
Received January 4, 2022, accepted January 22, 2022, date of publication January 27, 2022, date of current version February 8, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146852

An Efficient Block Address Transformation
Scheme in Block Layer for Flash-Based SSDs
JAEHYUN HAN AND YONGSEOK SON
School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Yongseok Son (sysganda@cau.ac.kr)

This work was supported in part by the Chung-Ang University Research Grant, in 2021; and in part by the National Research Foundation
of Korea under Grant 2021R1C1C1010861.

ABSTRACT Flash-based solid state drives (SSDs) are widely adopted in both industry and the academia
since SSDs offer higher performance, lower latency, and lower power consumption comparedwith traditional
hard disk drives (HDDs). Unfortunately, the performance of SSDs can be affected by I/O access patterns.
For example, random I/O operation degrades the SSD performance compared with sequential I/O operation
since the random I/O operation reduces the spatial locality and increases garbage collection (GC) overhead.
To handle this issue, in this article, we propose an efficient block address transformation scheme in the block
layer to improve both performance and portability. To do this, we first transform random access patterns
to sequential access patterns by sequentializing the block addresses in the block layer. Second, we devise
a mapping table for managing transformed block addresses. Third, we support correct read operations
and transaction processing for updating the mapping table to avoid sacrificing the consistency. Finally,
we provide a cleaning scheme to reclaim invalid data generated by the transformed sequential access. This
scheme increases spatial locality, reduces GC overhead, and operates well on any file systems or devices.
Experimental results show the proposed scheme improves performance by up to 2x, 1.86x, 2.15x, and 42.8%
compared with existing scheme in the case of diverse file systems such as EXT4, XFS, BTRFS, and F2FS,
respectively.

INDEX TERMS Flash-based SSDs, block layer, I/O performance, garbage collection.

I. INTRODUCTION
Flash-based solid state drives (SSDs) offer several advan-
tages over traditional hard disk drives (HDDs) such as higher
throughput, lower access latency, lower power consump-
tion, etc [9]. Thus, SSDs are becoming mainstream high
performance storage devices in both industry and academia
to improve I/O performance. Even though SSDs provide
much higher I/O performance compared with HDDs, the
performance of SSDs can be affected by access patterns
and garbage collection (GC) from applications due to their
specific features [18].

For example, sequential access is reading or writing of
data in sequential order. In this case, there is high proba-
bility that sequential write requests have a similar lifetime
inside the SSD [21], [28]. If a block is filled with pages
with similar lifespan, it is also likely that all pages inside

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli .

the block will be invalidated at a relatively similar time (i.e.,
high spatial locality [9]). Thus, the number of migrations
for valid data during GC can be reduced, hence reducing
write amplification within SSDs. On the contrary, in the
case of random access, spatial locality is reduced due to
writing data in random order. Thus, random access increases
the number of migrations and hence write amplifications
during GC.

Previous studies have investigated SSD performance by
considering access patterns. SHRD [9] proposed an address
reshaping technique called sequentializing for the host and
randomizing for the device, which transforms random write
requests into sequential write requests in the host block
device driver by assigning address space of a reserved log
area in the SSD. F2FS [13] is a flash-friendly file sys-
tem that supports append-only logging for underlying flash
devices. Our work is in line with these previous studies,
in terms of improving the random write performance of
SSDs by remmaping random writes into sequential writes.

14236 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-6202-6690
https://orcid.org/0000-0003-4512-0121
https://orcid.org/0000-0001-8755-0504


J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

In contrast, we focus on transforming random writes into
sequential writes at the block layer. Our proposed scheme
can be easily applied to the existing file system without any
modification.

In this article, we propose a block address transforming
technique in the block layer to improve the I/O performance
of SSDs. We aim to improve the I/O performance by exploit-
ing the feature of block layer without the modification of
file systems and devices. To do this, we first transform the
block address in the block layer by changing random access
patterns to sequential access patterns. Second, we devise
a mapping table that manages original and transformed
block addresses. Third, we support correct read operations
using the mapping table and perform transaction processing
to protect the mapping table when an unexpected failure
occurs. Finally, we provide a cleaning scheme to reclaim
the invalid data generated by the transformed sequential
access.

We evaluate our proposed scheme on a multi-core machine
with SATA and NVMe SSDs. Experimental results show the
our proposed scheme improves the performance by up to 2x,
1.86x, 2.15x, and 42.8% compared with the existing scheme
in the case of existing file systems EXT4 [17], XFS [29],
BTRFS [22], and F2FS [13], respectively.

Our contribution are as follows:
• We analyze how I/O performance is affected by block
layer and access pattern.

• We design and implement our transforming technique
for improving I/O performance in the block layer with-
out any modification to file systems and devices.

• We demonstrate that file systems with our scheme can
improve I/O performance compared with those with the
existing scheme.

The rest of the article is as follows: Section II describes the
background and motivation for study. Section III presents
the design and implementation of the proposed scheme.
Section IV presents the experimental results. Section V dis-
cusses the related work. Section VI summarizes and con-
cludes the article.

II. BACKGROUND AND MOTIVATION
A. MOTIVATIONAL EVALUATION
Figure 1 shows the performance of random and sequen-
tial writes in the different file systems such as EXT4 [17],
XFS [29], BTRFS [22], and F2FS [13] by using FIO bench-
mark with same configuration described in Section IV-B1.
The performance of sequential writes is better than random
writes by up to 2x, 1.86x, 2.6x, and 1.32x in EXT4, XFS,
BTRFS, and F2FS, respectively. In the case of EXT4 and
XFS, the performance gap is relatively similar since these are
journaling file systems and they perform in-place updates.
In the case of BTRFS, it performs copy-on-write (COW)
operations based on B-tree. In particular, the random write
pattern generates randomly tree updates which increases the
garbage collection overheads. Thus, it results in awrite ampli-
fication which decreases the I/O performance. F2FS is a

FIGURE 1. Write performance for various file systems.

flash memory-friendly file system, and there is a logic that
converts data access patterns within the file system. F2FS
builds on append-only logging to turn random writes into
sequential ones except for metadata writes. Therefore, F2FS
has much better random write performance than that of other
file systems.

Flash-based SSDs have many different characteristics
compared with existing HDDs. In particular, Flash-based
SSDs do not allow in-place update [16]. Thus, when a page
in a block needs to be updated, the existing page gets inval-
idated and the updated data is written into a clean page,
producing in an out-of-place update. Garbage collection (GC)
is subsequently performed to reclaim this invalidated page.
GC selects a victim block for cleaning based on given policy.
Then, valid data pages in the block are migrated to a free
block and the victim block is cleaned by an erase operation.
This write amplification negatively affects the lifetime and
endurance of SSDs [5].

Especially randomwrites can negatively affect the GC pro-
cess by causing internal fragmentation of SSDs and decreas-
ing spatial locality [9]. Also, randomwrite requests cannot be
merged in block layer, which leads to increase the number of
data transmission between host and SSD. Since randomized
pages makes uneven lifetime, there is much lower probability
of similar lifetime inside the SSDs when random writes are
requested compared with sequential write [21], [28]. Thus,
there is a lower chance that all pages inside a block will
be invalidated together. Thus, random writes show much
lower performance than sequential writes in a NAND flash
based SSDs.

B. PROCESSING I/O IN THE BLOCK LAYER
In general case of file I/O, there is a storage stack. For exam-
ple, the virtual file system (VFS) first processes the request,
manages page cache, and transfers the request to a file system
when an application performs a read/write operation, and the
file system layer provides system-specific implementation on
top of the block storage [14]. The request is transferred to the
block layer via submit_bio(). The block I/O layer serves
as a bridge between the file system layer and device driver
and provides OS-level block request/response management
and block I/O scheduling [6]. The device driver transfers a

VOLUME 10, 2022 14237



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

FIGURE 2. Overall architecture of proposed scheme.

read/write command according to the requested storage (e.g.,
HDD, SSD).

The block layer is an abstract layer that performs I/O oper-
ations regardless of device types or file systems [3]. When a
file system passes an I/O request to the block layer, the file
system makes a structure (i.e., bio). The bio structure is
a basic unit to perform a block I/O operation that contains
a variety of information (read/write, LBA, size, actual data,
etc.). The block layer receives bio structure and manages the
I/O request. The bio structure includes requested page(s) by
maintaining a starting sector (i.e., bi_sector) and whole
size of I/O request (i.e., bi_size).

More specifically, the block layer merges different requests
and makes them into a single request if the requests
are contiguous. For example, the block layer verifies
whether the newly requested bio structure can be merged
into a waiting request queue using the merge function
(blk_attempt_plug_merge()). This merge mecha-
nism in the block layer can increase storage bandwidth by
reducing I/O between host and device. Thus, the proposed
scheme accelerates and fully utilizes this merge mechanism
by sequentializing requests at the block layer.

III. DESIGN AND IMPLEMENTATION
This section discusses design and implementation of the pro-
posed scheme to improve SSD I/O performance.

A. OVERALL ARCHITECTURE
We present an efficient address transformation scheme in the
block layer to improve the performance of file systems on
SSDs. In our scheme, we transform random access patterns to
sequential access patterns by sequentializing block addresses
in the block layer.

Figure 2 shows our overall architecture of proposed
scheme. As shown in the figure, when a request comes to
the block layer, our proposed scheme identifies whether the

FIGURE 3. Transforming access patterns in the block layer.

request is write or read. If a write request is issued, we
transform LBA of the request to sequential one which can
be merged in the block layer. When the transform operation is
executed, our proposed scheme stores information of original
and transformed LBAs to the mapping table. To support
transaction processing for the mapping table against a system
or hardware failure, we adopt write-ahead logging scheme.
On the other hand, if a read request is issued, we transform
the original LBA to mapped LBA that was set in the write
operation. After completing the processing for each request,
our proposed scheme transfers the request to the device
driver. If the number of invalid data is larger than a thresh-
old value, our proposed scheme performs a cleaning oper-
ation to reclaim contiguous space and updates the mapping
table.

B. TRANSFORMING BLOCK ADDRESS
IN THE BLOCK LAYER
To transform block addresses in the block layer sequentially,
we intercept the write request and transform the original LBA
(i.e., the sector in a bio structure) in a sequential order. To do
this, we first check whether the request is read or write via
the bio structure. If the request is write, we transform the
original LBA from the bio structure to a sequential address.
Figure 3 shows an example of transforming access patterns
in the proposed scheme. As shown in the figure, there are
four new write requests (request0, request1, request2, and
request3) which are issued from the file system to the block
layer. Each request has random sectors (i.e., 65536, 98304,
4096, and 20480) and different sizes (i.e., 4K, 8K, 4K, and
4K), respectively.

To transform the random sectors, we first obtain available
sequential sectors (i.e., 0, 4096, 12288, and 16384) from

14238 VOLUME 10, 2022



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

FIGURE 4. Managing mapping table.

a contiguous space. Then, we transform the original sec-
tors (i.e., 65536, 98304, 4096, and 20480) to the sequential
sectors (i.e., 0, 4096, 12288, and 16384) by considering
request sizes, respectively. After these requests are made
in a sequential manner, the existing block layer can merge
contiguous requests into a single large request using its
own merge algorithm [27]. Thus, our scheme accelerates
this merging operations at the block layer by increasing the
probability of fragmented requests to be merged into one
request. After transforming sectors, we insert the pair of
original and transformed sectors to a mapping table. Also,
we manage the sector information for correct read opera-
tions, support transaction processing against failures, and
perform a cleaning operation. We discuss them in following
Sections III-C and III-D.

C. MANAGING THE MAPPING TABLE
Our scheme can achieve higher performance by transforming
block addresses at the block layer. However, there can be
challenges to be handled. For example, due to transformed the
block addresses, we should transform the transformed block
address to the original block address again to support correct
read operations. Therefore, we need to manage the informa-
tion of original and transformed block addresses carefully.
To do this, wemanage the block addresses in a mapping table.
First, we insert pairs of original and transformed sectors to
the mapping table in the case of a write operation. Second,
we find the transformed sectors according to the original
sector in the case of a read operation. Third, we find the
original sector and update the transformed sectors in the case
of a overwrite operations. Finally, we support transaction
processing for the mapping table against a sudden system
failure.

Figure 4 shows how to manage the mapping table in our
proposed scheme. Figure 4(a) shows mapping table opera-
tions. As shown in the figure, four requests (i.e., request0,
request1, request2, and request3) arrive at the block layer from
the file systemwith different I/O types (i.e., write, write, read,
and write). They have their own sectors (i.e., 65536, 98304,
98304, and 65536) and sizes (i.e., 4K, 8K, 8K, and 4K). In the
case of write request0, since this request is a write request, we
transform the original sector (i.e., 65536) to the sequential
sectors (i.e., 0) (transforming) if 0 is a starting block address.
Then, we insert the pair of original and transformed sectors
(i.e., 65536, 0) into mapping table (insert). In the case of
write request1, since this request is also a write request,
we transform the original sector (i.e., 98304) to the next
sequential sectors (i.e., 4096) which is calculated based on the
size (4K) of the previous write request (request0). Likewise
to request0, we insert the pair of original and transformed
sectors (i.e., 98304, 4096) into mapping table (insert). In case
of read request2, we first search original sector (i.e., 98304)
in mapping table (search). Then, we transform the original
sector (i.e., 98304) to the corresponding transformed one (i.e.,
4096) (transforming). Finally, in the case of write request4,
its origin sector (i.e., 65536) is already exist in the mapping
table which is an overwrite operation. We update transformed
sector (i.e., 0) in mapping table to new one (i.e., 12288)
(update) which is calculated by the size (8K) of the previous
write request (request2).

Figure 4(b) shows the mapping table layout and transac-
tion processing. For better efficient management of mapping
table, we separate storage into several partitions logically
and associate each partition (i.e., partition0−N ) with each
mapping table (i.e., mapping table0−N ). Thus, each partition
is managed by each associated mapping table which consists
of a red-black tree [31]. We use four fixed-size partitions
in the experiment and each partition is a basic unit for a
cleaning operation. This multiple mapping table provides two
main benefits. First, we can reduce the cost of finding the
desired sectors. Second, we can minimize the overheads of

VOLUME 10, 2022 14239



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

FIGURE 5. Cleaning operation (S: Sector, tmp: temporary mapping table).

cleaning operation. We will describe the cleaning operation
in Section III-D.

As shown in Figure 4(b), to provide transaction process-
ing for the mapping tables, we use a write-ahead logging
scheme to store the mapping tables to the storage device.
When write request arrives, we write data to the transformed
sector (¬). After the data is written to the storage device, we
begin a transaction by recording the original and transformed
sectors to the mapping table file (i.e., mapfile0) (). Then,
we commit the transaction by writing the mapping table file
to the mapping table area in the storage device (®). Finally,
we update the mapping table by inserting sectors into the
mapping table in memory (¯). When a system failure occurs,
our proposed scheme reads the mapping table in the map-
ping table area and reorganizes the mapping table based on
the transaction commit. By doing so, we ensure the consis-
tency of the mapping information and data integrity of the
system.

Meanwhile, managing the mapping tables can have issues
in terms of scalability and performance. For example, when
the size of the storage increases, the size of the mapping table
will increase linearly. Thus, there can be scalability issue due
to the limit of memory space. Also, as the speed of SSDs is
increasingly faster, the performance overhead of the mapping
table can be a bottleneck. To handle this limitation, we can
adopt an on-demand map loading scheme for managing the
mapping table. In this scheme, we can load only a subset of an
entiremapping table. Thus, we load only the subset consisting
of the sectors to be transformed and unload other subsets.
This scheme can reduce the memory space overhead so that
they can increase the scalability and performance. We leave
this memory space overhead reduction and optimization as a
future work.

D. CLEANING OPERATION
In our scheme, overwrite operations generate invalid data
since we perform out-of-place updates. In order to collect
this invalid data and create a continuous and large space,
our proposed scheme perform cleaning operation [7], [13].

Cleaning operation is triggered for a partition when the
next write request is placed on the next partition. Since
we cannot process user requests during cleaning operation,
with multiple mapping tables and partitions, we can perform
cleaning operation for a partition and processing upcoming
user requests in other partitions simultaneously. To allow
correct read operations during a cleaning operation, before
starting the cleaning operation, we copies the corresponding
targeted mapping table to a temporary mapping table. Thus,
when a read request arrives for the targeted mapping table,
we perform the read operation on the temporary mapping
table.

During the cleaning operation, we use a bitmap to check
the data is valid or not. Thus, we move the valid data to the
targeted invalid data location and update the corresponding
entries of the mapping table. We find valid data from tail
to head and invalid data from head to tail in the targeted
partition. Note that if a write request arrives in the middle
of cleaning operation, the request is processed on another
partition in which a cleaning operation is not performed.
Thus, even write requests can be processed without blocking
due to multiple mapping tables and partitions. As a result, this
cleaning operation fills the holes generated by invalid data
and is repeated until there are no holes, producing continuous
free space for new write requests. After completing the whole
process, we delete the temporary mapping table.

Figure 5 shows an example of our cleaning operation.
As shown in the figure, there are five contiguous sectors (i.e.,
0, 4096, 8192, 12288, and 16384). In this case, sectors 0
and 8192 are invalid, creating non-contiguous space. Before
starting a cleaning operation, we create a temporary mapping
table (mapping table0 (tmp)) by copying the targeted map-
ping table (mapping table0). During the cleaning operation,
we move the last valid data (i.e., sector 16384) to the hole
(i.e., sector 0) andmove the next valid data (i.e., sector 12288)
to the next hole (i.e., sector 8192). After then, we update
entries (<98304, 8192> and <4096, 0>) in the targeted
mapping table. If a read request (i.e., original sector: 4096)
arrives during the cleaning operation, we process the read

14240 VOLUME 10, 2022



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

FIGURE 6. FIO benchmark.

request on the temporary mapping table, read the data in the
temporary sector (i.e., 16384), and return the data (i.e., e).
Thus, the read request is processed safely without sacrific-
ing read consistency even though the cleaning operation is
running.

After cleaning all invalid data, we commit the cleaning
operation with the updated mapping table and remove the
temporary mapping table. If a read request (i.e., 4096) arrives
again, we read data (i.e., e) from the updated transformed sec-
tor (i.e., 0) in the committed mapping table. Thus, we obtain
contiguous space (i.e., sectors: 12288-16384) for future write
requests.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
For the experiment setup, we used Intel i9-9900K (5.0 GHz)
environment with eight physical cores, eight hyper-threading,
and 16 GiB of memory. For the storage devices, we used
a SATA SSD (Micron CT250MX500SSD1)(250GB) and
NVMe SSD (Samsung 970 EVO M.2)(1TB). We used
Linux Kernel 4.9.1 and Ubuntu 16.04.6 LTS. We used
FIO [1] as a micro benchmark, and used Flexible Filesys-
tem Benchmark (FFSB) [2] and Postmark [8] as macro
benchmarks. All experimental results are average of five
runs.

B. EXPERIMENT RESULTS
1) MICRO BENCHMARK
a: FIO BENCHMARK
For FIO configuration, we used 8 threads writing 3GB of files
each and 4KB as a block size. We performed sequential and
random writes on SATA and NVMe SSDs. Figure 6(a) shows
the result of the FIO benchmark with existing and our pro-
posed schemes in SATA SSD environment. As shown in the
figure, except for F2FS [13] as a log-structured file system,
other local file systems show a large performance difference
between sequential and randomwrites in the existing scheme.

The EXT4, XFS, BTRFS, and F2FS file systems with our
proposed scheme improves the random write performance
by up to 2x, 1.86x, 2.15x, and 1.01x compared with EXT4,
XFS, BTRFS, and F2FS file systems with existing scheme,
respectively. The performance improvement is achieved by
transforming random LBAs to sequential LBAs at the block
layer, which results in making a large requests. In the case of
F2FS, there is almost no performance improvement since the
nature of F2FS already sequentializes LBAs at the file system
level.

Figure 6(b) shows the result of the FIO benchmark in
the case of existing and our proposed schemes in NVMe
SSD. NVMe SSD does not shows significant performance
difference between random and sequential writes. However,
the performance of random write is still lower than sequen-
tial write. As shown in the figure, in existing file systems,
the random write performance is lower than the sequential
writes performance EXT4, XFS, BTRFS, and F2FS, by up to
23.3%, 15.7%, 82.2%, and 1.74%, respectively. Our proposed
scheme with EXT4, XFS, BTRFS, and F2FS improves the
random write performance by up to 21.6%, 17.3%, 18.9%,
and 1.9% compared with an existing scheme with EXT4,
XFS, BTRFS, and F2FS, respectively. This result demon-
strates our scheme has still effectiveness even if NVMe SSD
is used.

2) MACRO BENCHMARK
According to the performance metrics provided by each
benchmark, we use transaction per second in FFSB and total
execution time in PostMark to measure the performance.

a: FLEXIBLE FILE SYSTEM BENCHMARK
The Flexible Filesystem Benchmark (FFSB) is a file system
performance measurement tool [2]. For FFSB configuration,
we use 100 directories, 4GB file size, 16GB insert size, 8
threads, 4KBwrite size, 4KBwrite block size, 4KB read size,
and 4KB read block size.

VOLUME 10, 2022 14241



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

FIGURE 7. Flexible file system benchmark (FFSB).

We evaluate the performance of existing and proposed
schemes by using FFSB on SATA SSD. Figure 7(a) shows
the FFSB’s result when SATA SSD is used. As shown in
the figure, the proposed scheme improves the transactions
per second by up to 57.7%, 38.3%, 11.0%, and 18.8%
compared with an existing scheme in the case of EXT4,
XFS, BTRFS, F2FS file systems, respectively. We achieve
high performance by up to 57.7% transactions per second
in the case of EXT4 file system. The experimental results
show that our proposed scheme is also effective in a macro
benchmark.

Figure 7(b) shows the FFSB’s result when NVMe SSD is
used. As shown in the figure, our proposed scheme improves
the transactions per second by up to 17.1%, 10.9%, 16.8%,
and 18.3% compared with an existing scheme in the case of
EXT4, XFS, BTRFS, and F2FS file systems, respectively.
We achieve high performance by up to 18.3% transactions
per second in the case of F2FS file system. This result shows
that our scheme can improve the performance of F2FS file
system even though the file system already provides a logging
scheme in the file system-level. The experimental results
show that our proposed scheme is also effective even in
NVMe SSD.

b: PostMark
PostMark is a benchmark that demonstrates system perfor-
mance for short-lived small files in internet applications (e.g.,
electronic mail or web commerce) [8]. Parameter settings
for Postmark are as follows: 900MB file size (low and high
bounds of files), 20 files (number of simultaneous files),
read/write size 4KB(read/write block size), transaction 20
(number of transactions), bias create 10 (the chance of choos-
ing read over append), bias read 10 (the chance of choosing
create over delete).

We evaluate the performance of existing and proposed
schemes by using PostMark on SATA SSD. Figure 8 shows
the PostMark benchmark results in SATA SSD. As shown in

the figure, our proposed scheme improves total transaction
time up to 33.9%, 18.6%, 21.5%, and 16.4% compared with
existing scheme in the case of EXT4, XFS, BTRFS, and F2FS
file systems, respectively. We achieve high performance by
up to 33.9% total time in the case of EXT4 file system. The
experimental results demonstrate that our proposed scheme
is effective for small file workloads.

Figure 8(b) shows the result of PostMark when NVMe
SSD is used. As shown in the figure, our proposed scheme
improves the transaction time up to 33.4%, 40%, 29.7%,
and 42.8% compared with an existing scheme in the case
of EXT4, XFS, BTRFS, and F2FS file systems, respectively.
We achieve high performance by up to 42.8% total time in the
case of F2FS file system. The experimental result show that
our proposed scheme is effective for NVMe SSD.

C. CLEANING OVERHEADS
Figure 9 shows transient write throughput from FIO bench-
marks when cleaning operation in our proposed scheme
occurs in the case of SATA SSD. To measure the cleaning
overhead, we first write data approximately 50GB and per-
form the overwrite operations from the FIO benchmark with
time-based configuration. We force this cleaning operation to
be performed during the experimental time.

Figures 9(b), 9(c), 9(d), and 9(e) shows overheads of
cleaning operations in the case of EXT4, XFS, BTRFS,
and F2FS, respectively. The cleaning operation decreases the
performance by up to 62.4%, 55.3%, 89%, and -7.5% in
the case of EXT4, XFS, BTRFS, and F2FS, respectively,
compared with that of the proposed scheme without cleaning
operation. This result demonstrates the cleaning operation has
overhead. In the case of F2FS, even though the cleaning oper-
ation occurs, the performance degradation is not large. It is
because F2FS already transforms the random patterns to the
sequential patterns at the file system level. Thus, at the block
layer, the number of cleaning operations decreases. Although
the throughput decreases during the cleaning operation, the

14242 VOLUME 10, 2022



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

FIGURE 8. PostMark.

FIGURE 9. Cleaning overheads in different file systems on SATA SSD.

throughput of our proposed scheme still is higher than that
of existing scheme. It is because a cleaning operation is
performed on a partition and other partitions still perform
I/O services without blocking I/O operations. In addition,
we note that a cleaning operation is not performed frequently
in normal situations. To measure and show the cleaning
overhead in this evaluation, we force a cleaning operation
continuously.

V. RELATED WORK
A. OPTIMIZING BLOCK LAYER
Bjørling et al. [4] proposes a new design for the block layer.
They design two levels of queues in order to reduce con-
tention and promote thread locality. Lee et al. [14] provides
an asynchronous I/O stack which leverages a lightweight
block layer specialized for NVMe SSDs. The I/O stack elimi-
nates unnecessary components and overlaps I/O-related CPU
operations with device I/O operations.

Falcon [12] propose a new design of per-drive I/O pro-
cessing that separates two key functionalities of I/O batching

and I/O serving in the I/O stack. Specifically, Falcon presents
Falcon I/OManagement Layer that batches the incoming I/Os
at the volume level, and Falcon Block Layer that parallelizes
I/O serving on the SSD level in a new block layer.

Isotope [26] presents a new block store that supports
ACID transactions over block reads and writes. It uses a new
multi-version concurrency control protocol that exploits fine-
grained, sub-block parallelism in workloads and offers both
strict serializability and snapshot isolation guarantees. Our
study is in line with these studies [4], [12], [14], [26] in
terms of improving the performance of I/O in block layer.
In contrast, our study focuses on improving the performance
by transforming block addresses in the block layer.

B. LOG-STRUCTURED SCHEME IN FILE SYSTEMS,
DATABASE SYSTEMS, AND STORAGE DEVICES
Log-structured file system (LFS) [23] writes all mod-
ifications to disk sequentially in a log-like structure,
thereby speeding up both file writing and crash recovery.
Wang et al. [30] provide an evaluation of flash SSDs in trans-
action processing systems by using TPC-C benchmark with
various configurations. Ho et al. [7] separates random write
requests from sequential write requests and transforms the
address of random write requests for eMMC storage devices.
F2FS [13] presents a new file system optimized for flash stor-
age devices. The file system basically builds on append-only
logging to turn randomwrites into sequential ones. SHRD [9]
supports log-structured data write operation by transforming
random write requests into sequential write requests in the
device level. In case of power failure, it restores the remap-
ping information using the data stored in the out-of-band
area of SSD to ensure correct recovery. Kim et al. [11] target
distributed file systems and provide an address reshaping
technique which reshapes randomwrite requests into sequen-
tial ones in the distributed file system level.

Ryu et al. [24] address the problems of the existing log
based flash memory file systems analytically and propose
an efficient log-based file system, which produces higher

VOLUME 10, 2022 14243



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

performance, less memory usage and mount time than the
existing log-based file systems. SFS [19] is similar to the
traditional log-structured file system (LFS) but SFS takes
a new on writing data grouping strategy. IPL [15] has
demonstrated its potential for considerable improvement of
write performance for OLTP-type applications by exploit-
ing the advantages of flash memory such as no mechanical
latency and high read bandwidth. Oh et al. [20] proposes a
cost-effective and reliable SSD host cache solution. It pro-
vides cost-effectiveness by using multiple low-cost SSDs and
reliability by retaining data redundancy through RAID.

Our study is in line with these studies in terms of improving
the performance of storage systems and devices using log-
structured schemes. Meanwhile, these studies have a limita-
tion that has a dependency with the file system or hardware.
In contrast, our proposed scheme is based on the block layer
and so that our scheme can be more easily applied to a system
without the dependency with any file system or hardware.

C. LOG-STRUCTURED SCHEME IN THE BLOCK LAYER
Gecko [25] is a log-structured design that eliminates read-
write contention by chaining together a small number of
drives into a single log. Thus, writes proceed to the tail
drive without contention from either GC reads or first-class
reads. SWAN, a novel All Flash Array (AFA) management
scheme [10] aims to alleviate the performance interference
caused by GC at both levels. Unlike the commonly-used
temporal separation approach that performs GC at idle time,
SWAN take a spatial separation approach that partitions SSDs
into the front-end SSDs dedicated to serve write requests and
the back-end SSDs where GC is performed.

Our study is in line with these studies [10], [25] in terms
of improving the performance in block layer. In contrast, our
study focus on improving the performance by transforming
block addresses instead of improving the layout or manage-
ment of multiple storage devices.

VI. CONCLUSION
In this article, we design and implement an efficient
log-structured block I/O Scheme for flash-based SSDs to
improve I/O performance. To this end, we transform block
addresses to turn random write requests into sequential write
requests at the block layer. Also, we provide efficient man-
agement of mapping tables and cleaning operation without
sacrificing consistency. We evaluate various file systems on
our scheme with several micro and macro-benchmarks. Our
experimental results show that the file systems (i.e., EXT4,
XFS, BTRFS, and F2FS) with our proposed scheme can
improve the I/O performance compared with those with the
existing scheme.

REFERENCES
[1] Fio Benchmark. [Online]. Available: https://github.com/axboe/fio
[2] The Flexible Filesystem Benchmark. [Online]. Available: https://github.

com/FFSB-Prime/ffsb
[3] J. Axboe, ‘‘Linux block IO-present and future,’’ in Proc. Ottawa Linux

Symp., 2004, pp. 51–61.

[4] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, ‘‘Linux block IO:
Introducing multi-queue SSD access on multi-core systems,’’ in Proc. 6th
Int. Syst. Storage Conf. (SYSTOR), 2013, pp. 1–10.

[5] W. Bux and I. Iliadis, ‘‘Performance of greedy garbage collection in flash-
based solid-state drives,’’ Perform. Eval., vol. 67, no. 11, pp. 1172–1186,
Nov. 2010.

[6] J. Guerra, L. Useche, M. Bhadkamkar, R. Koller, and R. Rangaswami,
‘‘The case for active block layer extensions,’’ ACM SIGOPS Operating
Syst. Rev., vol. 42, no. 6, pp. 3–9, Oct. 2008.

[7] C.-C. Ho, Y.-H. Chang, and T.-W. Kuo, ‘‘Access pattern reshaping for
eMMC-enabled SSDs,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2015, pp. 30–37.

[8] J. Katcher, ‘‘Postmark: A new file system benchmark,’’ Netw. Appliance,
Sunnyvale, CA, USA, Tech. Rep. TR3022, 1997.

[9] H. Kim, D. Shin, Y. H. Jeong, and K. H. Kim, ‘‘SHRD: Improving
spatial locality in flash storage accesses by sequentializing in host and
randomizing in device,’’ in Proc. 15th USENIX Conf. File Storage Technol.
(FAST), 2017, pp. 271–284.

[10] J. Kim, K. Lim, Y. Jung, S. Lee, C. Min, and S. H. Noh, ‘‘Allevi-
ating garbage collection interference through spatial separation in all
flash arrays,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX), 2019,
pp. 799–812.

[11] S. Kim, J. Han, H. Eom, and Y. Son, ‘‘Improving I/O performance in
distributed file systems for flash-based SSDs by access pattern reshaping,’’
Future Gener. Comput. Syst., vol. 115, pp. 365–373, Feb. 2021.

[12] P. Kumar and H. H. Huang, ‘‘Falcon: Scaling fIOg performance in multi-
SSD volumes,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX), 2017,
pp. 41–53.

[13] C. Lee, D. Sim, J. Hwang, and S. Cho, ‘‘F2FS: A new file system for flash
storage,’’ in Proc. 13th USENIX Conf. File Storage Technol. (FAST), 2015,
pp. 273–286.

[14] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong, ‘‘Asyn-
chronous I/O stack: A low-latency kernel I/O stack for ultra-low latency
SSDs,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2019,
pp. 603–616.

[15] S.-W. Lee and B. Moon, ‘‘Design of flash-based DBMS: An in-page
logging approach,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD), 2007, pp. 55–66.

[16] D. Ma, J. Feng, and G. Li, ‘‘LazyFTL: A page-level flash translation layer
optimized for NAND flash memory,’’ in Proc. Int. Conf. Manage. Data
(SIGMOD), 2011, pp. 1–12.

[17] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
‘‘The new ext4 filesystem: Current status and future plans,’’ in Proc. Linux
Symp., vol. 2. Princeton, NJ, USA: Citeseer, 2007, pp. 21–33.

[18] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, ‘‘SFS: Random write
considered harmful in solid state drives,’’ in Proc. FAST, vol. 12, 2012,
pp. 1–16.

[19] C. Min, S.-W. Lee, and Y. I. Eom, ‘‘Design and implementation of a
log-structured file system for flash-based solid state drives,’’ IEEE Trans.
Comput., vol. 63, no. 9, pp. 2215–2227, Sep. 2014.

[20] Y. Oh, J. Choi, D. Lee, and S. H. Noh, ‘‘Improving performance and
lifetime of the SSD RAID-based host cache through a log-structured
approach,’’ ACM SIGOPS Operating Syst. Rev., vol. 48, no. 1, pp. 90–97,
May 2014.

[21] L. D. Phan and D. S. Suryabudi, ‘‘Non-volatile semiconductor memory
segregating sequential data during garbage collection to reduce write
amplification,’’ U.S. Patent 8 316 176, Nov. 20, 2012.

[22] O. Rodeh, J. Bacik, andC.Mason, ‘‘BTRFS: The LinuxB-tree filesystem,’’
ACM Trans. Storage, vol. 9, no. 3, pp. 1–32, Aug. 2013.

[23] M. Rosenblum and J. K. Ousterhout, ‘‘The design and implementation of
a log-structured file system,’’ in Proc. 13th ACM Symp. Operating Syst.
Princ. (SOSP), 1991, pp. 1–15.

[24] J. Ryu and C. Park, ‘‘A technique to enhance performance of log-based file
systems for flash memory in embedded systems,’’ in Proc. 2nd Int. Conf.
Digit. Inf. Manage., Oct. 2007, pp. 580–582.

[25] J. Y. Shin, M. Balakrishnan, T. Marian, and H. Weatherspoon, ‘‘Gecko:
Contention-oblivious disk arrays for cloud storage,’’ in Proc. 11th USENIX
Conf. File Storage Technol. (FAST), 2013, pp. 285–297.

[26] J.-Y. Shin, M. Balakrishnan, T. Marian, and H. Weatherspoon, ‘‘Isotope:
Transactional isolation for block storage,’’ in Proc. 14th USENIX Conf.
File Storage Technol. (FAST), 2016, pp. 23–37.

[27] Y. Son, H. Y. Yeom, and H. Han, ‘‘Optimizing I/O operations in file
systems for fast storage devices,’’ IEEE Trans. Comput., vol. 66, no. 6,
pp. 1071–1084, Jun. 2017.

14244 VOLUME 10, 2022



J. Han, Y. Son: Efficient Block Address Transformation Scheme in Block Layer for Flash-Based SSDs

[28] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
‘‘Extending SSD lifetimes with disk-based write caches,’’ in FAST, vol. 10,
2010, pp. 101–114.

[29] R. Y. Wang and T. E. Anderson, ‘‘XFS: A wide area mass storage
file system,’’ in Proc. IEEE 4th Workshop Workstation Operating Syst.
(WWOS-III), Oct. 1993, pp. 71–78.

[30] Y. Wang, K. Goda, M. Nakano, and M. Kitsuregawa, ‘‘Performance evalu-
ation of flash SSDs in a transaction processing system,’’ IEICE Trans. Inf.
Syst., vol. E94-D, no. 3, pp. 602–611, 2011.

[31] C. S. Wong, I. K. T. Tan, R. D. Kumari, J. W. Lam, and W. Fun, ‘‘Fairness
and interactive performance of O(1) and CFS Linux kernel schedulers,’’ in
Proc. Int. Symp. Inf. Technol., Aug. 2008, pp. 1–8.

JAEHYUN HAN received the B.S. degree from
the School of Computer Science and Engineer-
ing, Chung-Ang University, where he is currently
pursuing the M.S. degree with the School of
Computer Science and Engineering. He was an
Intern at bosornd, in 2018 and 2019. His research
interests include distributed systems and operating
systems.

YONGSEOK SON received the B.S. degree
in information and computer engineering from
Ajou University, in 2010, and the M.S. and
Ph.D. degrees from the Department of Intelli-
gent Convergence Systems and Electronic Engi-
neering & Computer Science, Seoul National
University, in 2012 and 2018, respectively. He was
a Postdoctoral Research Associate in electrical
and computer engineering with the University of
Illinois at Urbana–Champaign. He is currently an

Assistant Professor with the School of Computer Science and Engineering,
Chung-Ang University. His research interests include operating, distributed
and database systems.

VOLUME 10, 2022 14245


