
Received December 28, 2021, accepted January 10, 2022, date of publication January 26, 2022, date of current version February 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146398

Asynchronous Deterministic Network Based on
the DiffServ Architecture
JINOO JOUNG 1, JUHYEOK KWON 2, JEONG-DONG RYOO 3,4, AND TAESIK CHEUNG3
1Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul 03016, South Korea
2Department of Intelligence Information Engineering, Sangmyung University, Seoul 03016, South Korea
3Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, South Korea
4Network Engineering Major, University of Science and Technology, Daejeon 34113, South Korea

Corresponding author: Jinoo Joung (jjoung@smu.ac.kr)

This work was supported by the Electronics and Telecommunications Research Institute (ETRI) Grant funded by the Information
and Communication Technology (ICT) Research and Development Program of Korea Government [Ministry of Science and ICT
(MSIT)/Institute for ICT Planning and Evaluation (IITP)] through the Development of End-to-End Ultra-High Precision Network
Technologies under Grant 2021-0-00715.

ABSTRACT In this study, we propose a scalable framework that guarantees both latency and jitter
bounds in large networks, including the Internet. The framework is composed of two parts: a latency-
guaranteeing network and a jitter-guaranteeing end system. For latency bounds, we suggest regulators per
class per input–output port pair of the DiffServ-type relay nodes. For jitter bounds, based on the guaranteed
latency bounds, we suggest time-stamping and buffers at the network egress edge. The framework does not
require network-wide time synchronization, frequency synchronization, flow state maintenance, or flow-
level queuing/scheduling. Therefore, the complexity does not increase as the number of flows or network
size increases. Moreover, the framework is based on the DiffServ architecture; therefore, it requires minimal
modification to the current Internet. We demonstrate that the proposed regulators can achieve latency bounds
comparable to the IEEE asynchronous traffic shaping technique. We prove that the jitter is bounded even
with realistic limitations such as buffers without cut-through capability. We also prove that in the presence of
clock drift, the jitter can still be upper bounded with a suggested compensation algorithm. We demonstrate
through experiments on simple programmable microcontrollers that the jitter upper bound can be within a
few tens of microseconds, even in a realistic situation with store-and-forward buffers, clock drift, and random
network delays.

INDEX TERMS Buffer, deterministic network, DiffServ, jitter, latency, regulator, time synchronization.

I. INTRODUCTION
A. DEMANDS FOR LARGE-SCALE
DETERMINISTIC NETWORKS
There are emerging applications that require both latency
and jitter bounds in large-scale networks [1]. We define
the services required for such applications as determinis-
tic services. Consequently, a network that can provide such
a service, even with dynamic input and various network
topologies, is defined as a deterministic network. Machine-
to-machine communications for ‘‘cloudified’’ industrial and
robotic automation involve moderate-to-large-scale deter-
ministic networks. This type of communication requires
fine-grained timing accuracy for the dispersion of control
commands and the collection of telemetry data over a wide

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenchi Cheng .

area [1]. The ITU-T SG-13 has defined such services to
support critical grade reliability and extremely low as well
as highly precise latency for the delivery of packets [1]. This
is because some industrial controllers require very precise
synchronization and spacing of telemetry streams/control
data, facilitating, for example, the precise operation of robotic
effectors with multiple degrees of freedom [1]. For services
including the tactile Internet and holographic-type communi-
cations, the importance of on-time service as well as in-time
service in large-scale networks is also emphasized in Ref. [1].

B. PROBLEM STATEMENTS AND RELATED WORKS
We consider the problem of guaranteeing both latency upper
bounds and jitter upper bounds in arbitrarily sized networks
with any type of topology, with random dynamic input traffic.
The jitter is defined as the latency difference between two
packets within a flow, not a difference from a clock signal

15068
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3053-9691
https://orcid.org/0000-0001-7642-4422
https://orcid.org/0000-0002-6064-9157
https://orcid.org/0000-0002-2009-0539

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

or from an average latency, as is clearly summarized in
RFC 3393 [2].

For small networks such as in-car networks or 5G fronthaul
networks, the IEEE TSN task group defines a set of solutions
for latency and jitter minimization [3]. A part of the solutions
relies on the time synchronization of every node in the net-
work and slot scheduling, which is coordinated among nodes
throughout the network. In time-synchronized systems, sig-
nificant events occur simultaneously with the same rate [4].
In contrast, in frequency-synchronized systems, events occur
at the same rate but not necessarily simultaneously [4]. The
TSN task group has standardized multiple functional compo-
nents for jitter-sensitive services based on time synchroniza-
tion. Among them, the 802.1Qbv time sensitive queues (also
known as the time-aware shaper, TAS), and 802.1Qch cyclic
queuing and forwarding (CQF) are built for jitter minimiza-
tion as well as latency guarantee.

The TAS defines the gate for each queue. The gates are
either open or closed in a time slot. Multiple gates may
open simultaneously. In such a case, strict priority schedul-
ing applies to open queues. A central network controller
determines which gates to open and when to open. The
CQF function coordinates the slot openings in adjacent nodes
such that flows traversing the nodes experience the minimum
latency. Based on these functions, the TSN supports a model
for deterministic packet services. In this study, we refer
to these functions collectively as the TSN synchronous
approach. The TSN synchronous approach requires three
major efforts: 1) time synchronization along the nodes in the
network, 2) slot scheduling and coordination by a central
entity, and 3) feasibility testing for flow admission control.
These requirements considerably affect network scalability.
Obtaining a non-conflicting slot schedule has been proven
to be NP-complete, even with fixed-sized slots similar to
the TDMA [5]. Refs. [6], [7] proved that the problem of
producing a non-conflicting schedule to multiplex multiple
flows can be reduced to the classical graph-coloring problem,
which is known to be NP-complete.

The time synchronization requirement across every node
in the network has two difficulties. First, the implementation
of the time synchronization function may impose hardware
support and consequently too much overhead to lightweight
embedded nodes. Second, synchronization accuracy may not
be up to the level of traffic requirements. There are two
representative protocols for network-wide time synchroniza-
tion: the network time protocol (NTP) and the precision time
protocol (PTP) [8], [9]. NTP uses timestamps in the appli-
cation layer and has a limited synchronization accuracy of
1ms [10]. In software-based implementations, the PTPmech-
anism achieves a mean synchronization accuracy of 30 µs
and a standard deviation of 54 µs [11]. These results can be
slightly improved by using real-time operating systems and
communication channels, but even in this case, reaching sub-
microsecond synchronization accuracy remains a difficult
task [12].

The PTP measures the one-way transit delay from a master
to a slave by exchanging messages in both directions with
time stamps. Based on the obtained latency value and the
time stamp of the master, the slave node calculates the clock
offset and corrects it. For this message exchanging protocol to
accurately work, a few assumptions must be made. First, this
exchange ofmessages occurs over a time interval so small that
this offset can safely be considered constant over that interval.
Second, the transit time of a message going from the master
to the slave is equal to the transit time of a message going
from the slave to the master. Third, both the master and slave
can accurately measure the instance of sending or receiving
a message. The degree to which these assumptions hold true
determines the accuracy of the clock at the slave device [9].
These assumptions, especially the second one, may go wrong
in networks with a large number of hops. In the PTP peer-
to-peer delay mechanism, the transit delays in the nodes are
measured and compensated for the end-to-end delay. Using
this advanced method, the previous limitations of PTP can be
meditated. However, this mechanism requires every node in
the network to be synchronized and requires collaboration.
In a large-scale network, this method is too expensive and
inappropriate for application.

Recently, studies have been conducted on scalable deter-
ministic services under the title of large deterministic net-
works (LDN), based on the technologies of the IETF DetNet
Working Group [13]–[15]. These works are based on the
CQF technique, which was originally initiated in the IEEE
TSN task group. The modifications mainly deal with relaxing
the time-synchronization requirements for slot scheduling
to accommodate the uncertainties from various propagation
delays along the paths. One of the solutions to predict the
propagation delays of a flow is to specify the route at the
source using the segment routing technology [15]. How-
ever, these approaches still require static network topology
and flow setup. The slot scheduling, ahead of the network
operation, is still NP-hard and requires optimization based
on heuristics. The most important drawback of these LDN
approaches is that they do not easily coexist with the Inter-
net, which can be represented by statistical multiplexing and
work-conserving scheduling.

In large-scale networks, the end-nodes join and leave, and
a large number of flows are dynamically generated and ter-
minated. Achieving satisfactory deterministic performance in
such environments would be more challenging. The current
Internet, which has adopted the DiffServ architecture, has two
problems for deterministic operations: The first one is the
cyclic dependency problem, which is due to FIFO queuing
and strict priority scheduling. Cyclic dependency is defined
as a situation wherein the graph of interference between flow
paths has cycles [16]. The existence of such cyclic dependen-
ciesmakes the proof of determinism amuchmore challenging
issue and can lead to system instability, that is, unbounded
delays [17], [18]. Second, the current Internet does not have
an explicit solution for the jitter bound. Therefore, solving

VOLUME 10, 2022 15069

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

this problem as a joint optimization problem is even more
difficult.We suggest decomposing the problem into two inde-
pendent subproblems.

For the first problem of latency bound alone, the IEEE
asynchronous traffic shaping (ATS) or the flow-aggregate
interleaved regulators (FAIR) [19], [20] frameworks can be
a solution. The key component of the ATS framework is
the interleaved regulators (IRs) placed at the output ports
per port per class. The IR has a single queue for all flows
of the same class from the same input port. The head of
the queue (HOQ) is examined if the packet is eligible to
exit the regulator. To decide whether it is eligible, the IR
must maintain the individual flow states. Therefore, the ATS
suffers from twomajor complex tasks: flow statemaintenance
and HOQ lookup to determine the flow to which the packet
belongs. Both tasks involve real-time packet processing and
queue management. As the number of flows increases, the IR
operation may become burdensome as much as the per-flow
regulators.

The FAIR aims for a latency-bound guarantee in large-
scale networks. Within an aggregation domain (AD), the
flows are aggregated into a flow aggregate (FA) according
to their ingress/egress ports to/from the AD, or additionally
according to the flow requirements and characteristics. The
FAs are treatedwith separated queues and fair-queuing sched-
ulers, thus maintaining the FIFO property throughout the
AD. Subsequently, at the boundary of the AD, the minimal
IRs per FA were placed for burst suppression. The frame-
work guarantees an end-to-end delay bound with reduced
complexity compared to the traditional flow-based approach.
Numerical analysis shows that the framework yields smaller
bounds than both the flow-based frameworks such as the
integrated services (IntServ) and the class-based ATS, at least
in networks with identical flows and symmetrical topology.
The ATS can be considered as a special case of FAIR, where
an AD corresponds to a single node with a FIFO scheduler.
The IntServ can also be considered as an extreme case of
the FAIR, with an AD corresponding to an entire network;
therefore, regulators are unnecessary. However, FAIR still
requires IRs per FA at the AD boundary.

For the second problem of jitter bound, the buffered net-
work (BN) [21] framework can be the solution. The BN
framework is composed of a network that guarantees latency
upper bounds, a timestamper for packets with a clock that
is not necessarily synchronized with the other nodes, which
resides in between, including the source and the network
ingress interface, and a buffer that can hold the packets for a
predetermined interval, which resides in between, including
the destination and the network egress interface. However, the
BN presumes that the buffer is capable of cutting through.
It also does not consider the clock drift problem. As the
BN does not synchronize the clocks in different nodes in a
network, clock drift is unavoidable. Consequently, jitter may
occur owing to the clock frequency difference or clock drift
between the source and the buffer. We need to extend the
framework to work in more realistic network environments.

C. CONTRIBUTIONS AND CONTENTS
This study makes three major contributions. Based on these
contributions, scalable determinism can be achieved even in
large networks, including the Internet.

First, we propose a scalable architecture to guarantee
latency upper bounds, which includes regulators per class and
per port. The suggested regulators can act as cycle breakers.
Regulators are scalable because they are not required to main-
tain flow states. Through numerical analysis, the architecture
with regulators can achieve latency bounds comparable to
those of the IEEE ATS technique.

Second, we generalize the BN architecture so that the
jitter is upper bounded even with buffers without cut-through
capability and with the existence of clock drift. We propose
a clock drift compensation algorithm that does not require
the exchange ofmessages between network nodes. Therefore,
our algorithm is free from the requirements that are necessary
in the NTP and PTP, such as the constant network delay or
equal delays for both directions.

Third, we demonstrate through experiments on simple pro-
grammablemicrocontrollers that the jitter upper bound can be
within a few tens of microseconds, even in a realistic situa-
tion with store-and-forward buffers, clock drift, and random
network delays.

Consequently, we propose an overall framework for both
latency and jitter bounds, which is scalable and can be applied
to the Internet.

II. PORT-BASED REGULATOR FOR
LATENCY BOUND GUARANTEE
A. PROPOSED ARCHITECTURE
We propose the use of per-port flow-aggregate regulators in a
DiffServ network. The port-based FA (PFA) is defined as a set
of flows with the same class, which share the input and output
ports in a relay node, such as a switch or router. If there are
N ports in the switch and C classes, then there can be at most
N 2
·C PFAs in the switch. There can beN ·C PFAs in a single

output port module, ignoring the fact that there is no flow
with an output port that is the same as the input port. As the
baseline DiffServ architecture has a limited number of classes
and queues, fine-grained QoS provisioning is difficult, if not
impossible, for example, such as meeting the various latency
or jitter-bound requirements for various applications. Even in
the same class, the required latency bounds can be different
for different applications. In practice, the minimum of these
bounds should be set as the target.

Now, consider only the flows and PFAs of the highest
priority class to simplify the problem. Further, assume that
the packets of lower-priority classes can be completely pre-
empted by the highest-priority packets. Subsequently, the
entire system, for the highest priority traffic, can be thought
of as a single-class FIFO queuing and scheduling system.
There are N PFAs in the output module of the switch. Packet
preemption is considered a critical and necessary function
in deterministic networks and has been standardized in the
IEEE TSN [3].

15070 VOLUME 10, 2022

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

We propose adding a regulator for each high-priority
PFA in an output port module, just before the class-
based queuing/scheduling system of the output port module.
We call this regulator the port-based flow-aggregate regulator
(PFAR). The PFAR sees a PFA as a single flow with the
parameters {6iσi & 6iai}, where σi is the maximum initial
burst and ai is the initial arrival rate of flow i, which is
an element of the PFA, and regulates the PFA to meet the
parameters. Using the initial parameter of a flow, we indicate
the parameter of a flow at the source as it generates the flow
according to the traffic specification (TSPEC) negotiated
and reserved through an admission process defined in the
DiffServ framework. The PFARs can be placed at the output
port of a DiffServ switch to regulate such traffic. Figure 1
depicts an example architecture of a switch with the proposed
regulators within a DiffServ-based switch.

This example architecture is similar to that suggested in
the IEEE ATS, except that in the ATS, the IRs are placed
instead of the PFARs. By aggregating flows in such a manner,
the complexity of the regulation is reduced. In ATS, two
factors contribute to implementation difficulty. First, it must
identify the flow to which the packet belongs to the HOQ.
The current state of the flow is then retrieved, and the time
required to send the packet can be determined. Second, the
individual flow state must be maintained to be able to deter-
mine the eligible time of a packet. Both impact the real-
time packet processing performance. With the PFAR, the
HOQ flow identification process is unnecessary, and only
hundreds of PFAs’ states, instead of millions of flows’ states,
must be maintained at a switch. However, while the ATS IR
benefits from the property that it does not increase the latency
bound of the preceding FIFO system, the PFAR introduces
additional latency in terms of the latency bound.

The proposed architecture, the PFAR, is also compara-
ble to the FAIR architecture because the FAIR is a superset
of the ATS in the sense that if the AD in the FAIR is set
to be a single node, then the FAIR and the ATS become
identical. However, the FAIR and PFAR are distinguishable

FIGURE 1. Example architecture of a switch with the proposed PFARs.

in an important aspect: the regulator granularity, whether the
regulation targets are flows or flow aggregates. The IR in
the ATS system should maintain the individual flow states,
which limits scalability. In contrast, the PFAR only needs
to maintain the states of the PFAs and the aggregates based
on the ports. While scheduling based on FAs is common,
to the best of the authors’ knowledge, this study is the first
attempt at regulation based on FAs. We will investigate the
performances of the ATS IR and PFAR architectures in the
following subsections.

B. NUMERICAL ANALYSIS OF PFAR
We first analyze the latency of a network with PFARs. PFAR,
as a regulator, guarantees the output characteristic of the FA.

The PFAR itself introduces a latency-bound increment by
the regulation. The PFAs’ input burst into and output burst
from the PFAR are different, causing a latency-bound incre-
ment. If the PFAR is minimal [22], then the latency bound
within the PFAR is as follows:

DPFARf ≤ {(BPFARinPFA − BPFARoutPFA)
+

+ L)/C, (1)

where DPFARf is the latency in the PFAR of a packet belong-
ing to a flow f within the PFA, BPFAR_inPFA and BPFAR_outPFA are
the maximum bursts of the PFA into and out of the PFAR,
respectively, L is the maximum packet length of the PFA,
and C is the link capacity. x+ denotes max(0, x). A minimal
regulator [22] is a regulator that transmits packets as soon as
they become eligible to leave according to the regulation rule,
thereby guaranteeing a service curve with given parameters,
maximum burst, and average rate. (1) can be easily proven
with Figure 2 and the properties of the latency-rate (LR)
servers [23]. In Figure 2, the latency of a FIFO queue, L/C ,
is different from the latency that is synonymous to delay and
used elsewhere herein. Latency in italics is a notation used in
the LR server mathematics, and it denotes the largest possible
time taken to start the service after the backlog period has
been initiated in a scheduler [23]. In the FIFO queue, latency

FIGURE 2. Calculation of maximum delay within a minimal PFAR with
different input burst and output burst sizes.

VOLUME 10, 2022 15071

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

can be seen as the transmission delay of the longest packet,
which is inevitable in a store-and-forward system.

According to the regulation rule, BPFAR_outPFA in (1) is easily
obtained because it is the sum of the initial bursts of flows
within the PFA. BPFAR_inPFA in (1) can be calculated as the sum
of the maximum bursts of the incoming flows into the PFAR.
It can also be calculated as the sum of the maximum bursts
of the incoming FAs from each input port into the PFAR.
In cases where every node implements the PFAR, BPFAR_inPFA
is obtained, as described in the next paragraph.

The next component of the latency within a switching
node, after the latency within the PFAR, is due to the sched-
uler and its FIFO queues, which is a strict priority scheduler in
the DiffServ frameworks. As we assume a perfect preemption
of lower-priority packets, we can consider the scheduler as a
FIFO scheduler with a single queue for packets frommultiple
input ports. It is also well known that the FIFO scheduler
introduces latency bound as follows [23].

DFIFOf ≤ (BFIFO_inFIFO)/C, (2)

where BFIFO_inFIFO is the total maximum burst in the FIFO queue.
Moreover, the maximum burst of a FA out of a FIFO sched-
uler is given as follows [23]:

BFIFO_OutPFA ≤ BFIFO_inPFA +

(∑
i/∈PFA

BFIFO_ini

)
aPFA/C, (3)

where BFIFO_inPFA is defined as the maximum burst of the PFA
as it enters the FIFO queue, and aPFA is the sustainable arrival
rate of the PFA. Within our framework, BFIFO_inPFA can be
easily obtained from the initial flow parameters because the
PFA just passed through the PFAR before joining the FIFO
scheduler. In other words, BFIFO_inPFA = BPFAR_outPFA . BFIFO_ini ,
where i /∈ PFA, can also be similarly obtained because i in (3)
can be seen as the FAs other than the PFA under observation.
We can easily see that any subset of a PFA satisfies the
following:

BFIFO_Outg ≤ BFIFO_outPFA , for anyg ⊂ PFA. (4)

(4) implies that the maximum burst of any subset of a PFA
out of a switching node, as it is divided into a number of
output ports at the next node, can be obtained from (3) and

(4). BPFAR_inPFA in (1) can be obtained from (3) and (4) under
the condition that all upstream nodes implement the PFARs.

C. CASE STUDY
We consider a simple network topology with a cycle depen-
dency. It has four nodes connected in a ring topology, four
flows under observation traveling two hops, and cross traffic,
as shown in Figure 3. The flows under observation are colored
red, green, brown, and blue in Figure 3. In contrast, the black
flows in Figure 3 are considered as cross traffic. All flows
were of high priority.

A flow under observation enters the network, joins another
flow from a different input port of the node, travels to the

FIGURE 3. The network for the case study.

TABLE 1. Network and flow parameters used in the case study.

next node, joins another flow from a different input port of the
node, travels to the next node, and finally departs the network.

We compare the delay bounds of the flows under observa-
tion, in cases where there are 1) no regulators, 2) the ATS IRs
at every node, and 3) the proposed PFARs at every node.

Table 1 summarizes the symbols and their values used
in the numerical analysis. The flows under observation can
be seen as PFAs, in each of which microflows exist. These
microflows have identical parameters. Four PFAs, or flows
under observation, also have the same parameters.

The IR, attached next to a FIFO system, has the following
properties: as long as the following conditions are met, the
combined system of the IR and FIFO has the same latency
bound as the FIFO system alone.

(a) Every flow into the FIFO system conforms to an arrival
curve with parameters {average arrival rate, maximum burst
size}.

(b) The FIFO system guarantees FIFO for all packets.
(c) The IR regulates every flow with its initial parameters

at the ingress of the FIFO system.
(d) (Minimal IR) The IR transmits immediately when the

packet at the HOQ becomes eligible to leave according to the
regulation rule. Such an IR is called the minimal IR.

(e) The IR should be able to cut through to transmit eligible
packets at the instance they become eligible. For example, if a
packet enters the IR when the queue is empty and the packet

15072 VOLUME 10, 2022

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

is already eligible, the IR should be able to cut through the
packet.

The latency bounds with the ATS IRs are obtained as fol-
lows: The FIFO queue and scheduler in the DiffServ system
are known to satisfy conditions (a) to (d) [22]. Regarding
condition (e), if cut-through is not available, then the max-
imum transmission delay of a packet L/C should be added
to the latency bound in a node. Assuming that all these
conditions can be met in the network in Figure 3, we can only
count the latency within the FIFO scheduler for the case with
the ATS IR. Furthermore, with the ATS IR, each individual
flow is shaped at every node with its initial traffic parame-
ters. As such, the end-to-end latency bound of a flow under
observation can be obtained by the following equation [23]:

DE2Ef ≤
Binitialf

r
+21st node

f +22nd node
f +

L
C
, (5)

where Binitialf is the initial maximum burst, 21st node
f is the

latency at the 1st node, and L/C is the maximum transmission
delay at the last node of the flow under observation. r is the
guaranteed service rate to the flow, which is C/2 in this case,
because there are two colored flows with the same average
rate in a link. Again, the latency in italic font is a notation
used in the LR server mathematics, and it denotes the time
to start the service after the backlog period initiation in a
scheduler. The black flows in Figure 3 are cross traffic with
an instantaneous burst with a negligible average rate. The
latency of a FIFO scheduler is the total burst of the FIFO
divided by the guaranteed service rate, which in this case is
the link capacity. (5) takes into account that a protected flow
gets the benefit of the ‘‘pay burst only once’’.

The latency bounds without any regulators can be obtained
using the total flow analysis (TFA) algorithm suggested
in [16]. In summary, the TFA algorithm works as follows:

- cuts an arbitrary link of a cycle,
- applies initial burst parameters of the flows at the start
of the cut,

- calculates the bursts of the flows at the end of the cut
(called the end bursts),

- applies the end bursts as new initial bursts,
- calculates the end bursts again,
- and repeats the process until the end bursts converge.

For example, if we cut the top link of the network in
Figure 3, the red and blue flows get the cuts. These flows,
starting from the cut point, are considered to have initial flow
parameters. The bursts of these flows were calculated as they
traverse the nodes. The burst of red flow affects the burst of
green flows, and so on. At the upper-left node’s output port,
the burst of the blue flow affects the burst of the red flow.
The maximum burst value of the red flow replaces the initial
value, and the second round of calculation begins. As the
rounds continue, the maximum burst value may converge.
Subsequently, the latency bounds can be obtained based on
the converged end bursts.

FIGURE 4. The latency bounds of three regulation strategies in the case
study, as the link utilization varies from 0 to 1.

A colored flow can be considered a FA, a set of homo-
geneous flows with the same network ingress and egress.
It actually becomes a single PFA in a node because it is the
only flow with such input and output ports. A flow that is
an element of a colored FA with the specified parameters
is called a command and control (C&C) flow in Ethernet-
based automotive networks [24], [25]. These C&C flows
usually have the highest priority over audio or video flows.
The number of flows in a PFA, n, is a critical factor for the
utilization of the links. Figure 4 depicts the latency upper
bounds of the three regulation strategies as functions of link
utilization.

Without regulation, the latency bound increases quadrati-
cally, while with either regulator at every node, it increases
linearly. In addition, with low utilization, the regulator may
adversely affect the latency bound. However, when the links
are highly utilized, in which the latency-bound value is cru-
cial, the PFAR and ATS IR show much better performance.
Moreover, the performance of PFAR was comparable to that
of ATS. Considering the low complexity of the PFAR, this
result is encouraging.

Now, we consider the more complex network depicted in
Figure 5. The network in Figure 5 has nine switching nodes
and 12 links. They formed four inner circles. It is roughly
twice as large in terms of the network diameter, compared to
the one in Figure 3.

Consider four imaginary circles in the network, each
placed in 1st, 2nd, 3rd, and 4th quadrants, which rotate clock-
wise or counterclockwise, as depicted in Figure 5. We can
construct symmetrical flows such that every link has two
flowswith the burst accumulated by each other, as in the flows
in Figure 3. The rules for the construction are as follows. First,
after a flow enters the network, it follows the direction of the
imaginary circle. Second, a flow traverses exactly two hops in
a circle, then enters another circle or leaves the network. For
example, a flow may hop over nodes 1, 2, 5, 6, and 9. This
flow is denoted as f(12569). Similarly, f(32547), f(98541),

VOLUME 10, 2022 15073

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

FIGURE 5. Second network for the case study with nine nodes.

and f(412) can be constructed. These four flows encircle the
1st quadrant in the upper-left corner of the network. The three
other quadrants were also encircled similarly.

The constructed network has exactly two flows in a link,
as shown in the network in Figure 3. As such, we can use the
parameters in Table 1 to be unaltered. The only difference
was in the number of hops of the flows. For example, the hop
count of flow f(12569) is four, which is our flow of interest.
The graphs in Figure 6 are obtained for the flow of interest
using the same procedures used for the graphs in Figure 4.
For the analysis of the network with no regulation, the TFA
with initial cuts has to be used [16]. In our network, the cuts
are made at the links (1,4), (3,6), (4,7), and (6,9).

The networks in Figure 3 and 5, and their performance
graphs depicted in Figures 4 and 6 show the trend of the
latency bounds as the network grows.We can observe that the
no-regulation network becomes more unstable as the network
grows. The latency-bound difference between the PFAR and
ATS IR architectures also becomes more profound as the
network grows. The advantage of the ‘‘pay burst only once’’
characteristic in the ATS IR system is clearer when there are
more hops in the flow path. However, the latency bound of
the PFAR remained stable with varying utilization. Again,
considering the low complexity of PFAR, it is efficient and
effective in larger networks as well. While case studies use
simple and symmetric networks, they capture the essential
characteristics of the regulators as cycle breakers. Such a core
network with several cycles, combined with edge networks
with tree topologies, would form a network comparable to a
common metro area network.

III. GENERALIZED JITTER BOUND GUARANTEE
A. PREVIOUS WORK ON JITTER BOUND GUARANTEE
WITH ASYNCHRONOUS FRAMEWORK
In previous work, a framework for guaranteeing the jitter
bound in arbitrarily sized networks with any type of topology
with random dynamic input traffic has been considered [21].
The jitter is defined as the latency difference between two

FIGURE 6. Latency bounds of three regulation strategies in the case study
with the network with nine nodes, as the link utilization varies
from 0 to 1.

packets within a flow, not a difference from a clock signal or
from an average latency, as summarized in RFC 3393 [2].

The framework in the previous work is composed of
• a network that guarantees latency upper bounds;
• a timestamper for packets with a clock that is not neces-
sarily synchronized with the other nodes, which resides
in between, including the source and the network ingress
interface;

• and a buffer that can hold the packets for a predetermined
interval, which resides in between, including the desti-
nation and the network egress interface.

Figure 7 depicts the overall architecture of the BN framework
for jitter-bound guarantees. Only a single flow is depicted
between the source and destination, as shown in Figure 7.
The arrival (an), departure (bn), and buffer-out (cn) instances
of the nth packet of a flow are denoted. The end-to-end (E2E)
latency and the E2E buffered latency are defined as (bn-an)
and (cn-an), respectively.
The buffer supports as many as the number of the flows

destined for the destination. In cases where the buffer is not
suitable to be placed within an end station, the network can
attach a buffering function at the boundary. The destination
shown in Figure 7 can also be a small deterministic network.
There is an entity for time-stamping arrival instances to the
packets. The time-stamping function may be used in the
real-time transport protocol (RTP) over the user datagram
protocol or the transmission control protocol (TCP). Either
the source or network ingress interface can stamp the packet.
In the case where the source stamps, the timestamp value is
the packet departure instance from the source, which is only
a propagation time away from the packet arrival instance to
the network. The source and destination do not need to share
a synchronized clock. All we need to know is the differences

15074 VOLUME 10, 2022

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

FIGURE 7. Buffered network (BN) framework for jitter bound
guarantee [21].

between the time stamps, that is, the information about the
relative arrival instances.

The latency upper bound of the flow is assumed to be
guaranteed by the network. There are several candidate archi-
tectures for latency guarantee, including the PFAR architec-
ture suggested in Section II. The IEEE ATS network can also
operate. The FAIR architecture specified in ITU-T Y.3113
is another framework for the latency upper bound guaran-
tee [19], [20]. The three solutions have their own advantages
and disadvantages. While the PFAR is most scalable, the
ATS has an advantage in performance and can be applied
to modest-sized networks. The FAIR has a greater degree
of freedom in the design parameter configuration such as
the decision criteria for ADs and flow aggregates. When
such parameters are carefully configured, FAIR performs best
among the three solutions.

In the BN framework in Figure 7, it is recommended
that the latency-lower bound information be provided by the
network. The lower bound may be attributed to transmission
and propagation delays within the network. The buffer holds
packets in a flow according to the predefined intervals. The
decision of the buffering intervals involves the timestamp
within each packet.

Let the arrival instance of the nth packet of a flow be an.
Similarly, let bn be the departure time from the network of
the nth packet. Then, a1 and b1 are the arrival and departure
instances of the first packet of the flow, respectively. The first
packet of a flow is defined as the first packet generated by the
source, among all packets that belong to the flow. Further, let
cn be the buffer-out instance of the nth packet of the flow.
Let us define m as the jitter control parameter, which has

a value larger than W and W ≤ m. Parameter m directly
controls the holding interval of the first packet. It plays a
critical role in determining the jitter and latency upper bounds
of a flow in a BN framework. The larger the m, the smaller
the jitter bound, and the larger the latency bound. With a
sufficiently large m, we can guarantee zero jitter at the cost
of an increased latency bound.

The rules for the buffer-holding interval decision are given
as follows:

• The buffer holds the first packet with an interval (m -W)
for some m, W ≤ m. The buffer-out instance of the first
packet c1 is then (b1 +m−W). In other words,

c1=(b1 +m−W). (6)

• The buffer holds the nth packet until the instance
max{bn, c1 + (an − a1)}, for any n > 1. In other words,

cn = max{bn, c1 + (an − a1)}, for n > 1 (7)

The second rule implies that a packet should be held in the
buffer to make its inter-buffer-out time (cn − c1) equal to
the inter-arrival time (an − a1). However, when its departure
from the network is too late, the inter-buffer-out time should
be larger than the inter-arrival time, then just passes the buffer,
that is, cn = bn. The buffer does not need to know the
exact values of an or a1. It is sufficient to determine the
difference between these values, which can be easily obtained
by subtracting the timestamp values of the two packets.

Let us summarize the symbols used in this section, includ-
ing the following subsections in Table 2.

The following theorems hold [21].
Theorem 1 (Upper Bound of E2E Buffered Latency): The

latency from the packet arrival to the buffer-out instances
(cn − an), is upper bounded by (m+U-W).
Theorem 2 (Lower Bound of E2E Buffered Latency): The

latency from the packet arrival to the buffer-out instances
(cn − an), is lower bounded by m.
Theorem 3 (Upper Bound of Jitter): The jitter is upper

bounded by (U-m).
The jitter between packets i and j is defined as | (ci − ai)−(
cj − aj

)
|. The proofs for the theorems can be found in [21].

The three theorems state that with the framework, any desired
jitter bounds, including zero jitter, can be achieved by adjust-
ing the parameter m, while still guaranteeing a latency bound.

TABLE 2. Mathematical symbols for the jitter bound framework.

VOLUME 10, 2022 15075

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

B. STORE AND FORWARD BUFFER
However, two rules (6) and (7) assume that the buffer is
capable of cut-through, as it may be required to be cn = bn,
for n ≥ 1, that is, the buffer-out instance should be the same
as the network departure instance.

In this paper, we generalize Theorems 1 to 3 so that they
still hold even with buffers without cut-through capability.
Now, let gn be the processing delay within the buffer of the
nth packet of the flow. The gn includes the time to look up
the timestamp and to store/forward the packet. It does not
include an intentional buffer-holding interval. By definition,
cn − bn ≥ gn. Let gn = g, the maximum processing delay in
the buffer. It is assumed that a buffer can determine the value
of g. We then revise the buffer-holding rules as follows:

c1 = (b1 +m−W). (8)

cn = max{g+ bn, c1 + (an − a1)}, for n > 1. (9)

Furthermore, m is required to meet the inequality

m ≥W+ g. (10)

By revising (7) to (9), and satisfying condition (10), we guar-
antee that cn ≥ gn+ bn, for every n including n = 1, because
c1 = m−W + b1 ≥ g1+ b1, and cn ≥ g+ bn ≥ gn+ bn, for
n>1. Therefore, the cut-through capability of the buffer was
not required. The following revised Theorems 1’ to 3’ hold:
Theorem 1’ (Upper Bound of the E2E Buffered Latency):
If m − W ≥ g then by following rules (8) and (9), the

latency from the packet arrival to the buffer-out instances
(cn − an), is upper bounded by (U −W + m).

Proof: For any n≥1, bn − an ≤ U , m − W ≥ g. For
n > 1,

cn − an = max {bn + g, c1 + (an − a1)} − an
= max {bn − an + g, b1 + m−W − a1}

≤ max {U + g,U + m−W } = U −W + m.

For n = 1, c1 − a1 = b1 +m−W− a1 ≤ U −W +m.�
Theorem 2’ (Lower Bound of the E2E Buffered Latency):
If m − W ≥ g then by following rules (8) and (9), the

latency from the packet arrival to the buffer-out instances,
(cn − an), is lower bounded by m.

Proof: For any n ≥1, bn − an ≥ W , m −W ≥ g. For
n >1,

cn − an = max {bn + g, c1 + (an − a1)} − an
= max {bn − an + g, b1 + m−W − a1}

≥ max {W + g,W + m−W } = m.

For n = 1, c1−a1 = b1+m−W−a1 ≥ W+m−W = m.
�
Theorem 3’ (Upper Bound of Jitter):By following rules (8)

and (9), the jitter is upper bounded by (U+ g−m)+.
Proof:The jitter between the ith and jth packets is defined

as rij = | (ci − ai) −
(
cj − aj

)
|. Let us further define the

‘‘jitter of the ith packet’’ ri such that ri = ri1 = | (ci − ai) −
(c1 − a1) |. Then for any n>1,

rn = (cn − c1)− (an − a1)
= max {bn + g, c1 + (an − a1)} − c1 − an + a1
= max {bn + g− c1 − an + a1, 0}
= max {bn + g− (b1 +m−W)− an + a1, 0}
= max {(bn − an)− (b1 − a1)+ (g− m+W), 0}
≤ max {U −W + (g− m+W) , 0}
= (U+ g− m)+, as

U ≥ bn − an ≥ W for n ≥ 1.

For any i,j ≥1, rij =
∣∣(ci − ai)− (cj − aj)∣∣

=
∣∣(ci − c1)− (ai − a1)− (cj − c1)− (aj − a1)∣∣

=
∣∣ri − rj∣∣ ≤ (U+ g−m)+, since 0 ≤ ri,

rj ≤ (U+ g−m)+.

�
By setting m = (U+ g), we can achieve zero jitter. In this

case, the E2E buffered latency bound becomes (2U+g−W),
which is roughly twice the E2E latency bound. In contrast,
if we set m to its minimum possible value W, then the jitter
bound becomes (U + g −W), which is roughly equal to U,
while the E2E buffered latency bound becomes U, which is
the same as the E2E latency bound.

C. CLOCK DRIFT
Clock drift refers to phenomena wherein a clock does not
run at exactly the same rate as a reference clock. As we do
not synchronize the clocks of different nodes in a network,
clock drift is unavoidable. Consequently, jitter occurs owing
to the clock frequency difference or clock drift between the
source and the buffer. To compensate for this type of jitter,
we propose an algorithm for adjusting the instances of the
buffer events such that the gap between an event’s occurrence
times recorded with different clocks is bounded. We will call
this gap the ‘‘clock difference’’. The proposed algorithm is
free of message exchanges common in time-synchronization
methods such as the NTP and PTP [8], [9]. Therefore, the
algorithm is free from requirements such as a constant net-
work delay or equal delays for both directions.

We consider only the problem of constant clock drift, that
is, the buffer clock runs constantly faster or slower than
the source clock. Without loss of generality, we define the
source clock as the reference clock. We distinguish the ideal
buffer clock and the actual buffer clock. The former is an
imaginary clock that runs at the same rate as the reference
clock, while the latter is the actual clock that runs in the
buffer system. In addition, the reference clock and ideal buffer
clock are frequency-synchronized but not time-synchronized.
We denote bn as the instance measured with the ideal buffer
clock, and b∼n as the instance measured with the actual buffer
clock. Using this notation, the bn in the previous subsections
is considered as the instance measured with the ideal buffer
clock. Without loss of generality, we let b1 = b∼1 because the

15076 VOLUME 10, 2022

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

buffer system can be seen as initialized at b1. The E2E latency
bound is not larger than U or smaller than W. We can use
this fact to detect a faster or slower buffer clock by checking
whether the measured E2E latency is larger than U or lower
than W. However, the buffer cannot measure the E2E latency
by simply looking at b∼n −an because the source clock and the
buffer clock are not time-synchronized. As mentioned earlier,
the buffer can only infer the time difference between two
source events by subtracting the timestamp values recorded
in the packet header.

Let us consider the case where the buffer clock is con-
stantly faster than the source clock. The opposite case will be
argued similarly. In this case, the actually measured instance
always has a larger value than the ideal one, that is, b∼n ≥ bn.
For the detection of a faster clock, we use the fact that the dif-
ference between the E2E latencies of any two packets should
not exceed U − W. The buffer can identify the differences
in the arrival instances of the two packets measured with
the reference clock, (an − a1), by subtracting the timestamp
values recorded in the nth and 1st packets. Therefore, we can
detect a faster buffer clock by checking the inequality:(

b∼n −an
)
−
(
b∼1 −a1

)
=
(
b∼n −b

∼

1
)
−(an−a1)>U−W .

(11)

If (11) is true, then the nth packet’s E2E latency exceeds U,
since the 1st packet’s minimum E2E latency is W, which is a
contradiction to the fact that the E2E latency bound is U.

As an alternative, we can compare the smallest observed
E2E latency, not the first packet’s E2E latency, with the nth

packet’s E2E latency, that is, to check the inequality(
b∼n −an

)
−
(
b∼m−am

)
=
(
b∼n −b

∼
m
)
−(an−am)>U−W ,

(12)

where m = argmin (b∼i −ai), i ≤ n. As such,
(
b∼m − am

)
is

the least observed E2E latency until n. To obtain m, we have
to calculate

(
b∼i − b

∼

1

)
− (ai − a1), for i ≤ n, and see if it is

the minimum. This could be a negative value.
When a packet n is found for which (12) is true, we update

b∼n to b∼n − kn
def
= b∗n. kn is the most conservatively estimated

clock difference, which has a value

kn =
(
b∼n − b

∼
m
)
− (an − am)− U +W . (13)

Then,(
b∗n − b

∼
m
)
− (an − am) =

(
b∼n − kn − b

∼
m
)
− (an − am)

= U −W . (14)

Similar arguments can be applied to the case where the
buffer clock is constantly slower than the source clock.
The difference between the E2E latencies of any two pack-
ets should not be smaller than that of W − U. Therefore,
we detect the slower clock by checking(

b∼n − an
)
−
(
b∼M − aM

)
=
(
b∼n − b

∼
M
)
− (an − aM)

< W − U , (15)

Algorithm 1 Clock Drift Compensation Algorithm
Input:an, bn
Output:b1
1: if n = 1 then
2: am← an
3: bm← bn
4: aM ← an
5: bM ← bn
6: an−1← an
7: bn−1← bn
8: b1← bn
9: else
10: if using the smallest or largest observed latency then
11: if bm − am > bn−1 − an−1 then
12: am← an−1
13: bm← bn−1
14: else if bM − aM < bn−1 − an−1
15: aM ← an−1
16: bM ← bn−1
17: end if
18: end if
19: Compute αm = an − am, βm = bn − bm,

αM = an − aM , βM = bn − bM
20: if βm − αm > U−W then
21: b1← b1 + (βm − αm − (U −W))
22: else if βM − αM <W− U then
23: b1← b1 + (βM − αM − (W − U))
24: else b1← b1
25: end if
26: an−1← an
27: bn−1← bn
28: end if
29: return b1

where M= argmax (b∼i −ai), i ≤ n. When a packet n is found

for which (15) is true, we update b∼n to b∼n − kn
def
= b∗n. kn

is again the most conservatively estimated clock difference,
which has the value

kn =
(
b∼n − b

∼
M
)
− (an − aM)−W + U . (16)

Then(
b∗n − b

∼
M
)
− (an − aM) =

(
b∼n − kn − b

∼
m
)
− (an − am)

= W − U . (17)

The process described so far is summarized in Algorithm 1.
As in line 10 of Algorithm 1, one can choose to compare

the current packet’s latency with the smallest or the largest
observed E2E latency, or simply with the E2E latency of
the first packet. The former approach is expected to yield
better compensation at the cost of the additional complexity
from tracking the minimum and maximum values of the E2E
latency.

We suggest Algorithm 1 to be added to the buffering
process and b∼n to be updated to b∗n for every n if necessary,

VOLUME 10, 2022 15077

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

such that the clock difference can be bounded according to
Theorem 4.
Theorem 4 (Clock Difference Bound): Let us define the

clock difference as |b∗n − bn|. If the clock drift is constant
over time, according to Algorithm 1, the clock difference is
upper bounded by 2(U−W).

Proof: The proof shows that the Theorem holds for both
cases.

Case 1: The buffer clock is faster than the source clock.
From (14),(

b∗n − an
)
=
(
b∼m − am

)
+ U −W ≤ 2U −W ,

because the measured E2E latency
(
b∼m − am

)
of packet m

was smaller than U. As for all n, b∗n ≥ bn, the clock difference∣∣b∗n − bn∣∣ = (b∗n − bn)
=
(
b∗n − an

)
− (bn − an) ≤

(
b∗n − an

)
−W

≤ 2U−W−W = 2(U−W).

Case 2: The buffer clock is slower than the source clock.
From (17),(

b∗n − an
)
=
(
b∼M − aM

)
+W − U ≥ 2W − U

because the measured E2E latency
(
b∼M − aM

)
is larger than

that of W. As for all n, b∗n ≤ bn, the clock difference∣∣b∗n − bn∣∣ = (bn − b∗n)
= (bn − an)−

(
b∗n − an

)
≤ U−

(
b∗n − an

)
≤ U− 2W+ U = 2(U−W).

�

IV. IMPLEMENTATION OF JITTER BOUND
GUARANTEED NETWORK
A. IMPLEMENTATION OVERVIEW
In this section, we consider the problem of whether zero jitter
can be achieved in real implementations. A simple embedded
system with the techniques described in the previous section
was used. To achieve a near-zero jitter upper bound in such
an implementation, the following three conditions must be
considered.

First, the source and buffer should ideally be frequency-
synchronized. Otherwise, jitter is added as much as the
cumulative clock difference during the flow lifetime. To com-
pensate for the clock difference, an or bn should be updated
periodically or at certain events, as suggested in Section III.
The proposed method guarantees the upper bound of the
clock difference.

Second, the transmission rate should ideally be constant.
This is to prevent jitter due to the transmission delay differ-
ence in packets having the same length. The link connecting
the buffer and the destination must satisfy this condition.

Third, the buffer should ideally be capable of simultane-
ous transmission and reception. As an alternative, the buffer
should give a higher priority to the transmission process.
To meet the buffer-out instance requirement suggested by

rules (8) and (9), transmitting a packet from the buffer even
while receiving another is necessary. If simultaneous trans-
mission and reception are not possible, jitter is added as much
as the reception delay. One should ensure that the reception
process does not affect the transmission process. As explained
in the next subsections, we take the approach to separate
the transmission and reception processes by adding another
buffer. Note that it is not related to the double-buffering
technique standardized in IEEE 802.1Qch CQF.

We used two XMOS xCORE-200 eXplorerKITs, as shown
in Figure 8. The xCORE-200 eXplorerKIT is an evaluation
board of the xCORE-200 multicore MCU and is a platform
used in the fields of network and audio [26]. It is a pro-
grammable device that can execute the code created on a
PC through a debug adaptor on the board. The full-duplex
Ethernet interface was supported. The transmission rate of
the Ethernet interface can be set to 10 Mbps, 100 Mbps, or
1 Gbps. The experiments in this study were carried out at a
transmission rate of 1 Gbps.

The xCORE-200 multicore MCU comprised two tiles.
Each tile comprised eight logical cores. Each core is capable
of executing a functional process. The parallel architecture
of the MCU makes multiple concurrent tasks almost deter-
ministically performed. The communication between tiles is
implemented as a physical circuit and has a constant speed.
It has been confirmed that the communication between the
logical cores also has a constant speed. There is memory
for each tile, so it is used to store variables or constants
in the code and create a buffer. The clock frequency is
100 MHz; therefore, 10 ns is the minimum controllable time
unit.

As the xCORE-200 eXplorerKIT is a programmable
device, it does not support cut-through. We first implemented
it to put all packets into the buffer. As we have proved
in Section III.B, it is still possible to guarantee a jitter
upper bound with the store-and-forward buffers by applying
rules (8) and (9).

FIGURE 8. Experiment with two xCORE-200 eXplorerKITs.

15078 VOLUME 10, 2022

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

B. IMPLEMENTATION OF THE IDEAL SITUATION
We considered two different operation scenarios: an ideal
situation and a realistic situation. The ideal situation com-
prises two nodes, as shown in Figure 9, and the packets move
two hops: from node 1 to node 2 and then from node 2 to
node 1. Each node was implemented with the xCORE-200
eXplorerKIT device, as described above. Each node com-
prises an Ethernet interface and processes such as the source,
destination, buffer, or network. The Ethernet interface trans-
mits or receives packets through an LAN cable. The Ethernet
interface is implemented in a separate tile and has its own
buffer. As the tiles are separated, they are not affected by
other processes. The buffer may be implemented either at the
end of the network or at the destination. Implementing the
buffer at the end of the network has the advantage of reducing
the burden on the destination node, which may have limited
processing capability. To examine whether the buffer could
be implemented at the end of the network, we measured the
clock frequencies of the two devices. The clocks of the two
systems drift from each other by 6 µs per second, which is
considered significant. Therefore, the buffer is implemented
in the same device as the source and destination to share the
clock.

The source process sends a burst of 20 RTP packets, each
having a fixed 250-byte length every 5 ms. The inter-arrival
time between packets within a burst is set to 16 µs. RTP
packet lengths could also be set at the bit level. We recorded
the departure time in the timestamp field of the RTP header.
The timestamp is 32 bits long in 10-ns units, which is the
same as the system clock period.

The network process loopbacks the received packets. The
transmitter, receiver, and Ethernet interface of the network
process were implemented separately. The packets experi-
ence only a small delay in the network process. The des-
tination process calculates the E2E buffered latency of a
packet (cn − an) by subtracting the reception time of the

FIGURE 9. Processes and the topology in the ideal situation.

packet and the timestamp recorded in the packet. For an
exact latency calculation, the clock of the destination should
be synchronized with the clock of the source. In this ideal
situation, because the source and destination are imple-
mented in the same device, the clock is shared and thus
synchronized.

The buffer process puts the received packet into the buffer,
calculates the instance to transmit to the destination process,
and transmits the packet at that instance. The packet trans-
mission instance is determined according to rules (8) and
(9). The upper bound (U) and lower bound (W) of the E2E
latency of the network are not the objects of interest in the
implementation. U+ g is set to 200 µs, which is sufficiently
large for the Ethernet interfaces and network process. W is
set to 0 us.

As the system is on a programmable device, simultaneous
transmission from and reception into the buffer is not possi-
ble. Therefore, to achieve zero jitter, the transmit and receive
buffers are implemented separately. The functions of the
buffer process include the reception of packets, calculation
and decision, packet storage, and packet transmission. The
receive buffer has reception and calculation/decision func-
tions. After the receive buffer receives a packet, it decides
the transmission instance of the packet and sends the packet
and the transmission instance information to the transmit
buffer. The transmit buffer stores the packet and starts the
transmission at a time the calculated transmission instance
minus the transmission delay of the packet. The packet trans-
mission delay, which is several tens of nanoseconds in this
experiment, is obtained based on the packet length and link
capacity.

For performance comparison, the case of using only a
single buffer was also implemented. In this case, additional
jitter may occur because the delay at the reception process
affects the transmission.

FIGURE 10. E2E buffered latency in the ideal situation with the dual
buffer.

VOLUME 10, 2022 15079

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

FIGURE 11. E2E buffered latency in the ideal situation with the single
buffer.

C. RESULTS IN THE IDEAL SITUATION
Node 1 performs the source, buffer, and destination pro-
cesses, and node 2 performs the network process. The
buffer process was implemented using either a dual buffer
or a single buffer. A single experiment was conducted for
15 s. During 15 s, we generated 3000 bursts, each with 20
packets, thus obtaining 60,000 end-to-end latency values. The
experiment was repeated 15 times. Rules (8) and (9) were
applied.

With the dual buffer, we achieved a jitter of 0 µs, as shown
in Figure 10, and the average latency was 240–242 µs. The
single-buffer implementation has a jitter of 10 ns, as shown in
Figure 11, with an average latency of 240.5–243.5µs. A jitter
of 10 ns is at the clock period level, which is the minimum
possible jitter that can occur considering the 100-MHz clock
frequency of xCORE-200. Even with different upper bound
values, U, of the end-to-end latency of the network, the
dual buffer still achieved zero jitter, and the single buffer
achieved 10 ns of jitter.

D. IMPLEMENTATION OF THE REALISTIC SITUATION
Zero jitter can be achieved in an ideal situation. In this
subsection, we consider a more realistic situation. First, by
implementing the source and buffer in different devices,
we emulated a situation with clock drift. The clock drift com-
pensation algorithm described in Section III.C was applied.
Second, in addition to the clock drift, the packets have expe-
rienced random delays in the network; thus, they behave
similarly to a real network.

A realistic situation comprises two nodes, as shown in
Figure 12. The packets move a single hop from node 1 to
node 2. Each node was implemented with the xCORE-200
eXplorerKIT device, as described above. Each node com-
prises an Ethernet interface and processes such as the source,
destination, buffer, or network. Node 1 runs the source and
network processes, and node 2 runs the buffer and destination
processes.

The network process generated random delay values and
applied them to the incoming packets in the range of
50–500 µs in steps of 50 µs. The E2E latency plus buffer
processing delay upper bound (U+g) was set to 600 µs. The
lower bound of the E2E latency (W) was set to 50 µs. The
source and destination processes were identical to those in
the ideal situation.

E. RESULTS IN THE REALISTIC SITUATION
Node 1 performs the source and network processes, and
node 2 performs the buffer and destination processes.
The results from both the dual-buffer and single-buffer
approaches were obtained and compared. The clock fre-
quency of the buffer was larger than the clock frequency
of the source. The difference was 6 µs per second. The
experiment ran for 120 s, with sufficient time for divergence
to occur. In a realistic situation, the exact E2E buffered
latency could not be obtained because the source and des-
tination were implemented in different devices. Accordingly,
the estimated E2E buffered latency was obtained as the sum
of the latencies taken at each node. The jitter calculated
using the estimated E2E buffered latency could also have an
error. However, we could still determine the trends of latency
and jitter variations. A total of 480,000 estimated end-to-
end latencies were obtained during a single experiment, and
the experiment was repeated 10 times. Rules (8), (9), and
Algorithm 1 were applied. The case of dual buffer had jitter
of 137–143 µs, as shown in Figure 13, and the case of a
single buffer had jitter of 108–111 µs, as shown in Figure 14.
In both approaches, the estimated end-to-end latency steadily
reduced over time because the buffer clock frequency was
larger than the source clock frequency, which caused the
latency reduction experienced by the buffer. In addition, after
some time, the estimated E2E buffered latency no longer
decreased because Algorithm 1worked to guarantee the clock
difference to be within a certain level. During the experiment,

FIGURE 12. Processes and the topology in the realistic situation.

15080 VOLUME 10, 2022

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

FIGURE 13. E2E buffered latency in the realistic situation with the dual
buffer.

FIGURE 14. E2E buffered latency in the realistic situation with the single
buffer.

the clock drift was actually detected, that is, the condition
at line 20 of Algorithm 1 was met. The clock compensation
was then enforced. As the clock drift worsened over time,
the enforcement lasted until the end of the experiment. With
the latency values measured only during the compensation
enforcement, the dual-buffer method yielded less than 40 µs
of jitter, and the single-buffer method showed less than 10 µs
of jitter. Both methods had much less jitter than the upper
jitter bound of a few milliseconds, which is required by many
applications for high-priority flows. Theorem 4 suggests a
jitter upper bound around 2U, which is around 1.2 ms in this
case. This experimental result shows that Algorithm 1 can
achieve much smaller jitter in real-world implementations
than the theoretically guaranteed jitter upper bound.

V. CONCLUSION
In this study, we proposed a scalable framework for both
latency and jitter bounds guarantee, which are the most

important performance metrics in deterministic services.
Zero packet loss is guaranteed once the latency bound is
given; therefore, the packet loss is beyond the scope of this
study.

The key idea is to decompose the problem into two spaces:
the first is to provide the latency bounds guarantee. Sub-
sequently, by taking advantage of this guarantee, the jitter
becomes a controllable parameter. Based on this approach,
scalable determinism can be achieved even in large networks,
including the Internet. In this study, three major contributions
are given.

First, we proposed a scalable architecture to guarantee
latency upper bounds, which includes regulators per class
per port, the PFAR. The suggested regulators can act as
cycle breakers. Regulators are scalable because they are not
required to maintain flow states. It was also shown, through
a numerical analysis with a simple network with a cycle
and an extended network with four cycles, that the proposed
architecture with the PFAR can achieve comparable latency
bounds to the IEEE ATS technique. Both the PFAR and
ATS frameworks showed a linear increase in latency bound
as link utilization varied. In contrast, the network without
regulators showed a quadratic increase, indicating instability.
This instability becomes more significant as the network size
increases. While the case studies used simple and symmetric
networks, they captured the essential characteristics of the
regulators as cycle breakers. Such a core network with several
cycles, combined with edge networks with tree topologies,
would form a network comparable to a common metro area
network.

Second, we generalized the BN architecture such that the
jitter is upper bounded even with buffers without cut-through
capability and under the existence of clock drift. We proposed
a clock drift compensation algorithm that does not require
the exchange ofmessages between network nodes. Therefore,
our algorithm is free from the requirements that are necessary
in the NTP and PTP, such as the constant network delay or
equal delays for both directions.

Third, we demonstrated with experiments on simple pro-
grammable microcontrollers that the jitter upper bound can
be within a few tens of microseconds (10–40 µs) even in a
realistic situation with store-and-forward buffers, clock drift
of 6 µs per second, and random network delays in the range
of 50–500 µs.

Consequently, an overall framework for both latency and
jitter bounds was proposed, which is scalable and appli-
cable to the Internet. The proposed regulator is of much
less complexity because it maintains only a single flow-
aggregate state, while any existing regulator, including the
IEEE ATS framework’s IR, should maintain all states of
the flows. The proposed time-stamping function and buffer
are located either at the edge of a network or even in the
source/destination nodes. The number of flows at the edge
of a network is usually within a manageable range. When
compared, the synchronization, slot scheduling, and gate

VOLUME 10, 2022 15081

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

control list necessary at the core of the network for the
IEEE TSN synchronous approaches are much more complex
and require a fundamental change to the existing Internet
architecture.

We suggest that bounded E2E latencies can also be
obtained by an asynchronous technique, such as ATS or
DiffServ with regulators. These asynchronous techniques do
not require clock or frequency synchronization. However,
it can be argued that to obtain precise values of latencies,
the network nodes should be at least frequency-synchronized.
It is true that the processing delays and the queuing delays in
nodes, and the transmission delays in links are all affected by
the clock rates; therefore, even a slight clock drift may yield
an inaccurate E2E latency bound. However, the error in the
E2E latency bound is not cumulative and is affected only by
the instantaneous clock rate difference, compared to the jitter
that is affected by the accumulated clock drift over time, dur-
ing the lifetime of a flow; therefore, it is negligible compared
to its already conservative value of the bounds. Moreover, the
maximum clock rate difference can be predicted and applied
to the latency bound itself. How the clock inaccuracy affects
the latency bounds in asynchronous networks is a topic for
further study.

The proposed architecture for the latency bound with the
PFAR requires that regulators be placed at every node. It is
also plausible that placing the flow-aggregate-based regula-
tors in only a part of the network, for example, only enough
to cut the cycles in the network such that the burst does
not explode owing to the cyclic dependency. However, even
without cyclic dependency, the burst accumulates quickly in
FIFO scheduling networks. We suggest a network with ADs
wherein the flows are aggregated according to the ingress and
egress interfaces of the AD, put into separate queues based on
the FAs, and then scheduled. Regulators may be placed only
at the edges of ADs. This is exactly the same framework as
the FAIR, with the IRs replaced by the PFARs. It is for further
study how much the performance would be degraded by
the partial placement of the PFARs, while achieving greater
scalability.

REFERENCES
[1] Network 2030 Services: Capabilities, Performance and Design of New

Communication Services for the Network 2030 Applications, docu-
ment ITU-T Y.3000-series, Rec. ITU-T Y.Sup66. Geneva, Switzerland,
International Telecommunication Union, Jul. 2020.

[2] IP Packet Delay VariationMetric for IP PerformanceMetrics (IPPM), doc-
ument IETF RFC 3393, Nov. 2002. [Online]. Available: https://www.rfc-
editor.org/info/rfc3393

[3] IEEE 802.1 Working Group. Time-Sensitive Networking Task Group.
Accessed: Jan. 29, 2022. [Online]. Available: https://www.ieee802.org/
1/pages/tsn.html

[4] Timing and Synchronization Aspects in Packet Networks, document Rec.
ITU-T G.8261/Y.1361. Geneva, Switzerland, International Telecommuni-
cation Union, Aug. 2019.

[5] D. Chitimalla, K. Kondepu, L. Valcarenghi, M. Tornatore, and
B. Mukherjee, ‘‘5G fronthaul-latency and jitter studies of CPRI over
Ethernet,’’ IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 2, pp. 172–182,
Feb. 2017, doi: 10.1364/JOCN.9.000172.

[6] S. C. Ergen and P. Varaiya, ‘‘TDMA scheduling algorithms for wireless
sensor networks,’’ Wireless Netw., vol. 16, no. 4, pp. 985–997, Jan. 2010,
doi: 10.1007/s11276-009-0183-0.

[7] J. Mao, Z. Wu, and X.Wu, ‘‘A TDMA scheduling scheme for many-to-one
communications in wireless sensor networks,’’Comput. Commun., vol. 30,
no. 4, pp. 863–872, Feb. 2007, doi: 10.1016/j.comcom.2006.10.006.

[8] Network Time Protocol Version 4: Protocol and Algorithms Specifi-
cation, document IETF RFC 5905, Jun. 2010. [Online]. Available:
https://www.rfc-editor.org/info/rfc5905

[9] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems, Standard 1588, IEEE, 2019.

[10] O. Al-Kofahi, ‘‘Evaluating time synchronization using application-layer
time-stamping,’’ in Proc. IEEE Wireless Commun. Netw. Conf., Apr. 2016,
pp. 1–6, doi: 10.1109/wcnc.2016.7564909.

[11] T. Kovacshazy and B. Ferencz, ‘‘Performance evaluation of PTPd, a
IEEE 1588 implementation, on the X86 Linux platform for typical
application scenarios,’’ in Proc. IEEE Int. Instrum. Meas. Technol.
Conf. Proc., May 2012, pp. 2548–2552, doi: 10.1109/I2MTC.2012.
6229387.

[12] G. Cena, M. Cereia, I. C. Bertolotti, S. Scanzio, A. Valenzano, and
C. Zunino, ‘‘A software implementation of IEEE 1588 on RTAI/RTnet
platforms,’’ in Proc. IEEE 15th Conf. Emerg. Technol. Factory Autom.
(ETFA), Bilbao, Spain, Sep. 2010, pp. 1–8, doi: 10.1109/ETFA.2010.
5640955.

[13] B. Liu, S. Ren, C. Wang, V. Angilella, P. Medagliani,
S.Martin, and J. Leguay, ‘‘Towards large-scale deterministic IP networks,’’
in Proc. IFIP Netw. Conf. (IFIP Networking), Jun. 2021, pp. 1–9,
doi: 10.23919/IFIPNetworking52078.2021.9472798.

[14] S.Wang, ‘‘Large-scale deterministic IP networks on CENI,’’ in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2021,
pp. 1–6, doi: 10.1109/INFOCOMWKSHPS51825.2021.9484627.

[15] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang,
and X. Geng, ‘‘Joint routing and scheduling for large-scale deterministic
IP networks,’’ Comput. Commun., vol. 165, pp. 33–42, Jan. 2021, doi:
10.1016/j.comcom.2020.10.016.

[16] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui, ‘‘On cyclic dependencies
and regulators in time-sensitive networks,’’ in Proc. IEEE Real-Time Syst.
Symp. (RTSS), York, U.K., Dec. 2019, pp. 299–311.

[17] M. Andrews, ‘‘Instability of FIFO in the permanent sessions model at
arbitrarily small network loads,’’ ACM Trans. Algorithms, vol. 5, no. 3,
pp. 1–29, Jul. 2009, doi: 10.1145/1541885.1541894.

[18] A. Bouillard, M. Boyer, and E. Le Corronc, ‘‘Deterministic net-
work calculus: From theory to practical implementation,’’ in Net-
works and Telecommunications. Hoboken, NJ, USA: Wiley, 2018, doi:
10.1002/9781119440284.

[19] J. Joung, ‘‘Framework for delay guarantee in multi-domain networks based
on interleaved regulators,’’Electronics, vol. 9, no. 3, p. 436,Mar. 2020, doi:
10.3390/electronics9030436.

[20] Framework for Latency Guarantee in Large Scale Networks Including
IMT-2020 Network, document Rec. ITU-T Y.3113, Geneva, Switzerland,
International Telecommunication Union, Feb. 2021.

[21] J. Joung and J. Kwon, ‘‘Zero jitter for deterministic networks without
time-synchronization,’’ IEEE Access, vol. 9, pp. 49398–49414, 2021, doi:
10.1109/ACCESS.2021.3068515.

[22] J.-Y. Le Boudec, ‘‘A theory of traffic regulators for deterministic
networks with application to interleaved regulators,’’ IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2721–2733, Dec. 2018, doi:
10.1109/TNET.2018.2875191.

[23] D. Stiliadis and A. Varma, ‘‘Latency-rate servers: A general model for
analysis of traffic scheduling algorithms,’’ IEEE ACM Trans. Netw., vol. 6,
no. 5, pp. 611–624, Oct. 1998, doi: 10.1109/90.731196.

[24] J. Migge. (Jan. 2018). Insights on the Performance and Configuration
of AVB and TSN in Automotive Ethernet Networks. Embedded Real-
Time Software and Systems. Toulouse, France: ERTS. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01746132.

[25] N. Navet, J. Villanueva, J. Migge, and M. Boyer, ‘‘Experimental assess-
ment of QoS protocols for in-car Ethernet networks,’’ in Proc. IEEE
Standards Association (IEEE-SA) Ethernet & IP, San-Jose, CA, USA,
Oct. 2017.

[26] XMOS. Accessed: Jan. 29, 2022. [Online]. Available: https://www.
xmos.ai/xcore-200/

15082 VOLUME 10, 2022

http://dx.doi.org/10.1364/JOCN.9.000172
http://dx.doi.org/10.1007/s11276-009-0183-0
http://dx.doi.org/10.1016/j.comcom.2006.10.006
http://dx.doi.org/10.1109/wcnc.2016.7564909
http://dx.doi.org/10.1109/I2MTC.2012.6229387
http://dx.doi.org/10.1109/I2MTC.2012.6229387
http://dx.doi.org/10.1109/ETFA.2010.5640955
http://dx.doi.org/10.1109/ETFA.2010.5640955
http://dx.doi.org/10.23919/IFIPNetworking52078.2021.9472798
http://dx.doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484627
http://dx.doi.org/10.1016/j.comcom.2020.10.016
http://dx.doi.org/10.1145/1541885.1541894
http://dx.doi.org/10.1002/9781119440284
http://dx.doi.org/10.3390/electronics9030436
http://dx.doi.org/10.1109/ACCESS.2021.3068515
http://dx.doi.org/10.1109/TNET.2018.2875191
http://dx.doi.org/10.1109/90.731196

J. Joung et al.: Asynchronous Deterministic Network Based on the DiffServ Architecture

JINOO JOUNG received the B.S. degree in elec-
tronics engineering from the Korea Advanced
Institute for Science and Technology, Taejon,
South Korea, in 1992, and the M.S. and Ph.D.
degrees in electrical and electronics engineer-
ing from New York University, New York City,
NY, USA, in 1994 and 1997, respectively.
From 1997 to 2005, he worked at Samsung Elec-
tronics and the Samsung Advanced Institute for
Technology. His work in Samsung includes vari-

ous network SOC research and developments, especially for general packet
radio service for 3G mobile systems, network processors for high-speed
IP routers, and mobile application processors for smart handheld devices.
In 2005, he joined Sangmyung University, Seoul, South Korea. His research
interests include network SOCs, high-speed network processing, switch
architecture, network calculus, network QoS control, and autonomous wire-
less network scheduling/routing. He was active in international standardiza-
tion activities. He is the main editor of various ITU-T recommendations and
currently holds the TTA ICT International Standard Expert title.

JUHYEOK KWON received the B.S. degree
in human-centered artificial intelligence from
Sangmyung University, Seoul, South Korea,
in 2020, where he is currently pursuing the M.S.
degree in intelligence information engineering.
His research interests include deterministic net-
work services, wireless autonomous networks, and
network SOC design.

JEONG-DONG RYOO received the B.S. degree in
EE from Kyungpook National University, Daegu,
Republic of Korea, and theM.S. and Ph.D. degrees
in EE from New York University, New York,
NY, USA. After completing his Ph.D. in the area
of telecommunication networks and optimization,
he started working with Bell Labs, Lucent Tech-
nologies, Murray Hill, NJ, USA, in 1999. While
he was with Bell Labs, he was mainly involved
in performance analysis, evaluation, and enhance-

ment studies for various wireless and wired network systems. Since he joined
ETRI, in 2004, his work has been focused on next-generation networks,
carrier class Ethernet, and MPLS-TP technology research, especially par-
ticipating in OAM and protection standardization activities in ITU-T. He is
currently a Principal Researcher at the ETRI, Daejeon, Republic of Korea,
and the Head of network engineering major at the ETRI School, University
of Science and Technology, Daejeon. He is a Vice-Chairperson of the ITU-T
Study Group 15. He coauthored TCP/IP Essentials: A Lab-Based Approach
(Cambridge University Press, 2004). He is a member of the Eta Kappa Nu
Association. He is the Editor of various ITU-T recommendations, including
G.8131 (MPLS-TP linear protection), G.8132 (MPLS-TP ring protection),
G.8331 (MTN linear protection), G.873.1 (OTN linear protection), and
G.808.1 (Generic protection-Linear).

TAESIK CHEUNG received the B.S., M.S., and
Ph.D. degrees in electronics engineering from
Yonsei University, Seoul, Republic of Korea.
Since 2000, he has been working as a Principal
Researcher with the ETRI, where he has been
engaged in the development of network systems.
Since 2005, he has participated in ITU-T Q9/15
and contributed to the standardization of protec-
tion mechanisms for transport networks. Since
2010, he has participated in the IETFMPLS work-

ing group and has contributed to MPLS-TP standardization, especially in the
area of survivability. He is the coauthor of IETF RFC 7271 and RFC 8234.
His current work focuses on time-sensitive packet networking technologies,
such as IEEE 802.1 TSN and IETF DetNet. He is the Co-Editor of the ITU-T
Rec. G.873.2 and G.808.2.

VOLUME 10, 2022 15083

