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ABSTRACT Resting-state functional magnetic resonance imaging (rs-fMRI) is an efficient tool to measure
brain connectivity and it can reveal patterns that distinguish autism spectrum disorder (ASD) from normal
controls (NC). It is established that the fractal nature of neuroimaging signals will affect the estimation of
brain’s functional connectivity. Therefore, the ordinary correlation of rs-fMRI may not provide the original
neuronal activity of the brain. In this work, the non-oscillatory brain connectivity method is proposed
to distinguish subtypes of ASD from NC. The three subtypes of ASD namely autistic disorder (ATD),
Asperger’s disorder (APD), and Pervasive developmental disorder-not other specified (PDD) are classified
from NC by extracting the non-oscillatory connectivity from the BOLD rs-fMRI signal. A number of
significant connections are extracted by utilizing the p-value analysis and these significant connections are
fed to machine learning (ML) classifiers for classification of ASD subtypes against normal control. The
performance for binary classification is recorded at accuracy of 98.6%, 97.2%, 97.2%, respectively, for ATD
vs. NC, APD vs. NC and PDD vs. NC.Whereas, for multiclass (ATD, APD, PDD and NC), the best accuracy
is 88.9%. Both binary and multiclass classification outperformed the conventional Pearson correlation-based
connectivity and benchmark approaches in terms of accuracy, sensitivity, specificity. This work demonstrates
the great potential of non-oscillatory connectivity approaches, not only for autism diagnosis but also for other
neurological disorders.

INDEX TERMS Asperger’s disorder, pervasive developmental disorder, fractal free, neurodevelopmental,
Pearson correlation, machine learning.

I. INTRODUCTION
Autism spectrum disorder (ASD) is a complex neurodevel-
opmental disorder that disturbs various abilities of a person
which includes social and communication challenges, repet-
itive behaviour, speech delay, etc. Because the abnormality
usually appears before a kid reaches the age of three, it might
be difficult to notice and it can last throughout a person’s
life. Therefore, early ASD identification can help to address
the above-mentioned difficulties and enhance the quality of
life for people with ASD and their families. The Centre for
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Disease Control and Prevention (CDC) estimates that one
out of every 54 children in the United States has autism [1].
According to World Health Organization (WHO) data, one
out of every 160 children in the world has ASD [2]. With
increasing prevalence of ASD, it is important to diagnose
ASD in the early stages to mitigate the consequences in the
later stages.

ASD is now an umbrella term according to American
Psychiatric Association (APA) after 2013 according to
the diagnostic and statistical manual of mental disorders
(DSM-5) [3], ASD covers the following conditions: 1) Autis-
tic disorder (ATD), 2) Asperger’s disorder (APD) and
3) Pervasive developmental disorder-not otherwise specified
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(PDD). Autistic children exhibit a variety of characteristics,
including resistance to change, aggression, and self-injurious
behaviour [4]. APD, which is one of the wider categories
of ASD modestly affects children, and they have normal
cognitive and verbal abilities. They do, however, have more
difficulty with social skills than other types of ASD, and they
repeat the same activities and actions that they enjoy. Children
with APD may experience fewer emotions and express them-
selves less. However, PDD is a collection of disorders marked
by difficulties with social interaction, verbal and nonverbal
communication, imaginative activity, and a small number of
repeated interests and activities.

Early diagnosis of ASD can be helpful for children and
their families and it can mitigate the symptoms associated
with the disorder. Although it is a challenging task, the earlier
it is diagnosed, the better it is for the individual. Research
suggests that early autism diagnosis and interventionmethods
are likely to have significant long-term favourable impacts on
symptoms and subsequent skills [5]–[7].

Diagnosis of Autism is a challenging task as there is no
standard test or tool available for the correct diagnosis of
the disorder [8]. Doctors observe the children’s behaviour
or take the history of the child from parents’ interviews.
There are two diagnostic tools available for autism diagnosis,
it includes AutismDiagnostic Observation Schedule (ADOS)
which is based on tasks that involve social interaction. The
examiner observes the person under assessment and gives
scores based on observation. An associated measure, the
Autism Diagnostic Interview-Revised (ADI-R), is a struc-
tured interview with the subject’s parents that covers the sub-
ject’s entire developmental history [9]. As these assessment
tools are based on observation, there is a high risk of false
positives in individuals with other psychological disorders.
In particular, adults with psychosis have a higher rate of
false positives [10]. Similar false diagnosis can be seen in
case of childhood-onset schizophrenia [11], attention/deficit
hyperactivity disorder (ADHD) [12] etc. Clinical assessments
and behavioural observations are used to diagnose ASD.
However, since clinical scores are vague, it is necessary to
uncover accurate brain biomarkers and automate the ASD
diagnosis procedure [13].

A. RELATED WORK
Several studies have revealed that brain connectivity can
be a substantial biomarker for ASD classification. It can
reveal patterns that distinguish ASD from healthy controls
[14]–[16]. Resting-state functional Magnetic Resonance
Imaging (rs-fMRI) is a powerful method to examine brain
connectivity patterns. Classification studies using rs-fMRI
showed connectivity differences between ASD and con-
trols [17]–[19]. In [17], Antonis et al. used rs-fMRI to clas-
sify ASD. Functional connectivity was used as a feature
vector to be fed to the machine learning (ML) classifier,
utilizing the RBF kernel and yielded the highest accuracy of
69.77%. Rajat Mani et al. in [18], used the temporal statis-
tics of rs-fMRI data for the classification of ASD achieving

the highest accuracy of not more than 66%. Adora et al.
in [19], used rs-fMRI with mutual connectivity analysis to
find the differences among various brain regions related to
ASD and controls. They achieved the mean accuracy between
70%-81%

In development of automatic diagnosis of ASD using
BOLD fMRI signals, two main type of extracted feature
are considered, either dynamic [20]–[22] or static func-
tional connectivity (FC) [23]–[29]. However, for dynamic FC
[20]–[22], the methods were tested on a relatively small sam-
ple size of less than 100. Several combinations of static FC
fMRI feature and classifier have been applied in the literature
to determine the functional connectivity among brain nodes
from rs-fMRI data then applied as input to machine learning
models. Pearson correlation method is widely employed to
estimate the temporal dependency coefficients between the
brain nodes which are reflected in the association and direc-
tion connectivity between brain nodes. Chen et al. [23] used
Pearson correlation coefficients as input to Support Vector
Machine (SVM), achieving 79% accuracy for ASD classi-
fication. Recently, Chaitra et al. [30] attempted to develop
the ASD classification performance by applying Pearson
correlation coefficients with other complex brain networks
matrices as input to Recursive-Cluster-Elimination-SVM
(RCE-SVM). However, their method achieved 70.1% accu-
racy for ASD diagnosis which is lower than the previous
study [23]. In another work by Abraham et al. [24], covari-
ance matrices are used to estimate the FC between brain
nodes and become the input features to an SVM classifier
giving 67% accuracy.

Known for its excellent result in various automated clas-
sification [31], [32], deep learning approaches are also
employed to improve the ASD classification based on FC
patterns. Heinsfeld, et al. [25], extracted the FC based on
the Pearson correlation between voxels time series and feeds
to deep neural networks (DNN), giving 70% classifica-
tion accuracy. above-cited studies applied the Pearson cor-
relation coefficients as input vectors to the model, while
Sherkatghanad, et al. [28], converted the Pearson correlation
coefficients as 2D-matrix and used them as input to the
Convolutional Neural Network (CNN) given 70.2% ASD
vs. NC classification accuracy. In [26], Eslami, et al. utilized
anti-correlated and highly correlated functional connections
as the feature vector and trained on a joint learning architec-
ture using an autoencoder and a single layer perceptron (SLP)
which results in 70% accuracy in classification of ASD vs.
NC. However, the findings of the above-cited studies have
reportedASDdiagnostic with the best accuracy of 79%which
means that more research in this area is required in improving
the ASD classification.

The use of neuroimaging techniques, such as fMRI
[26], [33], electroencephalography [34] and magnetoen-
cephalography [35], [36], allows indirect assessments of
brain neuronal activity. However, it is not straightforward
to extract the pure neuronal signal as neuroimaging signals
are affected by physiological influences and it is essential to
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consider this phenomenon when developing a classification
algorithm. It is established in [37]–[42] that neuroimaging
signals exhibit fractal behaviour i.e., having self-similarity
and power-scaling properties. The fractal nature may origi-
nate from the cardiac oscillations [43], respiration [44], sys-
tem noise and many more. This nature has an impact on
brain connectivity patterns, leading us to look for a fractal-
free brain signal to recover the pure neuronal activity. In this
research, we extend the idea proposed byWonsang et al. [37]
in 2012 to the classification of ASD subtypes vs. controls
based on fractal free signals i.e., non-fractal connectivity.
To this date, the non-fractal, here termed as non-oscillatory
connectivity has not been applied for classification of autism
subtypes from normal controls.

The main contributions of the proposed research are as
follows. In this work, the BOLD time series extracted from
the rs-fMRI signal is used to find the non-oscillatory connec-
tivity for the classification of autism subtypes from healthy
controls. The proposed approach is expected to provide excel-
lent results as the non-oscillatory signals provide a cleaned
neuronal signal of the brain giving more accurate brain con-
nectivity patterns. The method utilized BOLD time series
signals extracted from 116 regions based on AAL atlas, thus
giving a 116 × 116 symmetric connectivity matrix with zero
diagonal values. The p-values analysis is used to find the
most significant connections giving insights on how infor-
mative the connectivity patterns in discriminating between
autism subtypes and normal controls. Several ML classi-
fiers are tested to evaluate the performance of the proposed
method and compared with Pearson correlation connectivity
to demonstrate the excellent performance of the proposed
method.

The remainder of the paper is organized as follows.
Section II represents the modelling of the long memory pro-
cess of rs-fMRI signal. In section III, methodology for devel-
opment of the classification algorithm is shown including
details of the dataset and derivation of the non-oscillatory
connectivity. In section IV, results on the investigations of the
proposed approach for the classification of autism subtypes
and normal controls are presented together with the statistical
analysis and discussion on the classification performance
using the best ML classifier. In particular, our investigation
is divided into two parts; 1) multiclass classification of ASD
subtypes using 36-subject perclass and 2) binary classifica-
tion using 505-ASD vs 530-NC subjects.

II. LONG MEMORY MODEL OF MULTIVARIATE rs-fMRI
SIGNALS
We begin the modelling of rs-fMRI signals using a univariate
approach prior to extension to themultivariate scenario. Here,
the definition of long memory process is based on the general
formalism established in [45], [46]. Let c(t) be a real valued
discrete process of length L with s(t), a process called short
memory having the spectral density Ss(t) is given as:

s(t) = (1− Q)mc(t) (1)

where 0<m< 1/2 andQ is defined as the back shift operator.
The fractal behaviour is controlled by the ‘m’ parameter such
that if 0 < m < 1/2 the process s(t) is said to be a stationary
long memory process, while m > 1/2 is for a nonstationary
process. Also, if m = 0 the process turns into a white noise.
c(t), which is the convolution of s(t) and the long memory
filter, k(t) given as follows:

c(t) =
∞∑
τ=0

k(τ )s(t − τ ) (2)

where

k(t) :=
m0(m+ t)

0(m+ 1)0(t + 1)
, (3)

if − 1
2 < m < 1

2 , the spectral density of c(t) can be written as

Sc(f ) = |1− e−jf |−2mSs(f ). (4)

For the multivariate case of long memory model, the uni-
variate case can be expanded. A w-vector real valued process
C(t) given by:(1− Q)m1 0

. . .

0 (1− Q)mw


c1(t)...
cw(t)

 =
s1(t)...
sw(t)

,
(5)

where S(t) = (s1(t), . . . , sw(t)) shows a multivariate station-
ary process and the spectral density ofC(t) is S(f ) = [Sp,q(f )]
is limited to (−π, π). For− 1

2 < md < 1
2 , the spectral density

of S is given as

S(f ) = 2(f )Ss(f )2∗(f ), (6)

where

2(f ) =

(1− ejf )−m1 0
. . .

0 (1− ejf )−mw

. (7)

Given that, 0 < md < 1
2 for d = 1, 2, . . .w, C(t) is

considered to be a stationary long-memory process having
memory parameter m = (m1, . . . ,mw). Assuming S(t) to be
a vector auto-regressive moving average (ARMA) process,
C(t) eventually becomes a multivariate ARFIMA process.
However, on the other hand, if S(t) is a vector of i.i.d random
variable, i.e.

S(t)
i.i.d .
∼ L

(
0,
∑

s

)
. (8)

C(t), becomes a multivariate fractionally integrated noise
(mFIN). Now, the cross-spectral density of cp(t) and cq(t) is
given as

Sp,q(f ) = ψp,q(1− ejf )−mp (1− e−jf )−mq , (9)

where ψp,q is the (p, q)-th element of
∑

s.
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TABLE 1. Demographic information of autism subtypes and normal
control subjects according to gender and age.

III. METHODOLOGY
The schematic diagram of the proposed approach for the clas-
sification of subtypes of ASD against NC using neuroimaging
data is shown in Figure 1 and presented in detail in this
section. First, the rs-fMRI data is pre-processed following
the standard procedure as it is the necessary step for further
procedure. Then, defining the region of interest (ROI) and
time-series extraction from 116 regions based on AAL atlas,
followed by connectivity matrix extraction. Two types of con-
nectivities are extracted namely, non-oscillatory and Pearson
correlation. Pearson correlation-based connectivity is used
for comparison and to show the efficacy of the proposed
method. The machine learning classifiers are trained, and
the parameters are optimized using a cross-validation (CV)
framework.

A. RESTING-STATE fMRI DATASET
This work is carried out on resting-state fMRI data of equal
size comprising 3 autism subtypes, ATD, APD, PDD as well
as the normal controls. Each class has 36 subjects and the
demographic detail of the subjects is shown in Table 1. The
dataset is downloaded from the publicly available dataset of
Autism Brain Image Data Exchange (ABIDE) [47]. As given
in Table 1, there are more male subjects for the autism sub-
types, with the ratio of male-to-female equal to 0.75:0.25.
In contrast, the normal controls have more female subjects
which is at 72.22% compared to 27.77% of male subjects.
The age range of the subject is between 12 to 15 years old.
TheMRI scanning protocol and the location of data collection
are provided in Table 2.

B. DATA PRE-PROCESSING AND EXTRACTION OF BOLD
TIME-SERIES SIGNALS
Data pre-processing is an essential step prior to further inves-
tigation and statistical analysis of fMRI data as it removes
the undesired artefacts and translates the data into a standard
format. Connectivity toolbox (CONN) [48] is used to pre-
process the data by performing realignment, slice-time cor-
rection, co-registration, normalization and smoothing. The
subsequent processing is using the Data Processing & Anal-
ysis for (Resting-State) Brain Imaging (DPABI) toolbox [49]
for extracting the BOLD time series from 116 nodes as
defined by the AAL brain atlas.

The ABIDE dataset is a collection of rs-fMRI from
multiple sites, using different type of scanners and pro-
tocol as listed in Table 2. Therefore, the signals vary in
terms of the number of time-points. Selected brain regions

comprising 116 nodes for extraction of BOLD time-series
are based on AAL atlas [50]. With signals from 116 nodes,
each subject will generate a connectivity matrix having a size
of 116 × 116.

C. CONNECTIVITY MATRICES
1) PEARSON CORRELATION BASED CONNECTIVITY
Pearson Correlation Coefficient (PCC) of neuroimaging sig-
nals is a standard way to measure the functional connectivity
between different regions, providing useful information on
brain’s activity [51]. The PCC between two time series can
be calculated by finding the covariance between two time
series and dividing it by the product of its standard deviation.
If cp(t) and cq(t) denote the BOLD signal from region x and y,
respectively, then the PCC of the two regions is

βcp,cq =
cov(cp, cq)
σcpσcq

, (10)

where cov denotes the covariance. The standard deviation is
given by the symbol σp and σq for cp(t) and cq(t), respectively.
The covariance can be calculated by subtracting the mean
from time series and taking is expectation

cov(cp, cq) = E[(cp − µp)(cq − µq)], (11)

where E[.] is the expectation operator and µp and µq are the
mean of cp(t) and cq(t), respectively.

2) NON-OSCILLATORY CONNECTIVITY (NOC)
The multivariate long memory model explained in Section II
provides the concept of non-oscillatory connectivity, defined
as the covariance of short memory signals. Consider C(t) to
be an mFIN process having the memory parameter m, and
S(t) is a short memory function ofC(t) given in (5). The non-
oscillatory connectivity of cp(t) and cq(t) is described as

Ap,q =
ψp,q√
ψp,pψq,q

, (12)

where ψp,q represents the covariance of sp(t), and sq(t); that
is, ψp,q := E[cp(1)cq(1)].
Particularly, the NOC matrix requires the estimation of

short memory covariance as shown in (12) and memory
parameters mp and mq. The likelihood function for the esti-
mation of the memory parameter was proposed by Yu et al.
in [37]. For memory parameter mp, the maximum likelihood
function is given by

B
(
m̂p, ψ̂p|cp(t)

)
:=

1
(2π )L/2|6p|

1/2 e
−cT6−1p c/2, (13)

where, the matrix 6p denotes the covariance matrix of cp(t).
The estimation of short-memory covariance for NOC

matrix is obtained by using the linearity of wavelet covariance
over scales given as

ψ̂p,q =
2b̂p,q−1

Dp,q cos
(
π
2 (cp − cq)

) (2π)cp+cq , (14)
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FIGURE 1. Methodology for classification of autism subtypes using non-oscillatory connectivity (NOC) of rs-fMRI signals.

TABLE 2. Data acquisition protocol details for autism subtypes and NC dataset from ABIDE database, acquired using 3T-MRI scanner.

TABLE 3. Data acquisition protocol details of autism subtypes and NC dataset from ABIDE database, acquired using 3T-MRI scanner.

where

b̂p,q =
1
R

R∑
r=1

[log2 υ̂p,q(f )-(cp + cq)f ], (15)

Dp,q : =
1− 2cp+cq−1

1− cp − cq
. (16)

Given the estimated short-memory covariance in (14), the
non-oscillatory connectivity of cp(t) and cq(t), Âp,q of can be

estimated as follows

Âp,q =
ψ̂p,q√
ψ̂p,pψ̂q,q

. (17)

For visual representation, a sample of ATD, APD and PDD
and NC connectivity matrices for NOC and PCC are shown
in Figure 2.
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FIGURE 2. Sample of 116 × 116 non-oscillatory connectivity (NOC) and
Pearson correlation connectivity (PCC) matrices for autism subtypes and
normal control.

Algorithm 1 Method of Finding the Top-Ranked Features
in Discriminating ASD Subtypes and NC Using p-Value
Analysis

1) Let FC ∈ R1×6670 be the connectivity feature vector of
the 160-timepoint × 116-region BOLD time series of
one subject and τp is the selected p-value.

2) Arrangement of the feature vector for ASD and
NC classes at 36 subjects per class producing
6670×36-feature vector

3) Find p-value of each connection
spa if p-value ≤ τp
space2 save connection at S
spa else S = empty

4) Now, use S top-ranked features for classification

D. SELECTION OF HIGHLY DISTINCTIVE FUNCTIONAL
CONNECTIVITY
From 116 brain regions, the size of the connectivity matrix
is 116 × 116 which makes the number of total connections
equals 1162= 13456. However, since thematrix is symmetric
with respect to the diagonal elements, where the connection
from nodeA/B to nodeB/A are the same, the connectivity val-
ues to be considered are either the elements of upper or lower
diagonal, excluding the diagonal elements. Hence, the length
of the connectivity feature vector is (1162 − 116)/2 = 6670.

For the 36 subjects per class, using a full-length fea-
ture vector of 6670-length may result in poor classification
accuracy since this will result in a curse of dimensionality.
Besides, not all connectivity carries discriminative informa-
tion in differentiating the ASD subtypes and NC, hence,
to reduce this large number of connections, p-value analysis
is used. With a reduced feature vector, this will help to elimi-
nate the least significant features from the data and thereby
reduce the computational cost. Method to determine the p
values is given in Algorithm 1.

E. CLASSIFICATION
Several ML classifiers have been utilized to evaluate the
performance of the NOC-based ASD classification method.
This includes SVM linear discriminant, naive Bayes, fine and

cosine KNN and ensemble subspace discriminant. Selection
of optimal machine learning hyperparameters for SVM,KNN
and subspace discriminant ensemble is achieved by using
Bayesian optimization that minimizes the CV loss as the
objective function.

From the Bayesian optimization, the best performance of
SVM is achieved using the cubic kernel function. The KNN
classifier is run using 11-neighbour and cosine distance met-
ric. Lastly, the subspace discriminant ensemble is used with
a linear discriminant learner type of 30 learners and 410 sub-
space dimension. Decision of the output is based on majority
voting rule.

F. PERFORMANCE MEASURES
The confusion matrix is used to calculate the following per-
formance measures as listed below.

Sensitivity (Sen) =
TP

TP+ FN
(18)

Specificity (Spe) =
TN

TN + FP
(19)

Accuracy (Acc) =
TP+ TN

TP+ TN + FP+ FN
(20)

Precision (Pre) =
TP

TP+ FP
(21)

where, TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.
However, for multiclass classification, the accuracy mea-

sure in equation (20) is calculated independently as macro
accuracy which is defined as an accuracy computed for each
class separately [52] The TP, TN , FP, and FN for each class
can be calculated by using a confusion matrix. A Similar
approach is used for calculation of macro sensitivity, speci-
ficity, and precision.

IV. RESULT AND DISCUSSION
In this section, the performance of the proposed method is
evaluated for the classification of autism subtypes i.e., ATD,
APD, PDD, and NC, respectively. The comparisons are made
with the baseline approach i.e., Pearson-based connectivity.
The algorithm is tested for 10-fold CV. Data from 144 sub-
jects are used for the classification task using connectivity
matrices based on non-oscillatory connectivity (NOC) and
Pearson correlation connectivity (PCC). The evaluation of the
ASD ML algorithms begin with multiclass ASD classifica-
tion then followed by 2-class classification

The pre-processing of fMRI signals is by using the con-
nectivity toolbox (CONN) [48] and statistical parametric
mapping (SPM12) [53] implemented on the Matlab platform.
For the extraction of BOLD time-series, Data Processing &
Analysis for (Resting-State) Brain Imaging (DPABI) tool-
box [49] is used. The training and testing of theML algorithm
is performed on a Windows 10–based computer powered by
an octa-core processor (Intel Core i7-9700CPU) and installed
with 32 GB RAM with activated parallel computing (Matlab
function).

14054 VOLUME 10, 2022



A. Sadiq et al.: Non-Oscillatory Connectivity Approach for Classification of ASD Subtypes

FIGURE 3. Significant connections of 2-class (a) NOC, (b) PCC and (c) multiclass, extracted at different p values. The significant connections that result in
the best performance for NOC and PCC as determined from Table 4 and 5 are highlighted in a red dashed-box.

A. SELECTION OF TOP-RANKED FEATURES USING
p-VALUE ANALYSIS
The connectivity from 116 regions generates a
6670-dimension feature vector which is a relatively large
dimension compared to the number of subjects per class. This
high dimensional feature vector will increase the complexity
for the ML classifier to perform the classification task cor-
rectly. To remove the less informative connections and utilize
the most significant connections, the p-value analysis is used
to observe the importance of each connection for NOC and
PCC.

In this section, the number of significant connections,
S for binary and multiclass classification are determined for
both NOC and PCC using p-value analysis as described in
Section III-D. Figure 3, shows the number of S, as the p
values is increased from 0.01 to 0.1 for binary and multiclass
classification. In general, for each ASD subtype vs. NC as
well as multiclass classification, the number of S for NOC
is always lower compared to PCC. This may be attributed to
the better representation of the brain’s neural activities by the
NOC since the signals used for generating NOC are free from
oscillatory components generated by other physiological sys-
tems such as cardiac oscillations and also from system noise.
The better representation of the brain’s neural activities by the
NOC will be useful in discriminating the ASD subtypes and
NC and can be confirmed in the classification tasks, covered
in the next 3 sections.

For better assessment on the 2-class and multiclass clas-
sification at different p-value, the classification performance
usingNOC and PCC trained on cubic SVMusing S at increas-
ing p values are evaluated. The classification accuracy values
obtained using 10-fold CV are listed in Table 4 and Table 5,
for 2-class and multiclass, respectively.

From Table 4, it can be seen that for NOC, the highest
accuracy is achieved when p ≤ 0.05 which is 98.6% for ATD
vs. NC and 97.2% for the other two ASD subtypes versus
NC.However, for PCC, the accuracy value is varying between
90.3% to 94.4%, which is achieved at p ≤ 0.01. In multiclass
classification, shown in Table 5, NOC achieved the highest

accuracy at p ≤ 0.1, giving 88.9% whereas PCC obtained
the highest accuracy at p ≤ 0.07. It is clear from the result
in Table 4 and 5, that NOC performed better than PCC in
classifying ASD subtypes against the NC.

In the subsequent sections, Section IV-B and IV-C, respec-
tively, multiclass and 2-class ASD subtypes (ATD/APD/PDD
vs. NC) performance evaluation result for classification will
be presented using the number of S as shown in Figure 3 that
gives the best accuracy. Specifically, for 2-class, theNOCwill
use S obtained at p ≤ 0.1, whereas, PCC will use S obtained
at p ≤ 0.01. For multiclass, NOC will use S obtained at p ≤
0.1 and PCCwill use S obtained at p ≤ 0.07. Since the dataset
of multiclass ASD is relatively small, we further validate our
proposed classification framework in Section IV-D using a
larger dataset from ABIDE having 505-ASD and 530-NC
subjects.

B. MULTICLASS CLASSIFICATION OF ASD SUBTYPES AND
NORMAL CONTROL
In this section, the performance of the NOC-based ML algo-
rithm is evaluated for multiclass detection of ASD subtypes
(ATD, APD, PDD) and NC. The evaluation is presented in
terms of macro accuracy obtained using a 5-fold and 10-fold
CV framework. At the beginning of the experiment, many
classifiers are tested but only the top 3 classifiers are selected
to be presented in this section. The shortlisted classifiers are
cubic SVM, cosine KNN, and ensemble subspace discrim-
inant where the parameters for each classifier are specified
as in Section III-E. In essence, this experiment is used to
determine the best ML classifier in discriminating the ASD
subtypes and NC subjects. The accuracy values for 3 best ML
classifiers are evaluated by using 1816-PCC and 984-NOC
most significant connections as given in Figure 3. Only the
top-selected features from a total of 6670 features are used as
feature vectors to the ML classifiers.

From Table 6 classification based on NOC feature outper-
formed the PCC feature with the best accuracy of 88.9 %
and 87.08 %, for 10-fold and 5-fold, respectively. Relative to
the PCC-based approach, the NOC-based approach obtained
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TABLE 4. Two-class classification accuracy (in %) for 3 ASD subtypes versus NC evaluated at different p values using cubic SVM and 10-fold CV. The
number of connections of NOC and PCC for each p-value are as shown in Figure 3(a)-(b). There are 36 subjects for each ASD subtypes and NC.

TABLE 5. Multiclass classification accuracy (in %) for 3 ASD subtypes and NC, evaluated at different p values using cubic SVM and 10-fold CV. The number
of connections of NOC and PCC for each p-value are as shown in Figure 3(c).

TABLE 6. Macro-accuracy (in %) expressed with standard deviation (.) of
multiclass ASD classification using 1816-PCC and 984-NOC significant
connections obtained at p ≤ 0.07 and p ≤ 0.1 for PCC and NOC,
respectively. The 3 classifiers used in this case are cubic SVM, cosine KNN
and ensemble subspace discriminant (EnSub), evaluated using 5-fold and
10-fold CV.

TABLE 7. Macro (Acc, Sen, Spe, Pre) performance of 10-fold multiclass
classification of ATD, APD, and PDD vs. NC using 1816-PCC and 984-NOC
significant connections obtained at p ≤ 0.07 and p ≤ 0.1 for PCC and NOC,
respectively. The result is generated using cubic SVM.

10.4 % and 9.03 % higher accuracy for 5-fold and 10-fold
CV, respectively. Performance based on PCC hardly reaches
80% and the best result is 79.94% obtained using SVM. From
the result of this section, it is clear that cubic SVM gives the
best performance in terms of accuracy and therefore will be
selected as the classifier for the next experiments.

A more detailed assessment on the NOC-based multiclass
classification is conducted using 10-fold CV and the result
of accuracy, sensitivity, specificity, and precision is provided
in Table 7. The values in Table 7 are calculated from the
confusion matrix in Figure 4. In general, a clear trend shows
that NOC-based classification performed better than the PCC.
The average accuracy of NOC-based classification across
all 4 classes is at 94.44% which is 4.5% higher than the PCC.
Better sensitivity by the NOC is recorded at an average value
of 89.5% which is 8.69% higher than the PCC. The measure
of how well the classification method detects true negative
cases, is provided by the specificity. For NOC and PCC, the
average specificity is at 96.33% and 93.37%, only differed by

FIGURE 4. Confusion matrix for multiclass classification of ASD subtypes
using NOC and cubic SVM.

2.96%. Lastly, the average precision is recorded at 88.8% for
NOC compared to 79.85% for PCC indicating that NOC is
8.9% better than the PCC.

For comparison with the recent work on multiclass ASD
classification, we considered the work by Hiyali et al. [22].
In [22], the multiclass classification used dynamic FC pat-
terns in the form of wavelet coherence scalograms, represent-
ing the phase synchronization between the pairs of BOLD
signals. Using a 3-layer CNN architecture taking wavelet
coherence scalograms of 116 brain regions as its input, the
method in [22] achieved the best accuracy of 82.1%. In com-
parison to the proposed NOC-based multiclass classification
as shown in Table 6, with the best macro-accuracy of 88.97%,
the NOC outperformed the wavelet coherence technique [22]
by 6.87%.

C. 2-CLASS CLASSIFICATION OF ASD SUBTYPES VS.
NORMAL CONTROL USING CUBIC SVM
Apart from multiclass classification, the accuracy of the clas-
sification algorithm employing NOC and cubic SVM for
2-class classification of ASD subtypes versus NC is evalu-
ated. The results of 2-class ASD subtypes classification are
given in Table 4, utilizing a 10-fold CV framework. The best
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results are highlighted in bold-font, with S set at 0.05 and
0.01 for NOC and PCC, respectively.

Clearly, results of NOC-based classification indicate its
excellent performance over the PCC approach. With accu-
racy of 98.6% for ATD vs. NC and 97.2% across other two
2-class cases, this value is 4.2, 6.9% and 2.8% higher than the
PCC approach. In addition, the notable performance of NOC-
based is also evident from its perfect sensitivity and 97.1%
score for specificity and precision as well as almost 100%
AUC. Besides, relative to PCC-based, the NOC exhibits
low standard deviation (<1%) as detailed in Table 4 which
indicates good generalization of the classification model
across different training sets. However, since the dataset of
72-subject is relatively small, further investigation of ASD
vs. NC is conducted using 1035-subject dataset and presented
the next Section IV-D.

D. PERFORMANCE OF NOC-BASED BINARY
CLASSIFICATION OF ASD VERSUS NC USING
1035-SUBJECT DATASET
In this section, the proposed method is evaluated using the
full ABIDE dataset having 505 ASD subjects and 530 NC
subjects. Unlike the ASD subtypes cases presented in
Section IV-B and IV-C, since the dataset is small, only CV
framework is utilized in its evaluation.

Here, the data is split into training and testing taking
90% data for training using 10-fold CV and 10% data
for testing from each class. This test data is unseen by
the train/validation procedure used in model training. The
p-value analysis is conducted for the selection of top-ranked
features. Table 8 shows the classification accuracy for ASD
vs. NC classification, evaluated at different p values ranging
from 0.01-0.1 using Gaussian SVM and 10-fold CV frame-
work. From Table 8, it can be seen that the highest testing
accuracy achieved at p ≤ 0.05 which is 80% and 68% for
NOC and PCC, respectively. Notably, the proposed method
outperformed the conventional PCC approach by 12% in
terms of accuracy on a larger dataset.

For the detailed evaluation at p ≤ 0.05, the performance
metric such as accuracy, sensitivity, specificity and preci-
sion are calculated for the NOC and PCC approaches, using
the 10% test data. These values are listed in the confusion
matrix as given in Figure 6. The proposedNOC-basedmethod
maintained a good balance between sensitivity and specificity
of 80% for NOC while it is at 68% and 58% for PCC,
respectively. Similarly, the NOC approach obtained 7.5%
more precise in its decision compared to the PCC approach
which is at 72.5% precision.

For the past couple of years, there have been numerous
attempts in finding biomarkers that can automatically diag-
nose ASD using fMRI signals. The list of the state-of-the-art
techniques in comparison to the NOC-based method is tabu-
lated in Table 9. Generally, the methods differ in terms of the
brain’s ROI, feature extraction and type of classifiers. Clearly,
utilizing small ROI, 36 [24] and 160 [23] will not provide bet-
ter classification results than the NOC-based method. It can

FIGURE 5. Significant connections of 2-class NOC and PCC binary
classification, extracted at different p values using the 1035-subject
dataset. The significant connections that result in the best performance
for NOC and PCC as determined from Table 8 are highlighted in a red
dashed-box.

also be seen that the type of feature plays a significant role
in determining the classification results. Pearson correlation
at ROI of 116 [27] or greater [25], [26], [28] is only able to
reach the best accuracy of 74% using SVM [27]. The work by
Heinsfeld et al. [25], Eslami et al. [26], Tang et al. [27] and
Huang et al. [29] provide a fair comparison to our proposed
method since they all used the same dataset.

One recent paper on fMRI-based diagnosis of autism using
the ABIDE dataset is by Yang et al. [54] which is based
on Pearson’s correlation-based spatial constraints represen-
tation (PSCR) and graph attention network (GAT) frame-
work. Their proposed method achieved 72.4% accuracy,
which is less accurate than our NOC-based method. Com-
parison with the most recent state-of-the-art techniques by
Huang et al. [29] and Yang et al. [54], shows that our method
based on NOC has outperformed [29] and [54], respec-
tively, by 3.6% and 7.6% in terms of classification accuracy.
With this result, it is clear that the proposed method in this
study provides a more reliable result for automatic diagnosis
of ASD.

E. ANALYSIS ON SIGNIFICANT PAIRS OF BRAIN
CONNECTIONS
In this section, We select the top twenty significant pairs
of connections out of 6670 connections based on p-value
analysis. The list of 20 pairs of node connection and its
class of function, i.e. whether a particular node is linked to
primary, association or also known as secondary, paralimbic
and subcortical functionality is given in Table 10. The plot
of the nodes on the left and right hemisphere of the brain
is shown in Figure 7. From the four brain functionalities,
12 nodes are from association function, followed by 5 nodes
from both paralimbic and subcortical and lastly, 2 nodes from
primary function. This result indicates that the secondary or
association region is highly affected by the ASD condition.
This can be attributed to the important role of the association
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TABLE 8. Classification accuracy (in %) for ASD vs NC classification using 1035-subject dataset, evaluated at different p values using Gaussian SVM and
10-fold CV. The number of connections of NOC and PCC for each p-value are shown in Figure 5.

TABLE 9. ASD vs. NC classification comparison with previous studies in terms of accuracy, sensitivity, specificity (in %) and AUC.

TABLE 10. The top twenty significant pairs of brain node connections with its type of function. The number in bracket after abbreviation denotes the
node number as per AAL-116 atlas.

FIGURE 6. Confusion matrix for 2-class classification of 50 AD and 50 NC
test subjects from 1035-subject dataset, based on (a) NOC and (b) PCC
using Gaussian SVM. Testing of the model is performed using significant
connections, S at p ≤ 0.05 for NOC and PCC, with S respectively, equal
to 730 and 2178 as determined from Figure 5. Here, PPV is positive
predictive rate which is also known as precision and NPV is negative
predictive rate.

areas which is to integrate incoming sensory information,
and also form connections between sensory and motor areas
for the primary area. For further validation, we compare our
nodes with the findings by CYWee et al. [55], who proposed

FIGURE 7. Significant nodes of 20 most significant connection pairs as
listed in Table 10.

a framework using short-time activation patterns of brain
connectivity from resting-state fMRI in diagnosis of ASD.
Notably, the nodes, including inferior frontal gyrus triangular,
hippocampus, inferior parietal gyrus, middle temporal gyrus
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listed in Table 10 matched the findings in [55]. In fact,
the 14 discriminative nodes listed in [55] matched with the
nodes of our 730 significant connections, obtained based on
p-value analysis.

V. LIMITATIONS, CHALLENGES AND FUTURE WORK
Although the NOC-based classification has shown to be
a promising fMRI feature for classification of ASD, there
remain limitations in the current study that could be addressed
by future work. Firstly, a single large publicly available fMRI
dataset of multiclass ASD is not readily available, hence data
across multiple sites with different acquisition protocols need
to be considered in the future. With the dataset of 36 subjects
per class, this number is considered to be relatively small.
Hence, before being used in clinical trials, the proposed
technique should be trained and evaluated on a larger number
of subjects, to be obtained across multiple sites. Secondly,
other than p-value analysis other feature selection techniques,
such as ReliefF and mRMR can be investigated which may
improve the accuracy, especially for multiclass classification.

Lastly, with accuracy of 88.9% and 80%, respectively,
for multiclass and binary classification, there is room for
improvement for the NOC-based classification of ASD sub-
types. This can be explored by using brain atlas with higher
number of regions. For example, Craddock CC200/CC400,
which defined 200/400 brain regions may provide better rep-
resentation on the brain’s neural activity, in turn giving better
classification of ASD subtypes.

Future work on the NOC-based technique may include
diagnosis of other brain disorders such as alcohol use dis-
order, major depressive disorder, schizophrenia, and early
Alzheimer detection, etc. Besides, more detailed analysis of
affected brain regions and its functionality related to theASD,
as identified by the NOC should also be conducted. This
may lead to important findings on NOC-based biomarkers
for diagnosis of not only ASD but various brain disorders and
provide interpretability of the machine learning model.

VI. CONCLUSION
In this paper, a classification algorithm for detecting 3 autism
subtypes and normal control is developed using the
non-oscillatory connectivity (NOC) approach. The non-
oscillatory connectivity provides pure neuronal activity free
from the influences of the oscillatory components emanat-
ing from sources like cardiac and respiratory systems. The
NOC-based approach showed excellent performance in clas-
sifyingATDvs. NC, APD vs. NC, PDDvs. NC andmulticlass
classification. In fact, its 2-class classification outperformed
the Pearson correlation based approach by a margin of 5.65%
to 7.74% and the recently published work by 12.7%. The
excellent performance of the NOC-based approach may be
attributed to better neural representation by the NOC, hence
giving a positive impact in the classification of the ASD
subtypes. It should be noted that the performance evaluation
of the proposed approach is obtained based on 36 subjects
per class, which is a relatively small sample size. Therefore,

a larger dataset consisting of 1035 subjects is also included
to evaluate the performance of the proposed method that
achieved the classification accuracy of 80% which is 12%
more compared to PCC approach which is at 68%. The
proposed method also outperformed the recently developed
approaches by a good margin as summarized in Table 9.
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