx (x | c = 0) =


2
√
2π

e−
x2
2 , x ∈ R0 = [0, −∞)

0, else,
(4)

fx (x | c = 1) =


2
√
2π

e−
x2
2 , x ∈ R1 = (−∞, 0)

0, else.
(5)

The binary information is thus represented by any number
from a region. The number which is actually present in a
PUF cell can be seen as randomly drawn from the regions
following the Gaussian distribution within the region.

For performance evaluation, the point of view is thus
reversed compared to the operations in a PUF. Instead of
stating that the PUF readout is positive or negative and thus
gives a 0 or 1, we pretend to communicate a 0 or a 1 and
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select the actual physical representation randomly from the
given region and according to the given statistics. This can be
seen as randomness at the transmitter being present, which is
an important concept in physical-layer security [22].
The selected symbol x is transmitted over an AWGN chan-

nel, i.e., zero-mean Gaussian noise with variance σ 2
e , which

is independent of x, is superimposed. After some manipula-
tions, the conditional pdfs of the receive signal y given the
binary symbol to be communicated can be calculated to be

fy (y | c = 0) = fx (y | c = 0) ∗ fe(y)

=
1

√
2πσ 2

y
e
−

y2

2σ2y Q(−Fy), (6)

fy (y | c = 1) = fx (y | c = 1) ∗ fe(y)

=
1

√
2πσ 2

y
e
−

y2

2σ2y Q(+Fy), (7)

where ‘‘∗’’ denotes convolution and Q(x) is the complemen-
tary Gaussian integral function

Q(x) def
=

∞∫
x

1
√
2π

e−
z2
2 dz. (8)

We use the abbreviations

σ 2
y

def
= 1+ σ 2

e , F def
=

1
σy σe

. (9)

2) CAPACITY
Knowing the pdfs of channel input and output, we are able
to calculate the capacity—expressed in bit/PUF cell or in
short bit/cell—of this channel, i.e., the mutual information
I(c; y) between the imagined binary channel input c and the
real-valued channel output y. From basic information theory,
e.g., [23], we have (integration is done over the entire real
line)

CSD = I(c; y)

=

∫ ∑
c∈{0,1}

1
2
fy (y | c) log

(
fy (y | c)
fy (y)

)
dy

=

∫ ∑
c∈{0,1}

1
2
fy (y | c) log

(
fy (y | c)

)
dy

−

∫ ∑
c∈{0,1}

1
2
fy (y | c) log

(
fy (y)

)
dy

=

∑
c∈{0,1}

1
2

∫
fy (y | c) log

(
fy (y | c)

)
dy

−

∫
fy (y) log

(
fy (y)

)
dy

= h(y )−
∑

c∈{0,1}

1
2
h(y | c), (10)

here h(·) denotes differential entropy. Note that, due to sym-
metry, fy (y | c = 0) = fy (−y | c = 1) and thus h(y | c =
0) = h(y | c = 1). Considering that e is Gaussian distributed

and, thus, has differential entropy h(e) = 1
2 log2(2πeσ

2
e ), and

y is Gaussian distributedwith variance σ 2
y = 1+σ 2

e , we arrive
at

CSD = h(y )− h(y | c)
= h(y )− h(e)− h(y | c)+ h(e)

=
1
2
log2

(
1+

1
σ 2

e

)
−

(
h(y | c)−

1
2
log2(2πeσ

2
e )
)

= CGauss − Chalf Gauss, (11)

whereCGauss denotes the capacity of the AWGN channel with
Gaussian input and Chalf Gauss the respective capacity when
the input is half-normal distributed. The capacity is thus given
as the difference between the capacity when using the entire
distribution and that of using only the positive (or negative)
half.

3) DECODING METRIC
In soft-decision decoding the reliability is often expressed as
log-likelihood ratio (LLR), which, for equal-probable binary
symbols is given by

LLR = log
(
Pr{c = 0 | y}
Pr{c=1 | y}

)
= log

(
fy (y | c = 0)
fy (y | c = 1)

)
. (12)

Using (6) and (7), we have

LLR = log
(
Q(−F y)
Q(+F y)

)
. (13)

Please note that in case of BPSK over the AWGN channel the
LLR would read

LLR =
2
σ 2

e
y. (14)

4) HARD-DECISION DECODING
For comparison, we also consider hard-decision decoding.
Here, the decoder is fed with the hard decisions and operates
on the Hamming metric.

The hard decisions are characterized by their bit error ratio
(before decoding). Due to symmetry, the end-to-end model
for the channel including the receiver-side quantization is
given by binary symmetric channel (BSC). Its bit error ratio
is given by

BER =
∫
∞

0
fy (y | c = 1) dy=

∫ 0

−∞

fy (y | c=0) dy. (15)

The capacity of this BSC is then

CHD = 1− H2(BER), (16)

where the binary entropy function is defined as

H2(x)
def
= −x log2(x)− (1− x) log2(1− x). (17)
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FIGURE 3. Capacities over the signal-to-noise ratio (in dB) in case of
Gaussian readout and BPSK. Solid: soft decision; Dashed: hard decision.

D. NUMERICAL EXAMPLE
In Fig. 3, the capacities are plotted over the signal-to-noise
ratio. Besides the capacity in case of Gaussian readout, that
of BPSK is displayed. The sold lines are valid when utilizing
the analog channel output; the dashed lines when only hard
decisions are used.

As can be seen, for a fixed SNR, the Gaussian readout
provides a much lower capacity than BPSK signaling in
conventional digital transmission. Moreover, for a Gaussian
readout, hard decision causes a much more significant loss
as in case of BPSK. This means, that PUFs utilizing soft-
decision decoding enable a large gain over the conventional
hard-decision decoding design. For example for a desired
capacity (rate of the code) of C = 0.7 bit/cell, the curves
for Gaussian readout are spaced by approximately 5 dB; soft-
decision decoding is possible at 5 dB lower SNR than hard-
decision decoding.

III. NEW HELPER DATA SCHEME
In this section, we present an augmented helper data scheme
for soft-decision decoding. The general principle will be
enlightened, its security analyzed, and a particular realization
is proposed.

A. BASIC PRINCIPLE
In classical hard-decision binary PUFs the symbols ‘‘0’’ and
‘‘1’’ are flipped in a way such that the noise-free (reference)
readout is a randomly chosen valid codeword. Considering
the analog readout, as discussed above, a flipping of the sign
of the real-valued symbols is the corresponding adequate
strategy. However, operating on the analog readout, much
more degrees of freedom as for hard-decision binary PUFs
are possible.

Consequently, in addition to the sign flipping via the signed
identity matrix S, we propose a further addition of a suitably
chosen real-valued word d ∈ Rn—subsequently we call this
word ‘‘dither’’. In the initialization phase both components
are selected and establish the helper data H = {S, d}. The
situation of the reproduction phase and the interpretation as
communication scheme are depicted in Fig. 4.

As in the binary hard-decision case, the component S of the
helper data guarantees that rc is a valid (mapped) codeword.
If the component d would not be present (or d = 0), the
reproduction task is to decode rc in additive Gaussian noise
e. Employing the real-valued word d , the useful signal which
has to be decoded is x = rc + d—choosing d suitably, the
pdf of x can be shaped and, thus, decoding may be done more
reliably.

However, when choosing d , two contradicting demands
have to be taken into account. On the one hand, the perfor-
mance of the decoder should be improved. Hence, d has to be
dependent on rc; their sum should be decodable more reliable
than only rc. On the other hand, as the helper data, and thus
d , is publicly available, it must not reveal any information
about rc.
We first analyze the security of this scheme and then

present a possible choice of d which fulfills the contradicting
demands.

B. SECURITY OF THE HELPER DATA SCHEME
As described above, the k-bit messagem is chosen uniformly
at random. Encoding and mapping to BPSK symbols is a one-
to-one function and gives a =M(ENC(m)). The helper data
S is chosen such sign(Srref) = sign(rc) = a is the valid
chosen codeword; the part d of the helper data is generated
suitably.

a: DECODABILITY
First, it has to be proven that knowing the PUF readout rref
(ideal, noise-free case) and the helper data H = {S, d},
the message is known. To that end we study the mutual
information; the chain rule [23] gives

I(m; rref, {S, d}) = I(m; rref,S)+ I(m; d | rref,S)

= I(m; rc)+ I(m; d | rc). (18)

As the sign of rc is a one-to-one deterministic function ofm,
we have

I(m; rc) = I(m; a) = k, (19)

I(m; d | rc) = H(m | rc)− H(m | d, rc)

= 0− 0 = 0, (20)

FIGURE 4. Block diagram of the processing at the reproduction phase
(top) and interpretation as communication scheme (bottom).
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thus

I(m; rref, {S, d}) = k + 0 = k. (21)

b: NO LEAKAGE WHEN KNOWING THE PUF READOUT
Second, since the message m is drawn independently from
the PUF readout rref, by definition, we have

I(m; rref) = 0. (22)

This means that no information about m can be extracted
when only rref is known.

c: NO LEAKAGE WHEN KNOWING THE HELPER DATA
Finally, we consider the case when only the (public) helper
dataH = {S, d} is known. Sincem determines a = sign(rc),
we have

I(m; {S, d}) = I(m; S)+ I(m; d | S),

= I(a; S)+ I(a; d | S)

= I(a; S)+ I(a; d). (23)

The last equation is valid since S is irrelevant when know-
ing a. Hence, we have the intuitive result that a possible
leakage is the sum of the leakage via S and that via d .
We abbreviate the latter by I(a; d) = n Ld and calculate Ld
when discussing a specific way to choose d .
The former mutual information can be written as

I(a; S) = H(S)− H(S | a). (24)

The entropy of a signed identity matrix is H(S) = log2(2
n) =

n. Knowing a (but not rref) does not decrease the uncertainty
about S. Formally, H(S | a) = n. Hence, combining the
results yields

I(a; S) = 0, (25)

and finally

I(m; {S, d}) = n Ld. (26)

When the leakage Ld due to the word d can be made zero, the
entire leakage of the scheme will be zero.

C. SCHEME WITH DITHER
We now present a first approach for choosing the word d .
To that end, two extreme cases can be observed.

First, if d = 0, regardless of the other quantities, no mod-
ification of rc is done to obtain x. Thus, x is Gaussian dis-
tributed and the initial situation is present. Clearly, no leakage
is caused and Ld = 0.

Second, if d = sign(rc) − rc is chosen, we have x = rc +
d = sign(rc) ∈ {±1}n; the situation of a BPSK transmission
would be present. However, here a significant leakage is
caused. In general, error-free decoding of the message m
purely based on d would be possible.
Consequently, a suited strategy has to be in between these

extreme cases— x should be moved away from a Gaussian
distribution to support decoding, but at the same time no (or

only little) leakage should be caused. In other words, d should
be selected based on rref, S, and a, such that the performance
of the reconstruction is increased but the leakage is as small
as possible. A possible procedure is to maximize the capacity
of the AWGN channel with input xminus the leakage caused
by the knowledge of d .

1) DITHER AND PROBABILITY DENSITY FUNCTIONS
Our proposal is as follows: As already done in [21], the sign
of the readout rref is flipped, i.e., rc = S rref is generated (S
is selected suitably), such that sign(rc) is a valid (mapped)
codeword.

The new part d is generated as follows; all subsequent
calculations are done individually per elements of theword rc.
Let u be a random variable, independent of all other variables,
and uniformly distributed over the interval [0, µ], where
µ is a free parameter to be optimized. Further, let ν be a
given threshold which has to be optimized, too. Then, the
considered element d of the vector d is calculated as follows

d =

{
u, rc < −ν and 0 ≤ rc < ν

−u, −ν ≤ rc < 0 and ν ≤ rc,

which means that

x = rc + d =

{
rc + u, rc < −ν and 0 ≤ rc < ν

rc−u, −ν ≤ rc < 0 and ν ≤ rc.

We call d ‘‘dither’’ as the word rc is dithered; the elements
of x jitter around the original values of rc. The use of a dither
is a well-known concept in digital transmission and channel
decoding, e.g., [24], [25].

The support of the joint pdf of rc and d is sketched in
Fig. 5. This joint pdf has a Gaussian marginal pdf over rc and
a uniform marginal pdf (interval [−µ, µ]) over d .

FIGURE 5. Support of the joint pdf of rc and d . Shown for µ < ν.

Please note that

Pr{rc ≥ 0 | d < 0} = Pr{rc < 0 | d ≥ 0}

= 2Q(ν), (27)

Pr{rc < 0 | d < 0} = Pr{rc ≥ 0 | d ≥ 0}

= 1− 2Q(ν). (28)

When knowing the sign of d , the entropy of the sign of rc is
thus only H2(2Q(ν)). Hence, the leakage (per symbol) caused
by knowing d is

Ld = 1− H2(2Q(ν)). (29)
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FIGURE 6. Support of the joint pdf of rc and x . Shown for µ < ν. (Only
the positive part is shown. The pdf is point-symmetric about the origin.) .

If ν = 0.674, we have 2Q(0.674) = 1/2; here, knowing
d does not give any information about the sign of rc which
carries the message; no leakage is caused.

The support of the joint pdf of rc and x = rc+d is sketched
in Fig. 6. As above, this joint pdf has a Gaussian marginal pdf
over rc and (for fixed rc) is uniform in x direction.
Integrating this joint pdf over rc gives the pdf of x

(marginal pdf). In anticipating the subsequent results, wemay
restrict ourselves to the range ν/2 ≤ µ ≤ ν. For this case, the
marginal pdf is given by (for x ≥ 0 and fx (−x) = fx (x))

fx (x) =



0 ≤ x < ν − µ
1
µ

(
Q(0)− Q(x)

)
,

1
µ

(
Q(0)− Q(x)+ Q(ν)− Q(x + µ)

)
,

ν − µ ≤ x < µ
1
µ

(
Q(x − µ)− Q(x)+ Q(ν)− Q(x + µ)

)
,

µ ≤ x < ν
1
µ

(
Q(x − µ)− Q(ν)+ Q(x)− Q(x + µ)

)
,

ν ≤ x < ν + µ

x ≥ ν + µ
1
µ

(
Q(x)− Q(x + µ)

)
,

(30)

The influence of the dither on the pdf of x is visualized
in Fig. 7. Via the dither, the Gaussian pdf of the readout
(magenta) is driven towards the discrete pdf of a BPSK trans-
mit signal (blue). Since the pdf has much less contributions
around the threshold x = 0, better performance can be
expected.

FIGURE 7. Pdf of the transmit signal: Gaussian readout, BPSK, and
scheme with dither (ν = 0.674, µ = 0.6).

2) OPTIMIZATION OF THE PARAMETERS
For best performance, the free parameters µ (amplitude)
and ν (threshold) have to be optimized. If zero leakage is
requested, ν = 0.674 has to be selected but still µ has to
be adjusted.

The optimization can be done as follows: Given the pair µ
and ν, the pdf of the transmit signal x is calculated via (30).
Having fx (x), the capacity CSD can be calculated numeri-
cally via the procedure explained in Sec. II-C by replacing
the Gaussian pdf by the given one. Finally, considering the
leakage for the specific choice of ν, the useful capacity C =
CSD−n Ld is obtained. For each desired useful capacity (equal
to the rate of the code), the optimum pair µ and ν (for which
the required SNR is minimum) can be determined.

The results are depicted in Fig. 8. There, the capacity
in case of Gaussian readout is compared with the case of
employing a dither. It is visible, that via a dither, significant
gains can be achieved. For example, a desired capacity is
C = 0.7 bit/cell is already guaranteed at an approximately
4 dB lower SNR. If ν = 0.674 is fixed such that no leakage
is present, some (small) loss compared to the case when a
leakage is allowed (but the useful capacity is maximized) has
to be accepted. However, even the case of no leakage shows
very good performance. For reference, the capacity curve
of BPSK over the AWGN channel is shown as well. Using
a dither, approximately half the distance between Gaussian
readout and BPSK can be bridged.

FIGURE 8. Comparison of the capacities over the signal-to-noise ratio (in
dB) for Gaussian readout, BPSK, and scheme with dither (‘‘opt’’: µ and ν
optimized for maximum useful capacity; ‘‘no leakage’’: ν = 0.674 and µ
optimized).

3) OPTIMIZATION OF THE PDF
Up to now, the elements of the dither d are uniformly dis-
tributed. Obviously, the pdf of the initial random variable u
can be optimized. Please note that the above statements on the
leakage are valid regardless of the pdf of u. Hence, as long
as ν = 0.674, no leakage is caused. For optimizing the pdf,
we restrict ourselves to this case.

We now allow the pdf of u to follow any function over
the interval [0, µ] given by a polynomial of degree pu,
i.e., fu(u) =

∑pu
l=0 ζl u

l . Thereby, the coefficients ζl have
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to be normalized such that
∫ µ
0 fu(u) du = 1. Unfortunately,

in this case no closed-form expression for fx (x) can be given.
However, via numerical optimization the coefficients ζl have
been optimized for polynomials up to degree pu = 4 to
maximize capacity. Over a wide range of SNRs, the optimum
is very close to a triangular distribution fu(u) = 2

µ
u, for

u ∈ [0, µ], and zero else.

4) NUMERICAL SIMULATIONS
Finally, we present results from numerical simulations. Polar
codes [26] are used as channel coding schemes as a low-
complexity soft-input decoding algorithm is available, which
can be efficiently implemented in hardware [27]. A code with
rate R = 0.7 and codelength n = 1024 is presumed; the code
is designed based on the Bhattacharyya parameter [26], [28];
for the rate-0.7 code we use the design SNR 5.74 dB (3 dB
above the capacity limit of BPSK over the AWGN channel;
blue curve in Fig. 8). Successive cancellation decoding is
employed. LLRs clipping to a maximum magnitude of 100
is active.

We plot the word error ratio (WER), i.e., the probability
that the reproduced message m̂ differs from the actual mes-
sagem. As common for FPGA PUFs, a WER below 10−6 is
desired.

Fig. 9 compares the different situations. First, Gaussian
readout without additional dither is considered (magenta).
The solid lines are valid for the (correct) LLR calculation
according to (13) and the dashed lines are valid for the LLR
calculation (14) which is optimum for BPSK. Clearly, the
LLR calculation matched to the specific situation gives better
results than that for BPSK. However, the loss due to the much
simpler calculation is not too large. For comparison (black),
the WER when using hard decisions is given. The significant
gain due to soft decisions is clearly visible.

FIGURE 9. Word error ratio (WER) over the signal-to-noise ratio (in dB).
Polar code with rate R = 0.7. Uniformly distributed dither (no leakage
case: ν = 0.674 and µ = 0.6; leakage case (opt): ν = 0.849 and µ = 0.807;
coderate increased to R = 0.732) and triangularly distributed dither (no
leakage case: ν = 0.674 and µ = 0.53).

Employing the (uniformly distributed) dither, much bet-
ter performance can be achieved. The cyan lines are valid
for the parameters ν = 0.674 and µ = 0.6; here no
leakage is present. The red lines hold for ν = 0.849 and

µ = 0.807 (opt); as here a leakage of 1 − H2(2Q(0.849)) =
0.032 bit/symbol is present, the coderate is increased to R =
0.732. Even with this larger coderate, a better performance
is achieved. Both LLR calculations (which here are both
approximations) give almost the same performance.

The green curve is valid for the case of a triangularly
distributed dither (here only the LLR calculation according
to (13) has been used). Here, ν = 0.674 (no leakage) is
chosen and µ = 0.53 results from the optimization. Employ-
ing this optimized pdf of the dither, a gain of approximately
1 dB can be achieved over the situation when the dither is
uniformly distributed.

Finally, the potential performance of BPSK over anAWGN
channel is shown (blue). Please notice that the relations pre-
dicted by the capacity arguments (cf. Fig. 8) are reflected in
the word error rate curves. Due to the finite (relatively short)
codelength, the absolute gaps are larger than the differences
in capacity.

D. EVALUATION WITH ROPUF MEASUREMENT DATA
At the Institute of Microelectronics at Ulm University, 22
instances of FPGAROPUFs have been implemented, cf. [15].
Out of the available ROs, n = 1024 disjoint pairs have been
selected randomly. Each pair has been measured at various
temperatures; we use the measurements from −10 ◦C to
50 ◦C (in steps of 10 ◦C). Temperature variations, voltage
variations, and aging are the most relevant items for readout
deviations/errors. However, in contrast to the environmental
temperature, the supply voltage can (and will) be stabilized
by voltage regulators.

The reference readout rref of each PUF instance is obtained
by averaging 10 readouts at a temperatures of 20 ◦C. For
each instance, the message m is randomly selected and the
helper data (sign-flipping matrix S and uniform dither d)
is generated as detailed in the present paper. We restrict
ourselves to the no-leakage case ν = 0.674). Polar codes with
codelength n = 1024 are employed.
For verification, 10, 000 readouts per PUF instance and

per temperature are used. The helper data is applied to the
verification readout and decoding is performed.

In Tab. 1, the number of erroneous PUF instance among
the 22 instances and the number of word errors per erroneous
instance are tabulated. The rate is chosen as R = 0.7 (with the
optimum choice µ = 0.60), R = 0.8 (with µ = 0.57), and
R = 0.9 bit/cell (withµ = 0.55). Results for the schemewith
andwithout dither are given. For example, forR = 0.8 and the
schemewith dither, error occurred in 3 out of the 22 instances;
19 instances were free of errors over the entire temperature
range. The 3 instances with errors showed a singe or two
errors over the entire temperature range (7 temperatures) and
all 10, 000 readouts per temperature.
The improvement by using the proposed dither is clearly

visible. Without dither, in all cases errors occur. For R =
0.7, the scheme with dither is able to deliver all messages
free of errors. For higher rates, the scheme without dither
completely fails; in the scheme with dither only rare errors
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TABLE 1. Number of erroneous PUF instance (out of the 22 instances and
over the entire temperature range) and word errors per erroneous
instance for the binary scheme with and without dither.

occur. In summary, the proposed scheme is able to operate
reliably over a wide range of temperatures and with rates up
to R = 0.7 bit/cell.

IV. CONCLUSION
In this paper, soft-decision decoding in binary PUFs has been
addressed. By interpreting the PUF readout process as digital
transmission over a noisy channel with a specific (uncom-
mon) pdf of the useful signal, the respective capacity has been
derived. Moreover, the optimum decoding metric (in form
of LLRs) has been given. In addition, a helper data scheme
suited for soft-decision decoding has been studied. In partic-
ular, an augmentation by an additive dither word has been
proposed. The security of this new approach has been proven.
The performance is covered by numerical simulations and by
evaluating measurement data from FPGA implementations
of ring oscillator PUFs. Employing the scheme with dither,
rates up to 0.7 bit/cell can be extracted reliably, which is a
tremendous gain over state-of-the-art binary PUFs utilizing
hard-decision decoding.

Even though we started from a ROPUF, the discussed prin-
ciples can be applied to any PUF architecture where the ana-
log source of randomness is accessible. In many situations,
Gaussian signal and error models are reasonable assumptions
in view of the law of large number.
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