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ABSTRACT A switchable multi-wavelength thulium-doped fiber laser (TDFL) using either two-stage
cascaded or two-segment Sagnac loop filters are proposed and analyzed. Both filters incorporate a 3-m
and 1.7-m long polarization-maintaining fiber, which acts as a comb filter. By adjusting two polarization
controllers, when the TDFL used a cascaded Sagnac loop filter, eight stable single-wavelength operations
were obtained with easy switching among them. The wavelength range was 16.36 nm during the single-
wavelength switchable operation, with the optical signal-to-noise ratio up to 55 dB. This TDFL can achieve
at most quintuple-wavelength operation. When the TDFL used a two-segment Sagnac loop filter, we achieved
single-wavelength and dual-wavelength switchable. This TDFL can achieve at most stable quadruple-
wavelength operation. In dual-wavelength switchable operation, the maximum and minimum wavelength
spacings were 21.78 nm and 1.50 nm. Due to its abundant range of wavelengths, the proposed TDFLs has
great potential in wavelength-division multiplexing.

INDEX TERMS Multi-wavelength thulium-doped fiber laser, wavelength switchable, cascaded Sagnac loop
filter, two-segment Sagnac loop filter.

I. INTRODUCTION
Multi-wavelength fiber lasers (MWFL) are attracting

signal sources in a wavelength-division multiplexing (WDM)
system, the flexible wavelength switching of thulium-doped

increased research attention because of their simple struc-
ture, good heat dissipation, portability, and high -effi-
ciency [1]-[3]. Because of their potential to broaden the
channel capacity of communication systems, the develop-
ment of multi-wavelength lasers near the 2-um waveband has
attracted particular research attention [4]-[6]. Using thulium-
doped fiber as a gain medium, a laser can be excited in the
2-pum band with a higher self-focusing threshold and lower
nonlinear effect than in the near-infrared band [7], [8]. Such a
laser poses little risk to the eyes and finds applications in var-
ious fields, including laser radar, laser communication, and
environmental remote sensing [9]-[11]. As one of the ideal
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fiber lasers (TDFL) is an important indicator, and various
structures of comb filters are widely utilized [12]-[14].

The common tunable devices in switchable TDFLs
include the fiber Bragg grating (FBG), the fiber interfer-
ometer, the micro-electro-mechanical system, and silicon-
based liquid crystals [15]-[18]. Feng et al. designed a
stable and switchable four-wavelength erbium-doped fiber
laser (EDFL) using a superimposed high-birefringence
FBG [19]. This EDFL can be switched among fif-
teen lasing states: four single-wavelength states, six dual-
wavelength states, four three-wavelength states, and one
four-wavelength state, all with high stability. Jin et al
proposed a switchable dual-wavelength EDFL utilizing a
few-mode FBG [20]. To increase the number of output
wavelengths, Ying Guo et al. achieved a 60-wavelength laser
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output within a 3 dB bandwidth in the 2-um-band with a
nonlinear dual-pass Mach-Zehnder interferometer filter [21].
Al-Alimi et al. introduced a wide bandwidth and a flat multi-
wavelength Brillouin-erbium fiber laser based on dispersion-
compensating fiber (DCF) and highly nonlinear optical fiber
(HNLF) [22]. Its output can be up to 200 lasing wavelengths
with an optical signal-to-noise ratio (OSNR) exceeding 15 dB
and a flatness of 4.65 dB. In addition, there are several
external items of equipment such as stress racks and taper
machines that can improve the OSNR and the number of
output wavelengths [15], [23], [24].

In this paper, we report on the design and demonstration
of wavelength-switchable multi-wavelength TDFLs assisted
by a cascaded Sagnac loop filter or a two-segment Sagnac
loop filter. The transmission performances of two filters with
different cascaded mode are analyzed theoretically and stud-
ied experimentally. When the filter is a cascaded Sagnac
loop, the maximum number of output wavelengths without
extra wavelength competition structure is five and a single-
wavelength selection operation from 1986.35 to 2002.71 nm
can be realized. When using a two-segment Sagnac loop as
a comb filter, the maximum number of output wavelengths
is reduced to four but the flexibility of wavelength selection
is greatly improved. The influences of the two structures on
laser stability and output power are compared in the following
sections.

II. PRINCIPLE OF CASCADED FILTERS

A. CASCADED SAGNAC LOOP FILTERS

Fig. 1 shows the structure of cascaded Sagnac loop filters.
High-birefringence (HiBi) polarization-maintaining fiber
(PMF) Sagnac filter is a kind of all-fiber multi-wavelength
comb filter with simple structure and easy fabrication, it is
consisted by a PMF, a 3 dB optical coupler (OC) and a
polarization controller (PC). The cascaded Sagnac loop filter
contains two Sagnac filter and an isolator (ISO). The ISO
ensures the unidirectional oscillation.

PC1 PC2

PMF1

3dB OC

FIGURE 1. The structure of a cascaded Sagnac filter.
The transmission and the free spectral range (FSR) of
individual Sagnac loop filter is [25]:

nLAn
T = sin’6 cosz(

)
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where 6 is the rotation angle of polarized light. L is the
length of PMF, An is the high-birefringence coefficient and
A is the central wavelength of the incident light. For the
cascaded Sagnac filter, the transmitted light of the former
filter provides the incident light for the latter. An isolator is
sandwiched between the two filters to ensure unidirectional
oscillation. The final transmittance after the cascade can be
written as:

AX

ey

Teascaded = T1T2 (2)

where T and T, are the transmittances of the front and rear
Sagnac loops respectively. According to Eq. (1) and (2), the
final transmittance of the cascaded Sagnac filter is:

nLiAn wloAn
T cascaded = sin? 01 cos? < )1\ ) sin? 6> cos? (%)
(3)

It can be seen from Eq. (3) that the transmission character-
istics are determined by the deflection angles of the two PCs,
the lengths of two PMFs, and the birefringence coefficient.
The FSR of cascaded Sagnac loop filter is determined by the
shorter length of PMF because the transmittance of cascaded
filter is multiplied by two individual Sagnac loop filters.
In our experiments, the birefringence coefficients of PMFs
are all 6.79 x 107, the influence of other two parameters
on transmission spectrum were simulated using MATLAB.
Fig. 2 shows the simulated transmission spectra of the cas-
caded Sagnac filter, when the length of PMFs are 3 m and
1.7 m, respectively.

—01 =0.57 02=0.5x |
—01 =057 02=0.3n
— —01 =0.5% 02=0.1x

— —
e — (]
T T T

Uniformization Intensity
=
=

0.4
0.2
0 o ~al Al~ \ L
1980 1990 2000 2010 2020
Wavelength(nm)

FIGURE 2. Simulated transmission spectrum of the cascaded Sagnac filter
when Ly =3m, L, =1.7m.

It can be seen from Fig.2 that the extinction ratio of filter
transmission spectrum is always increases with increasing 6;
and 6,. This is due to the properties of the Eq. (3), when
the 61 and 6, are both 0.57, the extinction ratio reaches the
maximum value. In practice, the deflection angle of the two
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FIGURE 3. Simulated transmission spectrum of the cascaded Sagnac filter
when 6; = 0.5x, 6, = 0.57.

PCs is continually changed to optimize the transmission of
the filters.

When 6; and 0; are fixed, the FSR of transmission spec-
trum varies with the length of PMFs. As shown from Fig. 3,
setting the length combinations of PMF as 3/1.7, 3/1 and
1.7/1 m, respectively. The maximum extinction ratios are not
varied with the length of PMFs. The FSR of simulated trans-
mission spectra is determined by the shorter PMF according
the properties of cosine function in Eq. (3).

The cascaded Sagnac loop filter is characterized by a
super-continuous laser (Koheras Co., super K) and an optical
spectrum analyzer (OSA), as shown in Fig.4. We set the
lengths of the PMFs to be 3 m and 1.7 m. The birefringence
coefficient is 6.79 x 10~*. The transmission spectrum has
the largest extinction ratio when 6; and 6, are both 0.57.
The position of the reflection peak is fixed and the extinction

— 01=0.57 02=0.5n

L1=3 m L2=1.7 m|
~20 1 ~3.84 nm

=30
40 -

-50 4

Optical power(dBm)

-60 1

=70 4

-80 T T T T T
1940 1950 1960 1970 1980 1990 2000

‘Wavelength(nm)

FIGURE 4. The measurement schematic of a cascaded Sagnac loop filter.
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FIGURE 5. The structure of a two-segment Sagnac filter.

ratio varies with 6; and 6,. The uneven spectral envelope
observed in Fig. 4 arises mainly from the effect of different
length of PMF1 and PMF2, and may lead to an uneven multi-
wavelength lasing output in the proposed TDFL.

B. TWO-SEGMENT SAGNAC LOOP FILTER
The two-segment Sagnac filter has been the subject of con-
siderable research because of its tunable and stable output. Its
structure is shown in Fig. 2. The transmission function 7' of
the comb filter derived from Jones matrixes is [26]:
. . 5,27 Lefr An L+ Ly

T = sin 6 sin 6, cos”( 3 e = {Ll s “4)

01 and 6, represent the rotation angle of PC1 and PC2
respectively. Loy is the effective length of PMF in the two-
segment Sagnac filter. An is the birefringence coefficient of
PMF and 1 is the central wavelength of the incident light. The
FSR of the two-segment Sagnac filter can be expressed as:

)“2
AnLeg

As shown in Fig. 6, the transmission spectrum of two-
segment Sagnac filter was simulated according to the Eq. (4).

AL =

&)
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FIGURE 6. Simulated transmission spectra of the two-segment Sagnac
filter when L; =3m, L, = 1.7m.
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In calculation, L; and L, are 3 m and 1.7 m, 6 was fixed as
0.5, the value of 8, are 0.1w, 0.3 and 0.57, respectively.
The blue solid line represents the transmission spectrum of
the filter when the effective length of PMF is L| — L, with the
FSR is about 4.91 nm. The red solid line represents the trans-
mission spectrum of the filter when the effective length of
PMFis L;+L,, with the FSR is about 1.28 nm. The extinction
ratio of transmission spectrum increases with the increase
of 6>, this characteristic conforms the property of the sin
function in Eq. (4). In addition, the FSRs of transmission
spectrum are 4.91 nm and 1.28 nm, in good agreement with
the Eq. (5).

T T T T T
~2.94nm ~1.47 nm LI=3m L2=1m

—L1+L2 —LI-L2

Intensity

0
1980 1985 1990 1995 2000 2005 2010 2015 2020
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0 Vi AV
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e > LI=l7m L2=lm ——LI1+L2 —L1-L2
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1995 2000 2005 2010 2015 2020
Wavelength(nm)

0 L
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FIGURE 7. Simulated transmission spectra of the two-segment Sagnac
filter when 6; = 0.5x, 6, = 0.5x.

Fig. 7 shows the relationship between the length of PMF
and the transmission spectrum of two-segment Sagnac filter.
In calculation, 6 and 6, are both 0.57r, L and L, are 3 m/1 m,
3 m/1.7 m and 1 m/1.7 m, respectively. The FSR of trans-
mission spectrum changes with the effective length of PMF,
which is consistent with Eq. (5). When the length of PMF1
and PMF2 are 3 m and 1.7 m, the calculated FSRs are 4.91 nm
and 1.28 nm.

Fig. 8 shows the experimentally measured transmission
spectrum of the two-segment Sagnac loop filter. In the mea-
surement, a super-continuous laser (Koheras Co., super K)
was used as a white light source. The length of the PMFs are
3 mand 1.7 m. The birefringence coefficient is 6.79 x 10™%.
By adjusting the PCs carefully, when 6; and 6, are both
0.5, the extinction ratio of transmission spectrum reaches
maximum value and the FSRs of the two-segment Sagnac
loop filter are 1.23 nm and 4.87 nm. The experimental result
is in good agreement with numerical results.

IIl. EXPERIMENTAL SETUP AND RESULTS
Fig. 9 shows the structure of the fiber laser based on a
cascaded Sagnac loop filter. The experimental system is
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FIGURE 8. The measurement schematic of a two-segment Sagnac loop
filter.

ISO
TDF
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Pump

90:10 OC

ABUT

FIGURE 9. The structure of the interval-adjustable multi-wavelength
TDFL-based cascaded Sagnac-loop filters.

composed of one 793-nm pump laser, one 793/2000 nm
pump combiner, one 2.7-m length double-clad thulium-
doped fiber (TDF), two isolators (ISOs), two 3-dB opti-
cal couplers (OCs), two polarization controllers (PCs), two
polarization-maintaining fibers (PMFs), and one 90:10 cou-
pler. The 793-nm pump light is coupled into the laser cavity
by the 793/2000 nm pump combiner. The core diameter and
inter-cladding diameter of the TDF are 10 um and 130 pum,
respectively, and its adsorption at 793 nm is 1.4 dB m™!.
To ensure unidirectional transmission, an ISO is spliced after
the TDF. The cascaded Sagnac loops filter was inserted into
the laser cavity with 3 m and 1.7 m PMF. The output light
from the 10% port of the OC is monitored by an OSA
(YOKOGAWA AQ6375) with a resolution of 0.05 nm.

In our experiment, when pump power was 2.71 W, a single-
wavelength laser could be obtained by adjusting PC1 and
PC2. As shown in Fig. 10, the central wavelength of the laser
output is 1992.57 nm and the OSNR is about 55 dB.

To verify the stability of the single-wavelength operation,
the lasing wavelength of 1992.57 nm was tested for 60 min
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FIGURE 10. The output spectrum of a single-wavelength laser.

at room temperature with no adjustment to any part of the
fiber laser during this time. The stability of single-wavelength
operation is shown in Fig. 11. The wavelength drift was less
than £0.02 nm and power fluctuation was less than +0.92 dB.
This indicates that our TDFL can operate stably in single-
wavelength lasing.

1992.595 4.2
—@— Wavelength -

1992.590 1-4.4
- g
= 1992.585 4 1-4.6 2
£ 2
= 5
0 1992.580 - {-48%
2 2
2 1992.575 - 1-5.0%,
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Times

FIGURE 11. Measured output wavelength drifts and power fluctuations
for ten OSA scans with a time interval of six minutes.

As shown in Fig. 12, a switchable single-wavelength las-
ing output can be achieved by adjusting PC1 and PC2. The
switchable range was 16.36 nm, and we achieved switchable
operation at 1986.35, 1988.93, 1990.57, 1992.70, 1994.84,
1996.32, 1998.95, 2000.71, 2001.06, and 2002.71 nm. The
maximum and minimum of OSNR were 55.01 dB and
38.08 dB. During the adjustment of PC1 and PC2, the size
of the FSR varied with the deflection angle of two PCs.
Therefore, the selection interval of output wavelengths is not
a fixed value.

When the pump power was 2.98 W, dual-wavelength
lasing was obtained and switched by adjusting the PCs.
As shown in Fig. 13, the two wavelengths were 1957.13 nm
and 1988.78 nm, with the OSNR were both 28 dB. The
interval of two wavelengths was 31.65 nm which is 8 times
larger than the FSR of the cascaded Sagnac filter. In order
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FIGURE 12. The output spectrum of switchable single-wavelength lasing.

to verify the fluctuation of output power and the drift of
wavelength, the laser was tested for one hour and recorded
every six minutes, without changing the operating parameters
and operating environment. The waterfall plot on the right of
Fig. 13 shows the operation state of dual-wavelength laser
within one-hour.

0
1957.13 nm 1988.78 nm
-10 1 . -
u
A
g -204
Z ~28 dB ~28 dB
£
£ -304

1920 1940 1960 1980 2000 2020 2040
Wavelength (nm)

FIGURE 13. The output spectrum of a dual-wavelength laser.

According to Fig. 14, the red square and blue circle
represent two output wavelengths, respectively. In the one-
hour duration of the experiment, the wavelength drift of
wavelength 1 was less than 0.05 nm and the power fluc-
tuation was less than +£0.22 dB. The wavelength drift of
wavelength 2 was less than +0.34 nm and the power fluctu-
ation was less than £0.94 dB. The maximum and minimum
output power differences of the two lasing lines were 0.32 dB
and 0.02 dB, respectively. These results verify that the TDFL
is stable in dual-wavelength operation.

When the pump power was fixed at 3.34 W, differ-
ent wavelength spacings were obtained for dual-wavelength
operation by the appropriate rotation of PC1 and PC2.
Fig. 15 and Table 1 show the outputs characteristics, the
five wavelength spacings were 15.43 (lasing at 1972.28 and
1956.85 nm), 5.64 (lasing at 1973.51 and 1967.87 nm),
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FIGURE 14. Measurements of the output wavelength drifts and the
power fluctuations for ten OSA scans with a time interval of six minutes.
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FIGURE 15. The output spectrum of a dual-wavelength laser.

TABLE 1. Switchable dual-wavelength operation condition.

Wavelength interval Power difference

Number o dB

1 15.43 nm 3.03dB
2 5.64 nm 0.87 dB
3 16.03 nm 0.37dB
4 21.73 nm 543 dB
5 31.65 nm 0.49 dB

16.03 (lasing at 1981.85 and 1965.82 nm), 21.73 (lasing
at 1984.98 and 1963.25 nm), and 31.65 nm (lasing at
1988.78 and 1957.13 nm), and OSNR of ~27 dB were
obtained for all five dual-wavelength operations. The max-
imum and minimum output power differences of the two
lasing wavelengths among these five cases were 5.43 dB and
0.37 dB, respectively. The stable dual-wavelength operations
with different intervals were obtained depending on the extent
of mode competition suppressing of the gain-equalizer afore-
mentioned, on one hand, and the uneven spectral envelope of
cascaded Sagnac filter observed in Fig. 4, on the other hand.

Moreover, when the pump power was 3.78 W, triple-
wavelength outputs could be obtained, as shown in
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Fig. 16. The three wavelengths were 1989.69, 2000.15, and
2010.42 nm. The maximum and minimum OSNR were 57 dB
and 50 dB, respectively. This is mainly because of the uneven
transmission-spectrum envelope of the cascaded Sagnac loop
filter. The interval between three wavelengths were 10.46 nm
and 10.27 nm, any pair of wavelengths was an integral
multiple of the FSR of the filter. The small figure on the
right of Fig. 16 shows the measured stability of the output
wavelengths at room temperature, with the test interval is
6 min, Fig. 17 is the wavelength drift and power fluctuation
of triple-wavelength lasing.

10

2010.42nm

0. 2000.150m

1989.69nm
-10 -
=20 -

-30{ ~50dB| | ~57dB

Intensity (dBm)

-40 4

-50 -

-60 b m") o 7

1980 1990 2000 2010 2020 2030
Wavelength (nm)

FIGURE 16. The output spectrum of a triple-wavelength laser.

The maximum and minimum power fluctuations of three
wavelengths were 11.67 dB and 0.24 dB and the wavelength
drift was less than 0.1 nm. This phenomenon was caused by
intense mode competition in the laser cavity. The intensity-
dependent loss caused by two cascaded Sagnac loop filters
is not enough to completely overcome the intense mode
competition. This measurement result demonstrated that our
TDFL can operate with triple-wavelength output.

With further adjustment of the PCs and increase of
the pump power to 4.01 W, quadruple-wavelength las-
ing can be achieved. From the Figl8, the central wave-
lengths of four wavelengths were 1961.17, 1966.70, 1976.65
and 1982.46 nm, with the wavelength intervals were 5.53,
9.95 and 5.81 nm. The minimum and maximum OSNRs were
23 dB and 28 dB, respectively. Because of the action of
intense mode competition in the laser cavity and the external
environmental disturbance, the quadruple-wavelength opera-
tion did not show satisfactory stability.

To demonstrate the stability of quadruple-wavelength oper-
ation, the output spectra were measured at room temperature
over 60 min, with the measured spectra shown in Fig. 18.
As shown in Fig. 19, the wavelength drifts of four wave-
lengths were less than +0.53, +0.04, £0.05 and +0.05 nm,
respectively. The output power fluctuations of four wave-
lengths were less than +0.60, £1.23, +0.38 and +0.06 dB,
respectively. These results verify that the TDFL is also stable
in quadruple-wavelength operation.

Furthermore, When the pump power was 4.6 W, quintuple-
wavelength lasing was also achieved in Fig. 20. The five
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FIGURE 17. Measurements of the output wavelength drifts and the
power fluctuations for ten OSA scans with a time interval of six minutes.
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FIGURE 19. The output spectrum of a quadruple-wavelength laser.

wavelengths were 1997.55, 2001.02, 2005.01, 2007.99 and
2011.96 nm. As shown in Fig. 20, the minimum and maxi-
mum OSNRs were 28 dB and 35 dB, respectively. Because
of the action of intense mode competition in the laser cavity,
the quintuple-wavelength operation did not show satisfactory
stability. Therefore, other stabilizing mechanisms should be
introduced into the laser cavity to inhibit mode competition
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FIGURE 20. The output spectrum of quintuple-wavelength lasing.

FIGURE 21. The structure of the interval-adjustable multi-wavelength
TDFL-based on two-segment Sagnac loop filter.

and obtain stable multi-wavelength lasing. Unfortunately, this
will lead to greater complexity of the laser system, which
may be unfavorable for high-output performance in single-
or dual-wavelength operation.

The work reported in Section 2 shows that a cascaded
Sagnac loop filter and a two-segment Sagnac loop filter
are similar in structure and principle. We used the same
amplification-of-spontaneous-emission (ASE) source in the
following experiment. The cascaded Sagnac loop filter is
replaced by a two-segment Sagnac loop filter in order to com-
pare the influences on the output wavelengths. Fig. 12 shows
the experimental structure of the multi-wavelength Tm3-
doped fiber laser incorporating a two-segment Sagnac loop
filter. The same 793-nm pump source and 2.7-m long
thulium-doped gain fiber are used in this fiber laser. An ISO is
connected after the ASE source to ensure one-way transmis-
sion of light in the loop. The two-segment Sagnac loop filter
is coupled into the laser loop with a 3-dB OC. Ten percent
of the light is output by a 90:10 OC and monitored by an
OSA (YOKOGAWA AQ6375) with a resolution of 0.05 nm.
In this two-segment Sagnac loop filter, PMF1 is sandwiched
between PC1 and PC2, and PMF2 is connected after PC2.
To achieve better comparison with the cascaded Sagnac loop
filter, the lengths of PMF1 and PMF2 are taken to be 3 m and
1.7 m, respectively.

In the experiment, when the pump power was fixed at
2.13 W and the two PCs were fixed in an appropriate angle,
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FIGURE 22. (a) The output spectrum of a single-wavelength laser.
(b) Measured output wavelength drifts and power fluctuations for ten
OSA scans at intervals of six minutes.

a single wavelength could be lased, as shown in Fig. 22(a).
The central wavelength was 1992.26 nm and the OSNR was
about 59.43 dB. In order to test the wavelength and power sta-
bility of the proposed single-wavelength mode at 1992.26 nm,
the wavelength data are recorded every six minutes at room
temperature for one hour.

Fig. 22(b) shows the wavelength drift and power fluctu-
ation of single-wavelength. During the testing, the power
fluctuation of the measured single-wavelength mode was less
than +0.35 dB and the wavelength was stable without drift.
This indicates that our TDFL can operate stably in single-
wavelength lasing. From Figs. 11 and Fig. 22, one sees that
when the output is operating in single-wavelength mode,
the TDFL with a two-segment Sagnac loop filter has better
stability.

Through adjusting PC1 and PC2 carefully, we achieved
single-wavelength selectable frequencies at 1989.65,
1991.28, 1992.26, 1995.98, 1998.36, 2000.92, 2004.89,
2008.91, and 2011.02 nm with a pump power of 2.13 W,
Fig.23 documents the tunable result. The width of switchable
wavelengths was 21.37 nm. The maximum and minimum of
OSNR were 59.43 dB and 40.60 dB. The FSR of the two-
segment Sagnac loop filter changed with the variation of PC’s
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deflection angle. There is no obvious multiple relationship
between switchable wavelength interval and the filter FSR.

Through careful adjustment of PC1 and PC2, the dual-
wavelength operation was obtained with 3.12 W pump power.
As shown in Fig. 24, the two wavelengths were 1998.75 and
2005.11 nm. The interval between them, 6.36 nm, was
proportional to the FSR of the filter. The OSNR for two
wavelengths were both greater than 54.21 dB. Operating the
dual-wavelength laser for one hour and recording its power
fluctuation and wavelength drift every six minutes, the test
results were showed in Fig. 24, bottom left, and recorded in
Fig. 25. The power fluctuation at each wavelength was less
than 3 dB and the wavelength drift was less than £0.1 nm.
This indicates that the laser can operate stably in the dual-
wavelength mode.

Achieving switchable dual-wavelength operation depends
on the proposed fiber laser-based two-segment Sagnac loop
filter, as shown in Fig. 26. The operating conditions for the
switchable dual-wavelength laser are recorded in Table 2.

There are five switchable dual-wavelength modes:
1989.99/1998.79 nm, 1996.63/2012.30 nm, 1991.10/
2005.80 nm, 1998.70/2005.30 nm, and 1996.60/1990.01 nm.
The wavelength intervals were 8.8, 15.67, 14.7, 6.6, and
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TABLE 2. Switchable dual-wavelength operation condition.

Wavelength interval Power difference

Number o dBm

1 8.80 nm 6.82 dB
2 15.67 nm 3.77dB
3 14.70 nm 3.40 dB
4 6.60 nm 5.59 dB
5 2.20 nm 6.66 dB

2.2 nm, respectively. The outputs larger than 48 dB were
obtained for all five dual-wavelengths operations. The max-
imum and minimum output power differences of the two
lasing wavelengths among these five cases were 6.82 dB
and 3.40 dB. This disequilibrium between wavelengths at
dual-wavelength output was caused by the uneven trans-
mission spectrum envelope of the two-segment Sagnac loop
filter.

Fig. 27 is the output spectrum of triple-wavelength opera-
tion with the suitable polarization angle and 3.72 W pump
power. The three wavelengths were 1956.85, 1972.17 and
1988.49 nm, respectively. The intervals of three wavelengths
were 15.32 nm and 16.32 nm, which were approximate mul-
tiples of FSR in Fig. 8. The maximum output optical power
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was about 27 dBm in 1956.85 nm and the minimum value
was 24 dB in 1988.48 nm. In order to verify the stability
of triple-wavelength operation, ten experimental results were
recorded at six-minute intervals without changing the exter-
nal environment and experimental equipment. The water-
fall plot of optical spectrum is shown in the right side
of Fig. 27.
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FIGURE 28. Measured output wavelength drifts and power fluctuations
for ten OSA scans at intervals of six minutes.

According to the Fig. 28, the wavelength drifts of three
wavelengths were less than £0.01, £0.02 and £0.01 nm,
respectively. The power fluctuations of three wavelengths
were less than £0.71, £0.40 and +0.71 dB, respectively. The
output results of TDFL with two-segment Sagnac filter are
better than cascaded Sagnac filter in both wavelength drifts
and power fluctuations.

As shown in Fig. 29, to facilitate comparison with the
laser in Section 1, the quadruple wavelengths can be out-
put with careful adjustment PCs simultaneously. The pump
power was 4.33 W, and the four wavelengths were 1994.43,
2000.71, 2009.59, and 2016,06 nm. The OSNR of the output
wavelengths was greater than 53.49 dB. The three wavelength
intervals were 6.28, 8.88, and 6.47 nm, these intervals being
approximate multiples of the 1.23-nm FSR of the two-
segment Sagnac filter. The stability of the output wave-
length when using a two-segment Sagnac loop filter was also
measured, with the results being monitored every six min-
utes without changing the laboratory environment or other
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fluctuations for ten OSA scans at six-minute intervals.

experiment parameters. Fig. 30 shows that the quadruple-
wavelength wavelength drifts were both less than +0.5 nm
and that the power fluctuations were less than =7 dB. The
main reason for wavelength drift and power fluctuation
was the mode competition in laser cavity in the constant-
temperature laboratory environment.

It can be seen that the number of wavelengths obtained with
cascaded Sagnac loop filter is more than with a two-segment
Sagnac loop filter, but the stability and OSNR are slightly
worse than those of the two-segment Sagnac loop filter.
Because of its more flexible FSR range, a two-segment
Sagnac loop filter can be utilized to realize wavelength selec-
tion and interval tuning operation of dual-wavelength output.
When the output has the same number of wavelengths, the
laser that uses two-segment Sagnac loop filter always has a
lower laser threshold. This is because the second fiber laser
has a simpler structure.

IV. CONCLUSION

In summary: A switchable multi-wavelength thulium-doped
fiber laser, with the assistance of a cascaded Sagnac loop
filter or two-segment Sagnac loop filter, is proposed and
demonstrated. The structure and principles of the cascaded
Sagnac loop filter and the two-segment Sagnac loop filter
are analyzed and compared. The wavelength can be switched
by adjusting the polarization states of PC1 and PC2. When
the cascaded Sagnac loop is utilized as the comb filter, the
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laser output can reach up to five wavelengths with a max-
imum OSNR of 35 dB. With adjustment of the PCs, there
are ten wavelengths that can be switched, from 1986.35 to
2002.71 nm. When a two-segment Sagnac loop is used to
replace the cascaded Sagnac loop, the flexibility of switch-
able output wavelengths is increased although the number
of output wavelengths is slightly reduced. The stability of
the output wavelengths is also improved with the use of a
two-segment Sagnac loop filter. This is mainly because of the
characteristics of the two-segment Sagnac loop filter. In addi-
tion, the variation of external environment will influence the
output performance of lasers, such as temperature, vibration
and so on, this is a very important point and will be left for
future consideration. Both of the proposed multi-wavelength
thulium-doped fiber lasers (TDFLs) are simple in structure
and flexible in operation, and can be utilized in many fields
that require switchable output, such as optical communication
and military detection.
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