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ABSTRACT Ensemblemethods can be used to identify causal relationships in data for a better understanding
and taking the right decision in processes that involve high risk. This paper explores the idea of a causal
decision tree forest and proposes a regularized ensemble method by integrating optimal causal trees for
improved prediction accuracy while not compromising on accurately estimating heterogeneous treatment
effects. The proposed method is based on selecting a subset of the most accurate causal trees from a
sufficiently large pool based on their out-of-sample error estimates. The selected trees are integrated to
form an ensemble that is used for estimating heterogeneous treatment effect and predicting unseen data. The
proposed method is applied on Pakistan’s income function consisting of 27964 observations on wages of
workers age 10 and above as an example dataset. The paper gives a detailed simulation study where datasets
are generated under 5 different designs. The proposedmethod is assessed against ordinary least square (OLS),
least absolute shrinkage and selection operator (LASSO), Ridge, Causal Tree and the standard decision trees
forest (i.e. the causal forest) via mean square error (MSE), root mean square error (RMSE), mean absolute
deviation (MAD) and Pearson correlation (r) as performance metrics. The analyses given in the paper reveal
that the proposed method can be used effectively for estimating heterogeneous treatment effects and achieves
better prediction performance and as compared to the rest of the methods given in the paper.

INDEX TERMS Causal inference, causal decision tree, random forest, causal random forest, ensemble
learning, heterogeneous treatment effect.

I. INTRODUCTION
The identification of the causal relationships in the data is
key to provide a better understanding and the knowledge
for taking an accurate decision in processes with risk. Such
types of relationships are usually established with the help of
experiments which are effective but, at the same time, costly
and difficult to conduct [1]. Observational studies can also be
used to find the causal relationships in the data [2], which are
tested by taking a sample from historical data or by observing
the characteristic of interest over a period of time, thereby
making the observational study time-consuming.

Machine learning is generally used for accurately
predicting unknown data based on learning from known
data. However, sometimes, the purpose of using machine
learning methods could potentially exceed prediction, such as
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representing and discovering causal relationships in data and
estimating heterogeneous causal effects. This kind of applica-
tion provides a compact and precise graphical representation
of the causal relationships between a set of predictor attributes
and an outcome attribute. Various machine learning methods
are in use for obtaining the desired results. Typical examples
include classification and regression trees, k-nearest neigh-
bours models, support vector machines, etc.

The methods for the identification of causal relationship
in the data should be capable of identifying the causal
effect without any prior knowledge. Moreover, these methods
should be capable of dealing high dimensional data sets
efficiently. The methods of classification such as decision
trees [3] have the ability to identify the causal relation-
ships in the data by using a supervised learning approach
where the response variable is known or fixed. Such type
of methods are commonly used in medical and social data
analyses, for example. However, these methods are not
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specifically designed for identifying the causal relationships
in the data, and hence can provide incorrect estimates of
causal relationships.

Classification methods, like random forest, are fast and
could find causal signals in the data effectively. These meth-
ods, with the provision of scalability and automation, are
important for exploring causal relationships in large datasets.
To this end, researchers have proposed several machine learn-
ing methods for exploring causal relationships. Although
these methods serve the purpose of finding causal signals,
they fail to achieve higher accuracy. Therefore, the aim of this
paper is to achieve both causal exploration and high predic-
tion accuracy by proposing a causal decision trees ensemble.
This will help economists in predicting and answering various
causal questions for policy implementation in a machine
learning framework.

Various authors have suggested that combining weak mod-
els leads to efficient ensembles. Moreover, combining the
outputs of multiple classifiers also reduces generalisation
error. Ensemble methods have high efficacy in that the dif-
ferent models involved have different inductive biases, where
such diversity reduces variance-error while not increasing the
bias error [4]–[6]. As the number of trees in a random forest is
often very large, there has been a significant work conducted
on the problem of minimising this number to reduce compu-
tational cost without decreasing prediction accuracy [7]–[10].
The overall prediction error of a random forest is highly asso-
ciated with the strength of individual trees and their diversity
in the forest. This idea is backed by Breiman’s [11] upper
bound for the overall prediction error of random forest given
by Err ≤ ρerrt , where t = 1, 2, . . . ,B, and B denotes the
number of trees in the forest, Err is the overall prediction
error of the forest and ρ represents weighted correlation
between residuals from two independent trees, i.e. mean
(expected value) of their correlation over entire ensemble, and
errt is the prediction error of some t th tree in the forest.

Generally, a random forest is based on a large number of
base trees, and researchers have always tried to minimise this
number in order to gradually shrink the cost of computation
without negatively affecting the prediction accuracy. Overall,
the prediction error of a random forest is strongly connected
with the accuracy of individual trees and their diversity in
the forest. The proposed method selects a subset of the best
causal trees in terms of their individual strength, i.e. accu-
racy, from a large ensemble grown by the causal random
forest. The selected trees are combined in an ensemble for
predicting unknown data and estimating heterogeneous treat-
ment effects in the data. The proposed method is applied
on an example dataset from the labour force survey (LFS)
of Pakistan for causal effects exploration. The paper also
gives a detailed simulation study of the proposed method in
comparison with causal decision tree, causal random forest,
ordinary least square (OLS) linear regression, least absolute
and shrinkage and selection operator (LASSO) and ridge
regression for further assessment. For judging the efficacy of
the newly developed method, conditional average treatment

effect (CATE), average treatment effect (ATE), mean square
error (MSE), root mean square error (RMSE), mean absolute
error (MAE) and Pearson correlation coefficient (r) are used
as performance measures.

The remainder of this paper is organised as follows.
Section II provides a summary of the related work done
in the literature; Section III presents a detailed description
of the method proposed in this paper; Section IV gives the
analyses conducted in this paper based on the simulated and
real datasets; and Section V concludes the findings.

II. RELATED WORK
Extensive research has been done in the literature for estimat-
ing the parameters of interest, like heterogeneous treatment
effects. Some well known methods consist of local maximum
likelihood and local generalized method of moments such
as [12]–[17]. Some applications of these techniques in the
field of economics includes multinomial choice models in
a longitudinal data type i.e. [18] and instrumental variables
regression i.e. [19]. To estimate the parameters at a particular
value of covariates, the core idea is to use kernel weighting
function in order to placemore weight on nearby observations
in the covariate space. The main problem in such types of
techniques is that, if the feature space is high dimensional,
then the performance of these methods can be suffered from
the problem known as ‘‘curse of dimensionality’’ [20].

Authors in [21] replaced kernel weighting with the
forest-based weights i.e. weights that are obtained from
the trees fraction that contain observation in the same leaf
as the response value of covariate vector. Study in [11]
proposed a random forest algorithm for non-parametric clas-
sification and regression building on insights from the ensem-
ble learning literature [22]–[25]. Random forest as a type
of adaptive nearest neighbor prediction is closely built in
the studies given in [26] and [27], which is forest-based
method for quantile regression and survival analysis. Authors
in [28]–[34], have used gradient based test statistics to iden-
tify the change points in likelihood models.

According to [35], numerous data mining techniques such
as classification, k-nearest neighbors and sequential pattern
mining are sequentially applied to identify the similarity in
decision trees. Also authors in [36] used unified Granger
causality analysis (uGCA) framework for sequential medical
imaging. The study in [37] proposed hierarchical probabilis-
tic graphical model to simultaneously handle classification
of multi-sensor and multi-resolution remote sensing of the
same scene. This study consists of hierarchicalMarkovmodel
alongwith quadtree structures in order tomodel the necessary
information present in various special scales and a planar
Markovmodel to tackle contextual spatial information at each
resolution as well as the ensemble of causal decision trees
for pixelwise modeling. Further reading on the methods for
causal analysis used in machine learning can be found in the
recent literature as given in [38]–[44].

Recursive partitioning models using gradient-based
test statistics were considered in [45]. Several authors
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in [46]–[48] achieved the statistical stability by using a ran-
dom forest resampling mechanism. Similarly, another study
in [49] adopted a greedy and non-parametric regression
technique, utilising gradient-based approximation.

Several studies [27], [46]–[48], [50]–[62] have consid-
ered the regression problems by using the random forest
algorithms. Wager [21] proposed a method which is com-
putationally efficient in generating generalised random for-
est (GRF). The estimates of this method are consistent and
asymptotically normal, thereby providing a valid confidence
interval. This method is designed to handle three main tasks,
i.e., heterogeneous treatment effects, non-parametric quan-
tile regression and conditional average treatment effects via
instrumental variables.

The computational burden of trees ensemble could also be
decreased without compromising the prediction accuracy by
combining a small number of diverse and accurate trees. This
can be achieved by using out-of-bag prediction errors from
each training bootstrap sample in order to select the optimal
trees on the basis of their individual performance [63]. The
proposed method is a modified version of the generalised
random forest [21], which involves generating a large number
of causal trees and then selecting a proportion of those trees
whose error rate is minimum among all the constructed causal
trees.

III. METHODS
This section provides a detailed description of the method
used in this paper. Before introducing the proposed method,
it is deemed important to introduce the causal decision tree
as a building block of the suggested optimal causal trees
ensemble (OCTE).

A. CAUSAL DECISION TREE
Using the decision tree for estimating the heterogeneous
treatment effect is totally different from the classical decision
tree used for classification and regression problems. The
classical decision tree uses a functionmapping characteristics
to the response variable about an individual. This can be
illustrated from the tree given in Figure 1 as discussed in [64],
where the matchmaking mobile app i.e. ‘‘Tinder’’ is used
to cure a particular disease. The decision tree is unable to
identify the true causal effect since majority of the young
people use ‘‘Tinder’’ as compared to old people. Moreover,
old people have little chance of recovery from the disease as
compared with young people. Thus, the comparison between
the two groups, which are not actually comparable, led to a
misleading decision tree. A standard decision tree may thus
be considered as an appropriate choice in terms of predicting
the recovery from the disease but fails to identify the true
cause of the disease. Furthermore, its nodes posses no causal
interpretation.

On the other hand, the causal decision tree calculates the
average of the treated and untreated observations in each node
and then computes the difference between these averages,
which represents the actual treatment effect in that node.

FIGURE 1. A standard classification tree.

FIGURE 2. A standard causal decision tree.

Estimating the individual treatment effect, i.e.
τi = Y1i − Y0i, is not possible in real world problems,
because the outcome of the ith individual is either Y1i (the
sample is treated) or Y0i (the sample is untreated). One of
the two outcomes, i.e. Y1i or Y0i, has to be predicted, using
the counterfactual model (the potential outcome model). For
example, suppose an individual has salary Y0i and education
below secondary level (untreated). We want to know the ith
individual’s salary Y1i if the person had education above
secondary level (treated). The average treatment effect of a
group (population) is simply the average of the individual
treatment effects included in the population, i.e.,

E[τi] = E[Y1i]− E[Y0i].

A general work flow of a causal decision tree is given in
Figure 2.
Decision trees for causal inference are generally used to

separate data into buckets in order to estimate the average
treatment effects within each node. The process of decision
tree learning for causal inference can be separated into two
steps for each of these tasks, commonly referred to as the
splitting step and the estimation step, respectively. Therefore,
a causal decision tree can effectively be used for estimating
heterogeneous treatment effects in a computationally effi-
cient manner. However, its prediction in the cases of regres-
sion and classification problems is less efficient.
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Although a single causal decision tree model is inter-
pretable and fast, the estimates it returns for heterogeneous
treatment effects might not be generalisable. Therefore, the
ensemble of causal decision trees can solve this problem by
providing robust estimates for causal relationships at the cost
of interpretability without significantly increasing computa-
tional cost. Combining a few accurate and diverse causal
decision trees could provide improved estimates andmight be
taken forward in the direction of improving interpretability of
the standard causal decision trees ensemble.

This work aims at improving the causal random forest
with the help of best trees selection for size reduction and
improved estimation. To achieve this, B sub-samples are
taken from the given training data L = (X ,Y ,W ), where X is
the feature space, Y is the response and W is the binary treat-
ment. A causal decision tree is grown on each sub-sample.
The performance of trees is evaluated on the basis of out-
of-sample observations and ranked accordingly. Trees having
the smallest error estimates on the out-of-sample observations
are selected, while the rest of trees are discarded. Then, the
selected trees are combined to form the optimal causal tree
ensemble.

Partitioning of the given training data L = (X ,Y ,W ) is
carried out randomly into two non-overlapping groups, i.e.,
Lb = (Xb,Yb,Wb) and Lv = (Xv,Yv,Wv). Then causal trees
are grown, each on a sub-sample from Lb = (Xb,Yb,Wb).
While doing so, a random subset of p′ < p features is selected
from the entire set of features at each node of the causal tree;
(where, p is total number of features and p′ is a subset of
features taken from total p features randomly). This will add
additional randomness to the causal trees. As the observations
in Lv = (Xv,Yv) take no part in the training phase of the
causal trees, error estimates are calculated for these out-of-
sample observations and the trees are ranked in descending
order with respect to the error estimates. The error estimates
taken in this paper are the standard errors for out-of-sample
observations by each tree. The final ensemble is constructed
by choosing the top rankedM causal trees.

B. STEPS OF THE PROPOSED (OCTE)
The proposed algorithm considers the following steps to
assess treatment effect:

1) Select B number of sub-samples from the training part
of the dataset i.e. L = (X ,Y ,W ).

2) Use generalized random forest for growing a causal
decision tree on each sub-sample.

3) Arrange the causal trees according to their out-of-
sample predicted standard errors.

4) The bestM causal trees are chosen having the smallest
individual prediction standard error on out-of-sample
observations.

5) Combine theM selected trees to form an optimal causal
decision trees forest and use it to predict the treatment
effect of new/test data points.

Algorithm 1 Pseudocode of the Proposed OCTE
1: B: Number of sub samples taken from training data i.e.
L = (X ,Y ,W ).

2: M : Number top ranked causal trees having minimum out
of sample standard error.

3: for t = 1→ B do
4: Grow a causal decision tree using generalized random

forest;
5: Compute error rate on out-of-sample observations;
6: Save all the trees;
7: Save the out-of-sample errors;
8: end for
9: Rank the causal trees based on the out-of-sample stan-

dard error;
10: Select top rankedM causal trees;
11: Combine theM selected causal trees to construct optimal

causal tree ensemble (OCTE);
12: Use OCTE for estimating treatment effect and predicting

unseen data.

FIGURE 3. Flow chart of the proposed ‘‘OCTE’’ procedure.

Pseudocode of the proposed method OCTE is given in Algo-
rithm 1 along with an illustrating flow chart in Figure 3.

IV. EXPERIMENTS AND RESULTS
In this paper, the proposed OCTE is assessed using five
different simulation scenarios. It is then compared with five
state-of-the-art methods, i.e., OLS, LASSO, Ridge, causal
tree and causal random forest.

The OCTE is also applied on a real dataset, the nationally
representative Labor Force Survey of Pakistan (LFSP). The
LFSP data include records from 2017 to 2018 taken from
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Pakistan’s Bureau of Statistics. The Labor force survey is a
nationwide survey containing micro-data from all over the
country’s demographic and employment information.

A. SIMULATED DATA
Design 1: Normally Distributed Uj and Linear Outcome
Model

The simulated data models are based on [65]–[68].
1) Each cluster consists of nj observations, where j =

1, 2, . . . , J , (where, J is the total number of clusters).
Each cluster is generated by drawing a random num-
ber from a normal distribution with a small standard
deviation and rounded mean I to the closest integer.
All generated data contain about 4, 000 observations,
and a conditional sample size of five instances is used
for (J , I ).

2) For all observations i.e., i = 1, 2, . . . , nj for jth clus-
ter, simulate confounders with individual level Xij =
(X1ij,X2ij,X3ij), measured confounder for cluster level
Zj, and unmeasured confounder for cluster level Uj i.e.

X1ij ∼ Unif (−1, 1),X2ij ∼ N (0, 1),

X3ij ∼ Unif (0, 1),

Zj ∼ Unif (−1, 1) and Uj ∼ N (0, 1).

3) Status of individual treatmentWij is generated from the
logistic model propensity score as follow.

logit(eij) = −0.6+ 0.3X1ij + 0.3X2ij + 0.3X3ij
+0.3Zj + 0.4X2

1ij + 0.4X2ijZj
+0.4X1ijI (X3ij ≤ 0.3)+ 0.3Zj,

andWij ∼ Bernoulli(eij).
4) The potential outcomes Yij1, Yij0 and observed response

Yij are generated from the regression model as follow.

Yij(w) = −70+ 2X1ij + 2X2ij + 2X3ij
+2Zj + 2X2

1ij + 2X2ijZj
+2X1ijI (X3ij≤0.3)+ 2Uj
+W (2+ 2X3ij + 2Zj)+ rij,

Yij = WijYij1 + (1−Wij)Yij0,

and rij ∼ N (0, 1), where rij is random error for ith
sample in jth cluster.

Design 2: Uniformly Distributed Uj and Linear Outcome
Model

This design utilizes a similar model for data generating
as Design 1, but the only difference is that Uj (unmea-
sured cluster level confounder) has uniform distribution
i.e. Uj ∼ U (−2, 2).
Design 3: Uniformly Distributed Uj, Linear Outcome

Model, and Misspecified Working Models
This design is also similar to Design 2, but higher order

terms in the outcome model are ignored.
Design 4: Uniformly Distributed Uj and Nonlinear

Binary Outcome Model

TABLE 1. Summary of Designs 1-5.

This design is also similar to Design 2, but the difference
is that the outcome model nonlinear and binary. The outcome
model is given by

logit(P(Yij(w) = 1|Xij,Zj,Uj)) = −0.6+ 0.3X1ij
+0.3X2ij + 0.3X3ij + 0.3Zj + 0.3X2

1ij

+0.3X2
2ijZj + 0.3X1ijI (X3ij ≤ 0.3)

+0.3Zj + β1Uj + β2w(0.5+ 0.3X3ij
+0.3Zj + β2Uj),

and Yij(w) ∼ Bernoulli(P(Yij(w) = 1|Xij,Zj,Uj)),Yij =
WijYij1(1−Wij)Yij0.
Design 5: Uniformly Distributed Uj and Linear Out-

come with Exponential Error Model
The construction of Design 5 is almost similar to

Design 2 withUj as uniformly distributed and linear outcome
model.
All five designs consist of about 4000 samples and data

in each design is divided into 70% training and 30% testing
parts. MSE, RMSE, MAD and correlation coefficient (r) are
used as performance measures for both conditional average
treatment effect (CATE) i.e. τi as will as average treatment
effect (ATE) i.e. τ .
For CATE, 500 realization are made under each design

and MSE, RMSE, MAD and correlation coefficient (r) are
calculated reporting their average values. Expressions of the
metrics used are given bellow.

MSE =
1
n

∑n

i=1
(τi − τ̂i)2,

RMSE =

√
1
n

∑n

i=1
(τi − τ̂i)2,

MAD =
1
n

∑n

i=1
|τi − τ̂i|,

r =

∑n
i=1(τ̂i − ¯̂τi)(τi − τ̄i)√∑n

i=1(τ̂i − ¯̂τi)2
√∑n

i=1(τi − τ̄i)2
.

B. SIMULATED DATA RESULTS
Table 4 shows the results of the proposed method (OCTE)
and all the other methods considered in this study, in terms
of conditional average treatment effect (CATE). The results
suggest that the proposed OCTE outperformed all the other
stat-of-the-art procedure on almost all the five designs. The
results are also shown in the form of bar plots in Figures 4-7.

13004 VOLUME 10, 2022



N. Younas et al.: Optimal Causal Decision Trees Ensemble for Improved Prediction and Causal Inference

TABLE 2. Execution time (in seconds) of OCTE and CF for different
number of trees.

TABLE 3. Labour Force Survey of Pakistan (LFSP) data description.

The proposed OCTE provides minimum mean square error
(MSE) on first four designs, while causal forest (CF) gives
optimal value for Design 5. The OLS, LASSO, Ridge and CT
did not perform well on any design. In terms of root mean
square error (RMSE), the proposed OCTE performed better
than the other methods on four designs and CF outperformed
the others on Design 5. Apart fromOCTE and CF, the remain-
ing methods did not outperformed the rest of the methods on
any of the designs. Similarly, OCTE is giving optimal results
in terms of mean absolute deviation (MAD) as compared to
the other methods. In terms of Pearson’s product moment
correlation coefficients (r), the OCTE also outperformed the
other procedures on Designs 3 and has similar performance
on Designs 1 and 4, while OLS outperformed the rest of the
methods on Designs 4 and 5.

Table 5 shows the results for average treatment
effect (ATE) for the 5 scenarios. It is evident from the results
that the proposed OCTE had better achievements than the
other methods in four scenarios in terms of MSE, RMSE
and MAD, and it outperformed them in three scenarios in
terms of correlation. The CF method, on the other hand,
gave the same correlation value in Design 3 as that of OCTE
and outperformed the other methods in Design 4. However,

FIGURE 4. Bar plots of MSE computed for CATE.

FIGURE 5. Bar plots of RMSE computed for CATE.

FIGURE 6. Bar plots of MAD computed for CATE.

LASSO had the best achievement in Design 5 in terms of
correlation. For a visual illustration, the results are also shown
in the form of bar plots in Figures 12-15. The results obtained
in Table 4 and Table 5 can also be seen in the form of bar-plots
in Figures 4-7 and Figures 12-15, respectively.
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TABLE 4. Conditional average treatment effect results of all the methods.

FIGURE 7. Bar plots of r computed for CATE.

For further assessment, boxplots ofMSE, RMSE,MAD and
correlation values of CATE obtained from all the 500 runs
of the simulated data for each design are displayed in
Figures 8, 9, 10 and 11. The boxplots reveal that the OCTE
is more consistent in comparison with the other well-known
methods.

FIGURE 8. Boxplots of MSE computed for CATE.

Moreover, the execution or running times (in seconds)
of the new method and the causal forest method (CF) are
also given in Table 2, where it can be noticed that, as the
number of trees grow, the execution increases linearly, i.e.
f (B) ≤ C × O(B), where B is the number of trees. The
execution time of the OCTE is greater than that of the CF
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FIGURE 9. Boxplots of RMSE computed for CATE.

FIGURE 10. Boxplots of MAD computed for CATE.

FIGURE 11. Boxplots of r computed for CATE.

method, due to the additional tree selection step. To reduce
the execution time, Step 3 of the proposed algorithm can be
parallelised using existing tools, such as the ‘‘parallel’’ R
package [69].

FIGURE 12. Bar plots of MSE computed for ATE.

FIGURE 13. Bar plots of RMSE computed for ATE.

FIGURE 14. Bar plots of MAD computed for ATE.

C. LABOUR FORCE SURVEY OF PAKISTAN (LFSP) AS AN
EXAMPLE
In this research, the nationally representative labor force sur-
vey of Pakistan (LFSP) data from 2017 to 2018 is taken from
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TABLE 5. Average treatment effect results of all the methods.

FIGURE 15. Bar plots of r computed for ATE.

Pakistan Bureau of Statistics. LFSP is a nationwide survey
consisting of labours employment information from all over
the country at micro level.

The working sample used is based on those in wage
employment and comprises a total of 272610 workers. The
analysis is restricted to those older than 10. Missing val-
ues and unusable observations are discarded, leaving a total
of 27964 observations. The variables used to analyse each

FIGURE 16. CATE computed by OCTE for LFSP Data.

worker’s wage include hours worked, education, occupation,
residence (in urban or rural area and in one of the four
provinces), schooling attainment, gender, employment status,

13008 VOLUME 10, 2022



N. Younas et al.: Optimal Causal Decision Trees Ensemble for Improved Prediction and Causal Inference

FIGURE 17. Heterogeneity based on Provinces for LFSP Data.

FIGURE 18. Heterogeneity based on Region for LFSP Data.

marital status, experience, industry, kind of enterprise and
training. A brief description of the variables is given in
Table 3.

D. LFSP DATA RESULTS
Figure 16, shows the conditional average treatment effect
(CATE) of the proposed OCTE computed for LFSP data.
It can be observed from the figure that the treatment (edu-
cation) has a positive effect on the average income of the
individuals. This implies that higher education leads to higher
income of the individuals. Similar conclusion could be drawn
from the box-plot constructed in the same figure.

Figures 17-19 discuss the heterogeneity of education in
the variables ‘‘Province’’, ‘‘Region’’ and ‘‘Gender’’, respec-
tively. From Figure 17, it is clear that in province Khyber
Pakhtunkhwa, the average effect of education on the income
of the individuals is less than the rest of the provinces. Punjab
and Sindh posses almost equal average effects of education
on the income of the individuals. Figure 18 indicates the
heterogeneity of education between the rural and urban areas
where it is clear that in rural areas, the education has less

FIGURE 19. Heterogeneity based on Gender for LFSP Data.

effect on the income of the individuals. In case of variable
‘‘Gender’’, education has minimum effect on the income of
males as compared to females (Figure 19). In a nut shell,
education is observed to have heterogeneous effect among the
variables i.e. gender and region, whereas in variable province
it has an approximately homogeneous effect.

V. CONCLUSION
This research proposed a causal tree selection method based
on out-of-sample standard error. The procedure grows a large
number of causal trees, each on a random sub-sample taken
from the training data. The proposed method estimates stan-
dard errors of all the trees based on out-of-sample obser-
vations. The causal trees grown are ranked with respect to
the standard errors, and the top M trees are selected. The
top ranked trees are combined for the final ensemble. The
novel OCTE is assessed based on simulated data, generated
under five different designs and compared with common
procedures, OLS, LASSO, ridge, causal tree and causal deci-
sion trees forest. For assessing the proposed OCTE, perfor-
mance metrics MSE, RMSE, MAD and Pearson’s correlation
coefficient (r) are used. In general, the proposed algorithm
outperformed the rest of the methods in almost all the cases.

TheOCTEmethod demonstrated improved prediction per-
formance compared to the rest of the methods considered in
the paper.Moreover, the method is effective in estimating het-
erogeneous causal treatment effects. Since the method uses
only few accurate causal trees, the idea could be further be
extended to mitigate the interpretability issue of the standard
causal trees forest.
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