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ABSTRACT In this paper, a new pre-RTL simulator is proposed to predict the power, performance, and
area of convolutional neural network (CNN) dataflows prior to register-transfer-level (RTL) design. In the
simulator, a novel approach is adopted to implement a spatial data dependence graph (SDDG), which
enables us to model a specific dataflow alongside inter-instruction dependencies by tracking the status of
each processing element (PE). In addition, the proposed pre-RTL simulator makes it possible to evaluate
the impact of memory constraints such as latency and bandwidth. The latency-insensitive and bandwidth-
insensitive PE controllers assumed in the proposed pre-RTL simulator guarantee both functional correctness
and maximum performance, regardless of memory constraints. In particular, it is shown that the optimal
distribution method of local memory bandwidth can reduce the accelerator execution time by up to 37.6%
compared with the equal distribution method. For weight stationary (WS) and row stationary (RS) dataflows,
the accelerator performance closely depends on memory constraints. The simulation results also show that
the relative performances of dataflows depend on the layer shape of the convolutional layer. For example, for
an identical hardware area in a standard convolutional layer of AlexNet, WS dataflows do not provide any
performance gain over RS dataflowswhen thememory latency is sufficiently high. In addition,WS dataflows
cannot fully reuse the input activation, thereby increasing local memory accesses, since the number of
weights loaded at a specific time is limited. Moreover, in a depth-wise convolutional layer of MobileNet,
WS dataflows tend to outperform RS dataflows even in the presence of large memory latency. The source
code is available on the GitHub repository: https://github.com/SDL-KU/SDDGSim.

INDEX TERMS Convolutional neural networks (CNNs), data dependence graph, design space exploration
(DSE), hardware accelerators, latency-insensitive controller, pre-RTL simulator, spatial data dependence
graph (SDDG).

I. INTRODUCTION
Recently, convolutional neural networks (CNNs) have been
widely implemented in a variety of research areas, includ-
ing image processing, computer vision, and voice recog-
nition [1]–[5]. CNNs are composed of activation functions
(e.g., ReLU, sigmoid, or SoftMax) as well as fully connected,
convolutional, and pooling layers. More specifically, con-
volutional layers require tens to hundreds of megabytes of
parameters over billions of operations in a single inference
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process; this requires considerable on-chip and off-chip data
movements to support the computation [6], [7]. As shown
in [8], [9], the energy consumption of data movement can
exceed that of data calculation, and it requires the opti-
mization of hardware accelerator movements to achieve high
energy efficiency. When processing these convolutional lay-
ers, the use of general-purpose processors (GPPs) and graphic
processing units (GPU) is inefficient in terms of the computa-
tional speed, and frequent access to off-chip memory involves
considerable power consumption [10]–[14]. Recently devel-
oped hardware accelerators have been implemented with
more than one multiply-and-accumulate (MAC) unit; these
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parallel operations improve the performance and energy con-
sumption [15]–[17]. However, state-of-the-art studies show
that the communication time overhead between the memory
and hardware accelerators may affect performance [18]–[21].
Therefore, to overcome the overhead, recent studies have
considered several dataflow types for the hardware acceler-
ators [22]–[28]. These studies also reduced the number of
accesses to off-chip memory by introducing additional local
memories inside the hardware accelerators, as well as addi-
tional storage locations (e.g., registers) inside the processing
elements (PEs). Meanwhile, recently developed hardware
accelerators exhibit different bandwidths according to the
number of banks distributed to local memories [29], [30],
and different latencies may arise when the implemented
local memory blocks are configured to multiple banks or
emerging memories [29, [31]. Therefore, to improve the
performance, power consumption, and hardware area (PPA)
of hardware accelerators, the aforementioned factors
(i.e., dataflows, memory latency, and multiple memory
banks) must be considered. However, the hardware accelera-
tors that selectively implement these design factors require
substantial design time when evaluating the PPAs at the
register-transfer-level (RTL) phase. Thus, recently developed
pre-RTL simulators may reduce the design time using a
framework that estimates the PPA of the hardware accel-
erators [32]–[38]. However, these pre-RTL simulators only
determine the performance and power consumption via the
dataflows applied to the hardware accelerator, and it is
impossible to estimate the impact of memory constraints
(e.g., latency or multiple memory banks).

For the first time in the reported literature, we propose the
use of a spatial data dependence graph (SDDG) in a pre-RTL
simulator, to model not only inter-instruction dependence but
also dataflow-specific operations under memory constraints.
More specifically, the generated SDDG contains spatial infor-
mation, such as which arithmetic/logic unit (ALU) or register
is involved by each of the instructions (e.g., which register
location the incoming pixel is loaded into). Such spatial infor-
mation makes it possible to model the dataflow. In addition,
the use of an SDDG facilitates the modeling of memory con-
straints such as memory latency and bandwidth. The latency-
insensitive approach in [39] is applied to each PE controller,
to ensure operational correctness and maximal performance,
regardless of memory constraints. The PPA estimation of
the proposed pre-RTL simulator is shown to be consistent
with the previously published implementation results [24]
and [28], with errors of less than 7.1% and 7.3%, respectively.
In addition, design space exploration (DSE) using the pro-
posed pre-RTL simulator can provide useful insights into PPA
improvement in the early design phases. For the well-known
weight stationary (WS) and row stationary (RS) dataflows,
the simulation results show a close dependence of accelerator
performance on memory constraints. In particular, it is shown
that the optimal distribution ofmemory bandwidth can reduce
the accelerator execution time under RS dataflows by up
to 37.6%. In addition, the two dataflows are compared in

terms of performance, power consumption, and area for a
constant PE number or hardware area. The simulation results
show that the superiority of a dataflow depends on the layer
shape of the convolutional layer. For example, for the same
hardware area, RS dataflows tend to be less sensitive to mem-
ory constraints than WS dataflows since the RS dataflows
reuse registers more aggressively and therefore require fewer
memory accesses. In addition, it is shown that RS dataflows
have a significant power-saving effect because they involve
fewer memory accesses. This implies that the proposed pre-
RTL simulator can be used to optimize dataflows andmemory
constraints according to the layer shape.

The novelty of this study can be summarized as follows:
• The proposed pre-RTL simulator makes it possible to
evaluate the impact of the layer shape (tile size) and
memory constraints, such as the memory bandwidth,
as opposed to the conventional CNN hardware accelera-
tor simulators [35]–[38]. The latency- and bandwidth-
insensitive PE controllers assumed in the proposed
pre-RTL simulator guarantee the functional correct-
ness and maximum performance, regardless of memory
constraints.

• The proposed pre-RTL simulator makes it possible to
evaluate the bank distribution for the local memory for
each data type is varied according to the tile size and
computation schedule in order to reduce the execution
time of the CNN hardware accelerator. The proposed
pre-RTL simulator may provide a local memory bank
allocation method for each data type that can effectively
reduce the execution time when hardware accelerators
utilize a limited number of local memory banks.

The remainder of this paper is organized as follows.
Section II describes the related work. Section III introduces
CNN basics and describes the hardware accelerator structure
used in the proposed pre-RTL simulator; in addition, we intro-
duce the RS and WS dataflows and describe the framework
of the dynamic data dependence graph (DDDG) simula-
tor in Aladdin [32]. Section IV introduces the latency- and
bandwidth-insensitive controller [40]. Section V describes
the characteristic framework of the proposed pre-RTL sim-
ulator in this study, and contrasts it with Aladdin. Section VI
verifies the estimated results obtained for the SDDG simu-
lator, using the previously implemented hardware accelera-
tor results. In addition, we estimate the PPA results for the
hardware accelerators with respect to the dataflows and local
memory constraints, using the DSE results of the proposed
pre-RTL simulator; in particular, this section presents the
extended simulation results given in previous studies [41].
Finally, Section VII describes the conclusions and future
work.

II. RELATED WORK
Several studies have used pre-RTL simulators to esti-
mate the PPA of hardware accelerators. For example,
Aladdin [32] is a pre-RTL simulator for PPA estimation
frameworks that targets the rapid prototyping of data-parallel
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hardware accelerators. Aladdin uses high-level descriptions
(i.e., C program) of algorithms as inputs and applies DDDGs
to represent the hardware accelerator without having to gen-
erate RTL designs. Aladdin starts with a DDDG without
constraints, which corresponds to a primary representation
of a hardware accelerator; one framework of Aladdin applies
optimizations as well as constraints to the graph, to create a
realistic model of the hardware accelerator. ESP [33] intro-
duces a research platform for hardware accelerators into a
complete system-on-a-chip (SoC) architecture. The platform
combines a modular tile-based architecture (e.g., a memory
tile) with an accelerator tile. In particular, ESP provides
accelerator design flows that include automated steps, using
high-level synthesis (HLS) tools such as Xilinx Vivado HLS
and Catapult HLS. The generated accelerator tile can be
combined with other tiles to estimate the performance of
the SoC architecture. In [34], a platform for accelerator-
rich architectural design and exploration (PARADE) was
proposed to model full-system SoC architectures via a
cycle-accurate approach. This approach ensures that the
whole accelerator-rich architecture (ARA) system is accu-
rately modeled, including processor cores, specified hard-
ware accelerators, shared memory and network-on-a-chip
(NoC). PARADE uses a fully-automated process to generate
the specified hardware accelerator modules, by implementing
HLS tools such as AutoPilot HLS. In addition, PARADE can
facilitate DSE in the ARA system. However, none of these
pre-RTL simulator models provides spatial information for a
hardware accelerator; thus, they cannot be used to model a
specific dataflow. Recalling that most state-of-the-art hard-
ware accelerators for CNNs are based on a dataflow-specific
spatial architecture [22]–[28], the aforementioned pre-RTL
simulators are unsuitable for estimating the PPA of CNN
hardware accelerators.

Several existing pre-RTL simulators are capable of
modeling a dataflow-specific architecture (e.g., [35]–[38]).
These pre-RTL simulators contain spatial information, such
as which ALU/register each of the instructions invokes
(i.e., which register location the incoming pixel is loaded
into). In most pre-RTL simulators, a set of pragmas/directives
(e.g., for loop unrolling or tiling) is used to specify a
dataflow. For example, Interstellar [35] presents a system-
atic approach to concisely describe the design space of a
hardware accelerator for a CNN, using schedules of loop
transformations. In addition, this suggests that dataflow
mappings for existing hardware accelerators in CNNs can
be represented as a schedule in a Halide program, and it
extends the Halide schedule language to generate different
hardware designs in the space of CNN hardware accelera-
tors. In [36], MAESTRO uses a set of data-centric directives
(e.g., TemporalMap or SpatialMap) to concisely specify the
CNN dataflow space in a compiler-friendly form. In addition,
it describes how these directives can be analyzed to infer
diverse forms of reuse, as well as how to exploit these using
hardware accelerator capabilities. Finally, it codifies this

analysis into an analytic cost model referred to as ‘‘mod-
eling accelerator efficiency via spatio-temporal reuse and
occupancy (MAESTRO),’’ which estimates many dataflow-
specific cost-benefit tradeoffs, including the performance and
power consumption for a deep neural network (DNN) model
and hardware accelerator. Timeloop [37] provides a concise
and unified method of describing the key attributes of a
diverse class of DNN architectures (and their implementa-
tion features) as the input to an analytical model. More-
over, infrastructure of Timeloop [37] effectively combines
the exploration of a large design space with a mapper that
identifies the optimal mapping for the dataflow of any work-
load on the targeted hardware accelerator. [38] introduces
a systolic array CNN accelerator simulator (SCALE-Sim),
a configurable systolic array-based cycle-accurate hardware
accelerator for CNNs. The proposed simulator offers diverse
micro-architectural characteristics (e.g., mapping strategy)
and system integration parameters (e.g., bandwidth require-
ment) to the designer, to facilitate comprehensive design
space exploration (DSE). However, these pre-RTL simulators
lack the modeling details (e.g., memory constraints such as
memory latency and bandwidth).

To improve energy efficiency, most CNN hardware accel-
erators exploit a memory hierarchy [42]–[44]; this typi-
cally consists of PE registers, first-in-first-outs (FIFOs), local
memories and off-chip memories. Different memory blocks
in the memory hierarchy tend to exhibit order-of-magnitude
difference in their latencies and bandwidths; thus, each PE
tends to experience similar differences, depending on which
memory block (e.g., local memories) the pixel is transferred
from/to. Several reports analyze the impact of local memory
constraints on the performances of hardware accelerators.
In Caffeine [19], it is mentioned that the local mem-
ory banks should be carefully designed to process on-chip
data. In addition, Caffeine interleaves the data for different
local memory banks, to reduce bank read/write conflicts.
In order to build on-chip caches with large capacities, the
authors [29], [30] proposed to split large block random access
memory (BRAM) structures into multiple banks, offering
additional latency for the maintenance of high operating fre-
quencies. In [31], it is mentioned that the absolute latency
of different memory technologies (i.e., emerging memory)
is experienced during data fetching to the hardware accel-
erators. In addition, they presents a DSE flow for bench-
mark hardware accelerators with incumbent and emerging
memories, emphasizing practical technological characteris-
tics. Thus, the performance and power consumption of hard-
ware accelerators (taking into account dataflows and memory
constraints) need to be estimated in the pre-design phase.

The contributions of this study can be summarized as
follows:
• The proposed pre-RTL simulator can estimate the PPA
of a spatial hardware accelerator more accurately than
the Aladdin pre-RTL simulator [32]. The proposed
pre-RTL simulator takes into account both dataflows
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(e.g., RS or WS) and memory constraints (latency
and bandwidth) using spatial information, to evaluate
the spatial characteristics of the hardware accelerator,
including the register location where the incoming pixel
is loaded to. This spatial information makes it possible
to model dataflows. The experimental results for the
proposed pre-RTL simulator are similar to the power
consumption and performance measured in the con-
ventional hardware accelerator [24], [28]. The normal-
ized energy and execution time of the Eyeriss hardware
architecture [24] modeled using the proposed SDDG
pre-RTL simulator can be predicted with errors of less
than 7.1% and 6.3%, respectively, compared with the
actualmeasured results of the Eyeriss hardware architec-
ture. In addition, the normalized energy and execution
time of the deep-learning specific instruction-set proces-
sor (DSIP) hardware architecture [28] modeled with the
proposed SDDG pre-RTL simulator shows estimation
errors of up to 7.8% and 5.6%, respectively, compared
with the actual measurement results of the DSIP hard-
ware architecture.

• Compared with the Aladdin pre-RTL simulator
approach, the proposed pre-RTL simulator makes it pos-
sible to explore the design space (e.g., the optimal mem-
ory interface) in the early design phases, without RTL
implementation. The latency- and bandwidth-insensitive
controllers assumed in the proposed pre-RTL simula-
tor ensure functional correctness and maximal perfor-
mance, regardless of memory constraints. As indicated
in Section VI, the simulation results show a close depen-
dence of hardware accelerator performance on memory
constraints (latency and bandwidth). For example, given
a total bandwidth of six memory banks, the optimal
distribution of these memory banks can reduce the exe-
cution time of the hardware accelerator by up to 37.6%
compared with the equal distribution method [29], [30].
Assuming the use of an identical hardware area in a stan-
dard convolutional layer of AlexNet, WS dataflows do
not offer any performance advantage over RS dataflows
when the memory latency is sufficiently high. In a
depth-wise convolutional layer ofMobileNet, the perfor-
mances of WS dataflows exceed those of RS dataflows,
even in the case of high-memory latency. Thus, it can
be concluded that the proposed pre-RTL simulator can
explore the performance of the hardware accelerator
under memory constraints (latency and bandwidth).

III. BACKGROUND
This section describes the operations of convolutional lay-
ers (which are computationally sensitive and character-
ized by repetitive patterns) among the different layers
required by CNNs to perform classification. In addition,
we briefly illustrate the structure of the hardware acceler-
ator in the proposed pre-RTL simulator. Finally, we intro-
duce the two dataflows considered in the proposed pre-RTL
simulator.

FIGURE 1. Structure of a convolutional layer.

TABLE 1. Layer shape parameters of a convolutional layer.

A. BASICS OF CONVOLUTIONAL LAYERS
Convolutional layers perform the main operations of CNNs,
and they involve a number of MACs. Figure 1 and
Table 1 show the parameters that represent the convolutional
layers. First, input activations (IAs) are expressed by height
(H ), width (W ) and number of input channels (C). Next,
weights are expressed by height (R), width (S), number of
input channels (C) and number of output channels (M ).
Finally, output activations (OAs) are expressed by height (E),
width (F) and number of output channels (M ). Algorithm 1
illustrates the pseudocode of a convolutional layer. The loop
order of Algorithm 1 is arbitrarily arranged; if it is changed,
the same value is generated.

B. TILE PARAMETERS OF CNN ACCELERATORS
The hardware accelerator loads activations and filters from
the off-chip memory to each local memory block. A PE array
executes MACs through the activations and filters loaded to
local memory blocks. Partial sums are returned to the local
memory blocks or off-chip dynamic random access memory
(DRAM). This procedure is defined as a processing pass in
Eyeriss [24]. A single convolutional layer is divided into mul-
tiple processing passes through the tile parameters described
in Table 2. The tile parameters determine the amount of
computation and communication for each processing pass.
To describe this in further detail, the values of p and q repre-
sent the number of output and input channels handled within
a single processing pass, respectively. In addition, r and t
indicate that the PE array is divided into multiple PE sets;
that is, the PE array is a parallel configuration of r by t PE
sets that simultaneously run r different input channels for t
different output channels.

Figure 2 depicts the processing passes of a convolutional
layer with 12 input channels (C = 12) and 8 output channels
(M = 8). The tile parameters are set as p = 2, q = 1, r =
3 and t = 2. As shown in the figure, a convolutional layer
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TABLE 2. Tile parameters of a CNN hardware accelerator.

FIGURE 2. Processing passes of a convolutional layer (C = 12, M = 8, p =

2, q = 1, r = 3, and t = 2).

consists of a total of eight processing passes. Figure 3 is a
block diagram depicting a PE array for r is 3 and t is = 2.
Because r × t is 6, the PE array consists of six PE sets in
the hardware accelerator. The hardware accelerator processes
different output channels (M ) in a parallel manner accord-
ing to parameter t. Additionally, the hardware accelerator
simultaneously processes different input channels (C) using
parameter r. The OAs with different input channels (r) pro-
cessed during one processing pass are accumulated in the
same output channel (t). As shown in Figure 3, OAs with
the same t index are stored in a local memory according to
the corresponding t index.

Algorithm 1 Pseudocode of a Convolutional Layer
1: for (m = 0; m < M; m++) {
2: for (c = 0; c < C; c++) {
3: for (e = 0; e < E; e++) {
4: for (f = 0; f < F; f++) {
5: for (r = 0; r < R; r++) {
6: for (s = 0; s < S; s++) {
7: OA[m][e][f] + = IA[c][e+r][f+s] ∗

W[m][c][r][s];
8: }}}}}}
9: post_processing(OA[0:M-1][0:E-1][0:F-1])

C. SYSTEM UNDER CONSIDERATION
Figure 3 illustrates the overall system using the CNN hard-
ware accelerator described in [45], which consists of a
hardware accelerator, processor core, DRAM controller and
on-chip buses. The processor core is responsible for syn-
chronizing the direct memory access controllers (DMACs)
and configuring them by setting the transfer addresses and
sizes. The hardware accelerator is assumed to be equipped
with multiple direct memory access controllers (DMACs),
as shown in [6]–[8]. Each of the DMACs serves as a bus mas-
ter and accesses the DRAM subsystem through the on-chip
bus. The hardware accelerator is assumed to be equipped

FIGURE 3. Overall system with a CNN hardware accelerator.

with either one (e.g., [46]–[48]) or multiple (e.g., [19], [26]
and [49], [50]) DMACs and each of the DMACs accesses the
DRAM subsystem as a bus master. For example, Figure 2
shows a CNN accelerator that consists of three DMACs,
wherein each of the DMACs is dedicated to one of the three
data types of the CNN accelerator: IAs, filters (W), or OAs.
A read DMAC for the IA (RI-DMAC), a read DMAC for
filter weights (RW-DMAC) and a write DMAC for the OA
(WO-DMAC) are used. In addition, the processor core is
responsible for synchronizing the DMACs in the hardware
accelerator (i.e., for the starting and stopping of the DMAC
execution [51]–[53]). Finally, the processor core makes it
possible to reconfigure the hardware accelerator according to
the number of DMACs. Given that a hardware accelerator is
typically designed as a standalone IP block, a standardized
interface may ease integration in the system (e.g., [19], [26]
and [46]–[48]). The DRAM controller assists the hardware
accelerator with its access to off-chip DRAM. The DMACs
are assumed to access several local memory blocks through
the NoC inside the hardware accelerator. The figure shows
the three local memory blocks included in the hardware
accelerator, which implies that each data type of the CNN
is distributed. The figure shows that the number of ports
(i.e., number of banks) distributed to each local memory
block differs. Therefore, the communication bandwidth of
each local memory that communicates with the PE array may
differ [29], [30]. In addition, each local memory block can
be implemented through one of several emerging memory
technologies [31]. This characteristic can be manifested dif-
ferently as latency when the PE array accesses each local
memory block.

The proposed pre-RTL simulator in this study focuses
on communication between the PE array and local memory
blocks inside the hardware accelerator depicted in Figure 3.
In addition, it processes spatial information inside the PE
array. Finally, the pre-RTL simulator estimates the PPA of the
hardware accelerator by analyzing spatial information and the
impact of local memory constraints.

D. MODELING OF DATAFLOWS
Several dataflows have been proposed to efficiently com-
pute a single convolutional layer of a CNN [22]–[28]. This
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FIGURE 4. Block diagram of a single PE for RS dataflow.

FIGURE 5. Communication manner for each data type in RS dataflow:
(a) input activations are reused across PEs diagonally, (b) weights are
reused across PEs horizontally, (c) output activations are accumulated
across PEs vertically.

FIGURE 6. Block diagram of a single PE for WS dataflow.

FIGURE 7. Communication manner for each data type in WS dataflow:
(a) input activations are reused across all PEs, (b) weights are unicasted
to each PE, and (c) output activations are relayed after the MAC
operation on each PE.

subsection describes the hardware accelerator structure of the
RS [24] and WS [28] dataflows considered in the proposed
pre-RTL simulator, as well as the communication procedure
for each data type.

Figure 4 shows the block diagram of a single PE in the
RS dataflow [24]. More specifically, the PE assumed in RS
dataflow stores the IAs, weights and OAs in each register
inside the single PE, and it reuses those activations and filters.
In addition, in [24], different communication techniques are

FIGURE 8. Example of a 2-dimensional convolutional layer.

applied to access PEs for each data type from the local mem-
ory. For example, in Figure 5 (a), the IAs are multicast to PEs
that are arranged diagonally in a PE set. Next, in Figure 5 (b),
the weights are multicast to PEs arranged horizontally in a PE
set. Lastly, in Figure 5 (c), the OA is sequentially unicast to
a PE in the first row of a PE set. Additionally, each PE relays
the partial sum (psum) of all the MACs of the weight row
for q input channels to the adjacent PE in the next row. OAs
computed from the PEs in the last row of a PE set are stored
in the off-chip DRAM or local memory blocks.

Figure 6 shows the block diagram of a single PE in the
WS dataflow [28]; it stores the weights in a register inside the
single PE. In addition, [28] presents different communication
techniques for accessing PEs of each data type from the local
memory. First, Figure 7 (a) shows that the IAs are reused
across all PEs. Next, Figure 7 (b) indicates that the weights
are unicast to each of the designated PEs in a PE set and stored
in the register. In addition, Figure 7 (c) shows that the OAs are
relayed following the MAC operation on each PE. OAs that
have been integrated through relays between PEs are stored
in off-chip DRAM or local memory blocks.

Before leaving this subsection, it should be mentioned that
the proposed pre-RTL simulator in this study is modeled for
dataflows via the controller of each PE [40]. The proposed
approach not only models the dataflows of a PE array in the
conventional pre-RTL simulators [35]–[38]: it is also latency-
and bandwidth-insensitive to local memory blocks. More-
over, the latency- and bandwidth-insensitive approach [39]
motivates this study because it can be easily extended by com-
bining the DSE of the dataflows under memory constraints.
For example, estimation results in the proposed pre-RTL
simulator show that the hardware accelerator’s performance
is affected by local memory constraints related to the dataflow
computation schedule (as will be shown in Section VI).

E. DYNAMIC DATA DEPENDENCE GRAPH
In this subsection, we describe Aladdin [32], a pre-RTL
simulator that forms the basis of the proposed pre-RTL
simulator. The dynamic data dependence graph (DDDG)
proposed in Aladdin is a directed, acyclic graph in which
nodes represent computations and edges represent dynamic
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data dependencies between nodes. Graph-based representa-
tions are widely applied in the early design stages to model
the behavior of hardware [54], [55]; thus, the generated
graph provides information regarding the hardware oper-
ations required for implementation, expressed in a cycle-
accurate manner. Figure 8 shows the processing procedure for
simple two-dimensional convolutional layers (H =W = 3,
E = F = 2 and R = S = 2), where OA, IA and W denote
an output activation, an input activation and a filter weights,
respectively. As shown in the figure, we must multiply
and accumulate the IAs to obtain OAs, because the filter
weights comprises four weights. The accumulation process
is repeated whenWmoves from left to right with a stride size
of one. According to the pseudocode of Figure 8, the OAs are
calculated as

OA(0) = IA(0)W (0)+ IA(1)W (1)+ IA(3)W (2)+ IA(4)W (3) (1)

OA(1) = IA(1)W (0)+ IA(2)W (1)+ IA(4)W (2)+ IA(5)W (3) (2)

OA(2) = IA(3)W (0)+ IA(4)W (1)+ IA(6)W (2)+ IA(7)W (3) (3)

OA(3) = IA(4)W (0)+ IA(5)W (1)+ IA(7)W (2)+ IA(8)W (3) (4)

In this section, the two-dimensional convolutional layer
shown in Figure 8 is used as an example (input) of an Aladdin
pre-RTL simulator [32] and the proposed SDDG pre-RTL
simulator.

Figure 9 illustrates the hardware accelerator assumed in the
Aladdin pre-RTL simulator [32]. The hardware accelerator
in the figure exhibits a structure in which six MACs are
available, and the number of local memory block banks for
the IAs, weights, and OAs are 3, 2, and 3, respectively. The
communication bandwidth is determined by the number of
banks distributed to each local memory block. For example,
the number of local memory block banks for an IA value
of 3 indicates that three IAs can be loaded from the local
memory block simultaneously. Furthermore, six MACs are
simultaneously available in the hardware accelerator. Finally,
a shared register reduces the number of accesses to the local
memory blocks.

Figure 10 shows the Aladdin framework [32]. First, the
intermediate representation (IR) phase of the framework
translates theworkload of the hardware accelerator (written in
a C program) into the IR level. The IR converted in this phase
contains workloads formemory accesses (e.g., load and store)
and computations (e.g., MACs).

Subsequently, in the optimization phase of the framework,
the IR generated in the previous phase is converted to a
DDDG. Figure 11 shows an idealized DDDG generated by
the converted IR. As shown in the figure, the DDDG gener-
ated in this phase only takes into account fundamental depen-
dencies. For example, the figure shows the characteristics of
thememory access dependence that loads/stores each IA, OA,
and W through the generated memory address. In addition,
it shows the computation dependencies of MACs with data
types loaded from the local memory blocks. Finally, the
store-load forwarding dependence is characterized, to remove
unnecessary local memory block access from the operation

FIGURE 9. Hardware accelerator assumed in Aladdin pre-RTL
simulator [32].

FIGURE 10. Framework of Aladdin pre-RTL simulator [32].

with the shared register, as depicted in Figure 9. For example,
it is assumed that IA(1), which is reused in the fifth loop
iteration in Figure 11, is stored as a shared register in the
memory access (i.e., load) operation of the first loop itera-
tion. However, in the case of OAs, redundant load and store
operations are required in allMACs because of the C program
assumed in Figure 8. Aladdin defines the DDDG generated
through this phase as an idealized DDDG.

In the realization phase, resource constraints with direc-
tives (e.g., unroll) are used to constrain the idealized DDDG
generated in the optimization phase. The resource constraints
are determined by the directives described, which deter-
mine the number of MAC units in the hardware accelerator
and the number of banks distributed to the local memory
block for each data type. More specifically, the number of
MAC units determines how many MAC operations can be
simultaneously performed, and the number of memory banks
determines the number of activations or weights that can
be simultaneously accessed. Figure 12 shows a constrained
DDDG under hardware resource constraints. For example,
the figure shows that the number of local memory banks for
the IA, W, and OA are 1, 1, and 4, respectively, through a
constrained DDDG. In addition, twoMAC units are allocated
to the hardware accelerator. This data dependence graph is
generated by writing unroll directives in the outermost two
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FIGURE 11. Idealized DDDG in optimization phase.

loops of the algorithm in Figure 8. In addition, the constrained
DDDG shows that although two MAC units are assumed in
the resource constraints, they are rarely activated simulta-
neously, because this does not satisfy the data dependence.
For example, only a single MAC from the two MACs in
cycle 1 operates, because IA(0), OA(0), and W(0) are insuf-
ficient in terms of data dependence to perform other MACs.
The pre-RTL simulator proposed in [32] focuses on model-
ing the computations and memory accesses of the hardware
accelerator in a cycle-accurate manner according to the given
hardware resource constraints. However, this pre-RTL sim-
ulator does not take into account the spatial information of
hardware accelerators using dataflows.

Finally, the PPA estimation phase of the framework cal-
culates the performance and power consumption using the
activity of each cycle of the generated functional unit and
memory unit of the DDDG. To model the power consump-
tion of hardware accelerators, the Aladdin pre-RTL simu-
lator must capture the operation nodes of each accelerator
per cycle-level resource activity. More specifically, given the
DDDG in Figure 12, it is necessary to know which resources
(e.g., multipliers, adders, or memory) are either activated
or deactivated in each cycle. For example, the constrained
DDDG in Figure 12 shows that the local memory resources
are activated in cycle 0. In this case, the power consumption
in cycle 0 can be calculated using the weighted sum of the

FIGURE 12. Constrained DDDG in realization phase.

premeasured switching power and the internal power of the
memory resources. In addition, in cycle 0, the power con-
sumption of theMAC resources is determined as theweighted
sum of the premeasured leakage power. As a result, power
consumption can be calculated by activated or deactivated
resources at each DDDG cycle.

IV. LATENCY- AND BANDWIDTH-INSENSITIVE PE
CONTROLLER
Before explaining the framework of the proposed pre-
RTL simulator, a latency- and bandwidth-insensitive con-
troller [40] is explained in this section. As shown in Figure 13,
the assumed controller of a PE provides multiple control sig-
nals (summarized in Table 3) for datapath consisting of mul-
tipliers, adders, and storage elements (registers and FIFOs).
Depending on these control signals, a PE may perform differ-
ent operations. For example, the PE takes three pixels from
the registers (pointed by PTR_R_I, PTR_R_F, and PTR_R_O),
performs a MAC, and then stores the result to the regis-
ter (pointed by PTR_W_O) when the status of EN_MAC and
WE_REG_O are 1.
In order to guarantee the operation correctness regardless

of memory latency and bandwidth, the assumed controller
of each PE should satisfy all the inter-operation dependence
constraints. For example, each MAC should be preceded
by its relevant loads (i.e., MAC after-load dependence).
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FIGURE 13. Latency - and bandwidth-insensitive PE controller assumed
in the proposed pre-RTL simulator.

In addition, in order to maximize the performance for the
given memory latency and bandwidth, the assumed con-
troller of PE should schedule each operation as early as
possible. To maximize the performance in latency-insensitive
and bandwidth-insensitive, the PE controller needs to keep
track of the status by updating the number of loads, stores,
and MACs to the internal counters, which are described in
Table 3 and Figure 13. Each layer consists of multiple pro-
cessing passes as shown in Eyeriss [24]. Each processing pass
is divided into multiple row-MACs. A row-MAC is defined
as a set of MACs corresponding to the convolution of an
input row with a filter row. Following the notation of the
layer shape parameters (R, S, H, W, E, F) and architectural
parameters (p, q, r, t) assumed in [24], each processing pass is
divided into F row-MACs, each of them consisted of a total
of pqS MACs, as shown in Figure 14. Within a row-MAC,
the same loop ordering is assumed in [24], i.e., the output
channel (p), the input channel (q), and the filter column (S).
Figure 14 also illustrates how the counters are updated within
a processing pass. For simplicity, the memory bandwidth
of the IA, W, and OA is determined to be 3, 2, and 2,
respectively. It is clearly shown that the counters progress
independently of one another. For example, in the 1st row-
MAC, the counter for the input activation load (CNT_iFIFO_I )
reaches beyond the minimum achievable level (qS), whereas
the counter for the filter load (CNT_iFIFO_F) gets stuck to
the minimum required level (pqS). In addition, the figure also
shows how the counters affect some of the control signals.
For example, the MAC enable (EN_MAC) is set to one only
if the minimum between pCNT_iFIFO_I and CNT_iFIFO_F is
larger than CNT_MAC, i.e., there are some MACs remain-
ing to be completed for the given input and filter pixels
which are loaded into the registers. Finally, by comparing
the values of CNT_MAC and CNT_iFIFO_O, it is determined
whether to store the output activation to the outside of the PE
(VLD_oFIFO). When CNT_oFIFO_O reached p, the next row-
MAC could be started. The counters described in Table 3 are
updated by the ready/valid handshaking protocol of FIFO and
register with latency-insensitive and bandwidth-insensitive
manners. The PE internal registers being assigned to each
data type. When the required value is reached, operations
(e.g., MAC, local communication) are performed.

TABLE 3. Control signals of the PE controller.

In summary, the proposed pre-RTL simulator utilizes an
SDDG, which enables us to model a specific dataflow and the
inter-instruction dependence by keeping track of the status of
each PE. In addition, the proposed pre-RTL simulator facili-
tates the evaluation of the impact of memory constraints, such
as memory latency and bandwidth. The latency-insensitive
and bandwidth-insensitive PE controllers [40], assumed in
the proposed SDDG pre-RTL simulator, guarantee the oper-
ation correctness and maximum performance, regardless of
memory constraints. In other words, the approach proposed
in [39] can be applied to the pre-RTL simulator to estimate
the performance and power consumption for dataflows and
memory constraints of the hardware accelerator.

V. SPATIAL DATA DEPENDENCE GRAPH
Figure 15 exemplifies the CNN accelerator assumed in the
proposed pre-RTL simulator. As shown in the figure, the
CNN accelerator contains multiple PEs, each of which con-
sists of a single MAC unit and a set of registers. In addition,
the CNN accelerator is assumed to exploit a dedicated local
memory, as depicted in [42]–[44]. This paper assumes the
use of a heterogeneous memory hierarchy in which different
memory blocks are based on different memory technologies
such as static RAM (SRAM), magnetic RAM (MRAM) [56],
or resistive RAM (ReRAM) [57]. Therefore, the latency of
local memory varies significantly between memory blocks.
For example, the latency of MRAM tends to be substantially
larger than that of SRAM latency [58]. Moreover, the band-
width of local memory also varies between memory blocks,
depending on the number of banks allocated to those blocks
(e.g., [19] and [59], [60]). Thus, each PE tends to experience
an order-of-magnitude difference in its latency and band-
width, depending on which memory block the activations
(or filter weights) are transferred from/to. We denote the
memory latencies [cycles/pixel] and bandwidths [ports/pixel
or ports/weight] for the IA, weigths, and OA by Li, Lw,
and Lo and Bi, Bw, and Bo, respectively. The DSE results
in Section VI.B compare the execution times of the hard-
ware accelerator under memory constraints. For example, the
DSE results show a comparison of the execution time for
the hardware accelerator implemented using SRAM with a
latency of (1, 1, 1) or MRAM with a latency of (3, 3, 3)
for each local memory. In addition, it is possible to examine
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FIGURE 14. Latency- and bandwidth-insensitive PE controller (p = q = 2, R = S = 2, E = 2, F = 3).

the differences in execution time according to the bandwidth,
by modifying the number of memory banks. Therefore, the
latency and the bandwidth (which are assumed as the mem-
ory constraints) indicate the characteristics of an emerging
memory. Figure 15 illustrates the memory latency of (2, 3, 1)
and the bandwidth of (3, 2, 3). The latency- and bandwidth-
insensitive PE controllers [40] assumed in the proposed pre-
RTL simulator ensure functional correctness, regardless of
memory constraints; meanwhile, they also maximize the per-
formance. Lastly, the internal NoC connects multiple PEs
with the local memory dedicated to the CNN accelerator. The
detailed topology and protocol depend on the dataflows of the
CNN accelerator [22]–[28].

The proposed pre-RTL simulator consists of three major
steps derived from the Aladdin pre-RTL simulator [32],
as shown in Figure 16. The figure shows that the proposed
pre-RTL simulator utilizes the frontend (IR phase) and back-
end (PPA estimation phase) of the Aladdin pre-RTL simu-
lator [32], and it adds a new spatial architecture phase that
consists of the dataflow and memory phases. Given the inter-
mediate representation from the Aladdin pre-RTL simulator,
the spatial architecture phase generates the corresponding
SDDG, taking into account the dataflow and memory con-
straints (i.e., bandwidth and latency). The dataflow phase
tracks the statuses of ALUs by registering and modeling the
behavior of the controllers. The memory phase is assumed
to be operated by a bandwidth- and latency-insensitive PE
controller [40], which makes it easier to explore the optimum
memory interfaces and thereby improves the hardware accel-
erator’s environment. Finally, the generated SDDG is used
as the input to the PPA estimator, which is the backend of
Aladdin.

A. DATAFLOW PHASE
The proposed pre-RTL simulator introduces the dataflow
characteristics by adding PE information to all nodes writ-
ten in the generated graph. For example, Aladdin pre-RTL
simulator [32] expresses data reusage via a shared register,
whereas the proposed pre-RTL simulator expresses data reuse
as a characteristic of the assumed dataflow PE. More specif-
ically, the proposed pre-RTL simulator is characterized by

FIGURE 15. CNN hardware accelerator assumed in the proposed pre-RTL
simulator.

the tailored-sized registers inside the PEs (i.e., which register
location the incoming activations or weights are loaded into);
moreover, it is color-coded to indicate the spatial information
conveyed by the SDDG, which enables us to model the oper-
ations (e.g., MAC, load/store) of each PE in a cycle-accurate
manner during this phase. In Figure 17, the color-coded
nodes express spatial information relevant to communication.
In general, these communication methods are designed to
model specific dataflows (RS [24] and WS [28]) inside the
hardware accelerator. In this study, we propose to use an
SDDG pre-RTL simulator that allows us to model a spe-
cific dataflow which exploits these communication methods,
in contrast to those used in the Aladdin pre-RTL simula-
tor [32]. For example, Figure 17 (a) shows that the PE loads
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FIGURE 16. Framework of the proposed pre-RTL simulator.

FIGURE 17. Color-coded nodes to express spatial information with
respect to communication manner: (a) unicast, (b) multicast,
(c) broadcast.

activations from local memory blocks in a unicast manner.
Next, in the case of a multicast approach, two or more
PEs loaded from the local memory blocks are depicted in
Figure 17 (b). Lastly, Figure 17 (c) shows that all PEs load
activations from local memory blocks in a broadcast manner.
Furthermore, the SDDG generated in this phase includes
the local communication between PEs. Thus, such spatial
information makes it possible to model a dataflow.

Assuming the RS dataflow proposed in [24], Figure 18
shows the SDDG for the single 2-dimensional convolutional
layer of Figure 8, which consists of such instructions as
load, store, and MAC. In this graph, the assumed hardware
accelerator consists of R by E PEs, and each PE has a
tailored-sized register for activations and filters, as shown in
Figure 4. Figure 18 shows the memory latency for (1, 1, 1)
and the bandwidth for (1, 1, 1). As shown in the figure,
in cycle 0, it can be seen that IA(0) and OA(0) are loaded
from local memory blocks to PE 0. Likewise, it can be
observed that W(0) is loaded with PE 0 and PE 1 using the
multicast approach in cycle 0. In cycle 1, IA(3) is loaded
into PE 1 and 2 using the multicast approach, and OA(2) is
loaded into PE 1 using the unicast one. In addition, W(2) is

FIGURE 18. SDDG for RS with respect to memory latency (1, 1, 1) and
bandwidth (1, 1, 1).

loaded into PE 2 and 3 using the multicast approach. In the
same cycle, PE 0 performs a MAC upon the IA(0), OA(0),
and W(0) loaded in cycle 0. Because of the characteristics
of RS dataflows, each PE relays the psum to the PE of the
adjacent row after performing a MAC for q input channels.
That is, local communication is required between the PEs
in adjacent rows. As shown in cycles 5, 6, 8, and 9 in the
figure, the characteristics of the RS dataflow are expressed
by a new node defined as local addition (Loc. Add). Finally,
the memory access order assumed in the SDDG differs from
the algorithm in Figure 8. For example, IA(0) is loaded into
PE 0 in cycle 0, and IA(3) is loaded into PE 1 and 2 in cycle
1 before IA(1) is loaded into PE 0 cycle 3. The graph shows
that the computation scheduling proposed by RS dataflow
affects the memory access order. Figure 19 shows in more
detail the status of each PE during the initial eight cycles of
the SDDG in Figure 18. For example, in cycle 6, PE 0 shows
that the register space of IA(0) is overwritten by IA(2). It also
shows the relay of psums to local communications between
PEs. For example, in cycle 4, the figure shows that PE 0 relays
the psum for OA(0) to PE 2.

Assuming the WS dataflow proposed in [28], Figure 20
shows the SDDG for a single 2-dimensional convolutional
layer from Figure 8. In this graph, the assumed hardware
accelerator consists of R by S PEs, each of which has a
tailored-size register for weights, as shown in Figure 6.
Figure 20 shows that an IA is broadcast to all PEs in each
cycle. Weights are unicast to each of the specified PEs.
In addition, an OA is relayed from each PE to the PE of the
adjacent column after a MAC. In particular, the OA(0) loaded
in PE 0 in cycle 0 relays to PE 1 after a MAC, and it relays to
PE 2 after a MAC in cycle 1. Note that OA is always loaded
as the first PE and stored in local memory or off-chip DRAM
after MACs are performed through all PEs.

11392 VOLUME 10, 2022



J. Wang et al.: Spatial Data Dependence Graph Based Pre-RTL Simulator for Convolutional Neural Network Dataflows

FIGURE 19. Status of each PE during the initial eight cycles of the SDDG in Figure 18.

FIGURE 20. SDDG for WS with respect to memory latency (1, 1, 1) and
bandwidth (1, 1, 1).

To summarize, the simulation results from the proposed
pre-RTL simulator show the spatial information under the
generated SDDG, to observe detailed dataflow character-
istics. For example, as mentioned earlier, the SDDG in
Figure 18 assumes four PEs, which means that up to four
MAC units can be activated in every cycle. However, the
figure shows that all MAC units are simultaneously activated
only in cycle 7. The generated SDDG indicates that this
occurs because the activations or weights required by the
MAC are not loaded into the PE registers. Though quite
natural for the aforementioned characteristics of the data
dependence, this underutilization of PEs can be considered
the bottleneck of the hardware accelerator. Assuming that
the bandwidth of the local memory block allocated (i.e., the
number of local memory banks) in the hardware accelerator
increases, it is possible for the activation or weight required
for the MAC to be delivered earlier, thereby improving PE
utilization. The effect of increased bandwidth on the improve-
ment of PE utilization is explained in detail in the following
subsection.

B. MEMORY PHASE
The memory phase introduces two additional constraints to
the SDDG generated in the dataflow phase: the number
of banks distributed to each local memory block and the
local memory block latency. First, the number of banks dis-
tributed to the local memory blocks determines the number
of activations or weights that can be accessed simultaneously
(i.e., memory bandwidth). Second, this phase assumes that
each local memory block is implemented with a different
memory latency. This indicates the number of cycles required
by the PEs to access local memory blocks.

The proposed SDDG pre-RTL simulator can model the
latency attributable to conflicts during the processes of read-
ing from and writing to the same memory bank. For example,
Figure 21 (a) shows that the memory constraints of the SDDG
are assumed to be (1, 2, 1) and (2, 2, 1) for memory latency
and bandwidth, respectively. The figure shows that OA(0) and
OA(2) are written to the same memory bank at the same time;
however, the store operation of OA(2) is delayed by one cycle
in cycle 6 owing to memory conflicts. Likewise, in cycle 9,
OA(3) accesses the same memory bank at the same time as
OA(1); hence, it is delayed by one cycle. In Figure 21 (b), the
execution time is two cycles longer than in Figure 21 (a) when
the IA-allocated local memory block has a large latency,
despite the same local memory bandwidth. The SDDG in the
figure shows that the latency of the local memory block for
the IAs, which requires a larger amount of communication
compared to the weights and OAs, has a greater impact on
the execution time of the hardware accelerator. These results
imply that the local memory block distribution of each data
type must be carefully considered according to the commu-
nication amount determined by predefined parameters, such
as those in Tables 1 and 2. However, it is not generally
applicable to the case with a specific computation scheduling
for dataflows (as will be shown in Sections VI-B and C).

Figure 22 shows an SDDG of the hardware accelerator
with a local memory latency of (2, 1, 1) and bandwidth of
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FIGURE 21. SDDG for RS with respect to memory constraints: (a) latency
(1, 2, 1) and bandwidth (2, 2, 1), (b) latency (2, 1, 1) and bandwidth
(2, 2, 1).

(1, 4, 1). As shown in the figure, the execution time increases
by 9 cycles compared with that in Figure 20. This occurs
because the amount of communication increases the amount
of time for which large IAs are broadcast to PE, owing to
the latency of the local memory block. It appears that the
execution time of a hardware accelerator can be determined
by the communication amount of activations or weights.
However, the computation scheduling of the dataflow may
have a more dominant effect on the execution time of the
hardware accelerator according to our experimental results
(as will be discussed in Section VI.B).

FIGURE 22. SDDG for WS with respect to memory constraints: latency
(2, 1, 1) and bandwidth (1, 4, 1).

VI. SIMULATION RESULTS
In this section, the PPA results of the hardware acceler-
ator are evaluated using the proposed pre-RTL simulator.
Although the proposed SDDGpre-RTL simulator is generally
applicable to any CNN applications, the third and fourth
convolutional layers of AlexNet [61] and the fourteenth con-
volutional layer of MobileNet [62] are taken as the example
applications in this section. For the convolutional layers,
the tile size is set according to the three different tile sizes
given in Table 4: tAlex1, tAlex2, and tMobile. As mentioned
earlier, once the tile parameters are determined, the con-
volutional layer is divided into several processing passes.
The number of computations and the amount of transferred
activations and filters for each processing pass are almost
identical; hence, a single processing pass is sufficient to
represent the performance and power consumption of the
hardware accelerator for a convolutional layer. Therefore,
the estimation results in this section evaluate the perfor-
mance and power consumption of a single processing pass.
Table 5 shows the normalized energy cost of each operation
with respect to that of multiplication energy cost. The table
lists the measured energy costs for a 16-bit adder, 16-bit
multiplication, 16-bit register operation, and 16-bit memory
operation subject to the operating clock frequency of the hard-
ware accelerator at 200 MHz, using a design compiler logic
synthesis tool with a CMOS 45-nm cell library [32]. This
section explains how, assuming the well-known dataflows,
RS [24] andWS [28] dataflows, the simulation results exhibit
a close dependence of accelerator performance upon memory

11394 VOLUME 10, 2022



J. Wang et al.: Spatial Data Dependence Graph Based Pre-RTL Simulator for Convolutional Neural Network Dataflows

TABLE 4. Layer shapes and tile sizes of the convolutional layers
considered in this paper.

TABLE 5. Normalized power consumption relative to a multiplier
extracted from Aladdin pre-RTL simulator [32].

constraints. In addition, the simulation results also show that
the relative performances of dataflows depend on the layer
shape of the convolutional layer. It is worth mentioning that
the proposed pre-RTL simulator can provide insights into
local memory constraints, unlike the conventional pre-RTL
simulators, which are focused on dataflows.

A. FRAMEWORK VALIDATION
In order to validate the proposed pre-RTL simulator,
we present the energy comparison between our simulation
results and the post-synthesis results. The hardware accel-
erators assumed for comparison are RS [24] and WS [28]
dataflows, and the latency and bandwidth of the local memory
blocks are (1, 1, 1) and (1, 1, 1), respectively. In addition,
the proposed pre-RTL simulator measures the energy of the
hardware accelerator via the energy of each operation in the
CMOS 45-nm standard cell library, as assumed in [19]; in
contrast, Eyeriss [24] and DSIP [28] measure the energy of
the hardware accelerator in the CMOS 65-nm standard cell
library. Thus, the energy of both hardware accelerators is
normalized via a ratio to the summed power consumption
of all convolutional layers, measured with each standard cell
library.

Figure 23 shows the results for the comparative validation
experiment against the Eyeriss [24] and DSIP [28] hardware
accelerator architectures, with AlexNet [61] as the workload.
The figure shows that the estimation results of the proposed
SDDG simulator fairly accurately follow a function of the
energy reported from prior studies. Figure 22 (a) shows that
the normalized energy and execution time of the Eyeriss
hardware architecture modeled with the SDDG pre-RTL sim-
ulator can be predicted with errors of less than 7.1% and
6.3%, respectively, when compared with the actual measure-
ment results of the Eyeriss hardware architecture. Moreover,
in Figure 23 (b), the normalized energy and execution time
of the DSIP hardware architecture modeled with the proposed
SDDG pre-RTL simulator can be predicted with errors of less
than 7.8% and 5.6%, respectively, when compared with the
actual measured results. These estimation errors may arise
because the proposed pre-RTL simulator does not take into
account components other than PE arrays and local memory
blocks (e.g., run-length compression in Eyeriss [24]). In addi-
tion, because the controller implemented inside the PE for
computation scheduling of the proposed pre-RTL simulator

FIGURE 23. Validation of the proposed SDDG pre-RTL simulation results
against measured results: (a) Eyeriss [24], (b) DSIP [28].

FIGURE 24. Impact of memory constraints for CNN accelerator with RS.

is assumed to be that presented in [40], it may differ from
that assumed in Eyeriss and DSIP. Lastly, since the standard
cell library adopted in our experiment and the standard cell
library used in Eyeriss and DSIP are different, it is expected
that the power consumption will be affected differently.

B. SENSITIVITY ANALYSIS
In this subsection, we show the impact of tile parameters
and local memory constraints on the performance and power
consumption of hardware accelerators. Figure 24 shows
the impact of the latency (1 ≤ Li ≤ 3, 1 ≤ Lw ≤ 3,
1 ≤ Lo ≤ 3) and the number of banks (1 ≤ Bi ≤ 3, 1 ≤ Bw ≤
3, 1 ≤ Bo ≤ 3) of the local memory blocks on the execution
time of the hardware accelerator under RS dataflows. The
layer shape is set as tAlex1 in Table 4. Figure 25 (a) shows
the loops pertaining to the index of the x-axis in Figure 23.
Lo indicates the inner-most loop of Figure 25 (a), followed
by Lw and Li as the outer-most loop. Likewise, Figure 25 (b)
presents loops pertaining to the y-axis of Figure 24, where
the inner-most loop is Bo, followed by Bw, and Bi as the
outermost loop. As shown in Figure 24, the latency of the
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FIGURE 25. Memory constraints index: (a) memory latency (x-axis in
Figure 24), (b) memory bandwidth (y-axis in Figure 24).

local memory and the number of local memory banks for
each data type are set to (3, 3, 3) and (1, 1, 1), respectively,
as a baseline; when the local memory latency is reduced to
(1, 1, 1), the execution time of the hardware accelerator is
reduced by 65.3%. In addition, when the number of local
memory banks for each data type of the hardware accelerator
is increased to (3, 3, 3), the execution time of the hardware
accelerator is reduced by 70.1%.

Figure 26 represents the power consumption and execution
time of the hardware accelerator according to the number of
local memory banks for each data type under various tile sizes
for the hardware accelerator. In this case, the accelerator is
assumed to operate according to the RS dataflow computation
scheduling [40], with the third convolutional layer of AlexNet
as the workload. As shown in Table 6, it is assumed that the
number of local memory banks for each data type can be
allocated from a minimum of 1 to a maximum of 3 (i.e., 1 ≤
Bi ≤ 3, 1 ≤ Bw ≤ 3, 1 ≤ Bo ≤ 3). In the experimental results,
an increase in the index of the y-axis indicates that the local
memories for each data type and PE between the bandwidth
(i.e., number of transmitted activations or weights per cycle)
increases. The experimental results show the considerable
impact of the tile size (x-axis) and local memory banks (y-
axis), which are the parameters of the hardware accelerator
that influence the execution time and power consumption of
a processing pass.

Figure 26 (a) shows the changes in execution time and
power consumption of each data type according to its number
of local memory banks. First, the figure shows a decreasing
trend relating to the execution time of the hardware accel-
erator when the number of local memory banks allocated to
each data type increases. For example, the execution time is
reduced by 67%when the tile size is (1, 64) and themaximum
number of local memory banks is allocated for each data
type (i.e., index = 27), in contrast to the hardware accelerator

FIGURE 26. Sensitivity analysis according to the tile size and the number
of local memory banks for each data type: (a) execution time and power
consumption, (b) power breakdown and number of operations.

in which the distribution of local memory banks is set to
the minimum (i.e., index = 1). These results show that the
performance is improved because the PEs of the accelera-
tor can access the local memory simultaneously when the
number of local memory banks increases. The experimental
results of Figure 26 (a) show the power consumption of the
hardware accelerator, which varies according to the various
tile sizes, and the number of banks distributed in the local
memory for each data type. As shown in the figure, the power
consumption of the hardware accelerators is inversely pro-
portional to the decreasing execution time when the number
of local memory banks for each data type increases. For
example, when the given tile size of the hardware accelerator
is (2, 32) and the number of local memory banks increases
from (1, 1, 1) to (3, 3, 3), the execution time of the hardware

11396 VOLUME 10, 2022



J. Wang et al.: Spatial Data Dependence Graph Based Pre-RTL Simulator for Convolutional Neural Network Dataflows

TABLE 6. Y-axis in Figure 26.

accelerator decreases by 61%, whilst the power consumption
increases by 30%. It can be observed that a higher hardware
accelerator power consumption is observed when the same
number of operations is performed within a shorter time.

As shown in Figure 26, the experimental results for the
power consumption breakdown of each component in the
hardware accelerator show that MAC operations have a dom-
inant impact on the power consumption of the hardware
accelerator, and such operations account for the largest por-
tion among the operations of all components. For example,
Figure 26 (a) shows that a power consumption of 24% more
is necessary for the hardware accelerator with a tile size of
(8, 8) compared with one with a tile size of (1, 64) given
that the number of local memory banks is (1, 1, 1). This is
attributed to the fact that the execution time for processing
MAC operations differs according to the tile size determined
by the hardware accelerator. As shown in Figure 26 (a), the
execution times of a hardware accelerator whose tile sizes are
determined as (1, 64) and (8, 8) span 14404 and 3075 cycles,
respectively. Figure 26 (b) shows that when the tile size of
the hardware accelerator is determined as (8, 8), most of
the execution time is spent for MAC operations. Conversely,
when the tile size of the hardware accelerator is determined
as (1, 64), most of the execution time is spent upon memory
operations.

Figure 26 (a) shows that the distribution of the number of
local memory banks for each data type affects the trend of the
execution time, which varies according to the characteristics
of the tile size determined for each hardware accelerator. For
example, in the case of a hardware accelerator whose tile size
is determined as (1, 64), the execution time tends to decrease
when the number of local memory banks for IAs increases,
as shown in Figure 26 (a). This is attributed to the fact that the
input channel tile size (q) is larger than the output channel
tile size (p). Thus, the number of memory accesses for the
IAs exceeds the number of memory accesses for weights or
OAs. As a result, the method that allocates more banks to the
local memory to which the IAs are allocated will reduce the
execution time of the hardware accelerator compared to other
data type distributions. Conversely, the hardware accelerators
whose tile size is determined as (64, 1) show a decreasing
execution time with respect to the number of local memory
banks for OA. This occurs because the output channel tile
size (p) is larger than the input channel tile size (q). Thus,
the number of memory accesses of the OA is higher than
the number of memory accesses of the weights or input
activation. As a result, the execution time of the hardware

FIGURE 27. Execution time of hardware accelerator according to local
memory banks distribution for each data type according to various tile
sizes: (a) (64, 1) and (32, 2), (b) (1, 64) and (2, 32).

FIGURE 28. Performance gain of optimum distribution against equal
distribution in five convolutional layers of AlexNet.

accelerator can be reduced by distributing more banks to the
local memory to which the OA is allocated, when compared
with the local memory allocation under distributions of other
data types.

Figure 26 (a) shows that the distribution of the number of
local memory banks (with respect to data type) when obtain-
ing the optimal execution time differs according to the tile
size determined by the hardware accelerator. Figure 27 shows
themethod for distributing the number of localmemory banks
(which are limited to six) to obtain the shortest execution
time for the tile size specified in the hardware accelerator.
Figure 27 (a) shows that when the tile size of the hardware
accelerator is (64, 1) and (32, 2), the tile size (p) of the
output channel exceeds the tile size (q) of the input channel.
Thus, the number of memory accesses for the OAs inside the
hardware accelerator is greater than that of the number of
memory accesses for weights or IAs. This tile size can help
reduce the execution time of the hardware accelerator through
the distribution of more local memory banks that have been
allocated with OAs, when compared with the number of local
memory banks of other data types. As shown in Figure 27 (a),
when the tile size is (32,2), the execution time is reduced
by up to 13.6% by distributing more number banks to the
local memory of OAs, compared with the case in which the
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FIGURE 29. Performance of hardware accelerators assuming RS in terms of local memory bandwidth: (a) Third layer of AlexNet (tAlex1), (b) Fourth layer
of AlexNet (tAlex2), (c) Fourteenth layer of MobileNet (tMobile).

local memory is equally distributed (i.e., (Bi, Bw, Bo) =
(2, 2, 2)). In the RS dataflow computation scheduling [40]
assumed by the proposed pre-RTL simulator, this is given
priority such that one IA calculates the weights of several
output channels (p). Thus, it can be observed that expanding
the number of banks in the local memory for weights allows
theMAC operations of the output channel (p) to be conducted
at a fast rate. This helps reduce the execution time further.
For example, when the tile size of the hardware accelerator is
(64, 1), its execution time is reduced by 7% when distributed
as (3, 2, 1) compared to its distribution under (3, 1, 2),
as shown in Figure 27 (a).

Figure 27 (b) shows that when the tile sizes of the hardware
accelerator are (1, 64) and (2, 32), the tile size (q) of the input
channel is larger than the tile size (p) of the output channel;
thus, the number of memory accesses for the IA inside the
hardware accelerator is greater than those of the weights or
OA. The computing scheduling [40] assumed by the SDDG
pre-RTL simulator proposed in this study prioritizes the accu-
mulation rule of several input channels (q), based on the rule
according to which one IA is calculated using the weights of
several output channels (p). Therefore, by adding the number
of banks to local memory for IAs, PEs receive IAs from local
memory earlier, time to perform MAC operations as quickly
as possible. This can help improve the execution time of the
hardware accelerator. As shown in Figure 27 (b), when the tile
size is (2, 32), the execution time is reduced by up to 16.8%,
by distributing more number banks to the local memory of
IAs, when compared with the case in which the local memory
is equally distributed (i.e., (Bi, Bw, Bo) = (2, 2, 2)).

C. IMPACT OF MEMORY BANDWIDTHS IN CNN
HARDWARE ACCELERATORS
The SDDG pre-RTL simulator proposed in this study can
estimate the execution times of hardware accelerators when
the number of memory banks is differentially (as opposed to
equal distribution, as seen in [29], [30]) distributed to local
memory for each data type. For example, when a total of
six banks in the local memory of the hardware accelerator
is given, the baseline in [29] and [30] distributes two banks
to the local memory for each data type. On the other hand,

the proposed SDDG pre-RTL simulator can reduce the exe-
cution time of the hardware accelerator by distributing the
number of local memory banks for each data type according
to the communication amount for each data type and the
computation scheduling characteristics. Figure 28 shows that
regarding the five convolutional layers of AlexNet [61], the
execution time was reduced by up to 34.8% compared to
equal distribution [29], [30] when the number of banks was
optimally distributed based on the communication amount
and computational scheduling. In addition, optimal distri-
bution reduces the AlexNet [61] execution time of hardware
accelerators by 29% compared to equal distribution.

Figure 29 evaluates the performances of hardware accel-
erators under RS dataflows in terms of the local memory
bandwidth (i.e., number of local memory banks per data
type). Figure 29 (a) shows the effect of the number of banks
distributed to each local memory block on the performance
when a local memory latency of (3, 3, 3) is included in
the results of Figure 24. It is interesting to note that such
a DSE helps to optimize the bandwidth distribution across
different data types. For example, as shown in Figure 29 (a),
when the total number of banks is 6, the optimum bandwidth
distribution for each data type that the hardware accelerator
can obtain in a minimum execution time is (1, 2, 3). The
execution time of the hardware accelerator in which this
manner is adopted is reduced by 28.1% compared to that of
the hardware accelerator implementing an equal distribution
manner ((i.e., (Bi, Bw, Bo) = (2, 2, 2)). In addition, the
execution time of the hardware accelerator under the optimal
bandwidth distribution is reduced by 58.4% compared to
that of the accelerator with the worst bandwidth distribution
(i.e., (Bi, Bw, Bo) = (3, 2, 1)). This is because the amount of
communication required for the data types is determined by
the tile parameters. According to the tile parameters defined
in Table 4, the amount of communication for each data type
between the PEs and local memory blocks is 2704 pixels
for OAs, 900 pixels for IAs, and 576 filters for weights.
Therefore, it is straightforward to allocate a large number of
banks to the local memory block of OAs to improve exe-
cution time. However, although the communication amount
for the IAs exceeds that of the communication amount for
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the weights, the execution time is improved by distributing
more banks to the local memory block of weights. This can
be explained by the computation scheduling of the PEs in
Eyeriss [24], which prioritizes the convolutional layers such
that a single IA pixel is reused for multiple output channels
of weights. Furthermore, a single IA pixel generates psums
with the weights of p output channels. This means that a
single IA pixel must wait for all p weights to be loaded
into the PE, which may be considered a bottleneck of the
hardware accelerator. That is, increasing the number of banks
in the local memory block for weights means that a single
IA pixel can be reused quickly. This reduces the execution
time of the hardware accelerator. In addition, this observa-
tion tends to be replicated for different layer shapes and tile
parameters. As shown in Figure 29 (b), in the case of the
fourth convolutional layer of AlexNet in Table 4 (tAlex2), the
amount of communication is large for IAs, OAs, and weights.
As shown in Figure 29 (b), when the total number of banks
is 6, the optimum bandwidth distribution (for each data type)
with which the hardware accelerator can obtain the minimum
execution time is (3, 2, 1). The execution time of the hardware
accelerator in which this manner is adopted is reduced by
34.6% compared to the execution time of one applying the
equal distribution method (i.e., (Bi, Bw, Bo) = (2, 2, 2)).
In addition, the execution time of the hardware accelerator
under the optimal bandwidth distribution is reduced by 64.3%
compared to that of the hardware accelerator with the worst
bandwidth distribution (i.e., (Bi, Bw, Bo)= (1, 2, 3). Because
PEs can load IAs more often, the space of the register for the
IAs allocated to PEs is quickly filled. As mentioned earlier,
a single IA pixel is quickly reused by expanding the number
of banks of the local memory block used for weights. That is,
extra banks should be distributed to the local memory block
of weights rather than OAs. As shown in Figure 29 (c), when
the total number of banks is 6, the optimum bandwidth distri-
bution (for each data type) with which the hardware accel-
erator can obtain the minimum execution time is (1, 2, 3).
The execution time of the hardware accelerator in which this
manner is adopted is reduced by 37.6% compared to that
of the hardware accelerator applying an equal distribution
(i.e., (Bi, Bw, Bo)= (2, 2, 2)). In addition, the execution time
of the hardware accelerator applying the optimal bandwidth
distribution is reduced by 69.4% compared to that of the
hardware accelerator with the worst bandwidth distribution
(i.e., (Bi, Bw, Bo) = (3, 2, 1)). This improvement can be
realized by distributing a large number of banks to the local
memory blocks for the OAs that require a large amount of
communication, instead of according to the communication
amounts of IAs and weights. The number of banks of local
memory blocks for IAs and weights has a minimal effect on
the hardware accelerator execution time, because there is little
difference in the amount of communication between the two
data types (i.e., 169 pixels for IAs, 144 filters for weights).
These simulation results provide a novel insight, in contrast
with the equal distribution method [29], which distributes the
number of banks in local memory blocks equally for each data

TABLE 7. Memory constraints assumed in Section VI.C.

type. In other words, when the number of available banks is
determined, distributing the number of differentiated banks
for each data type according to the computation scheduling of
dataflows helps to improve the performance of the hardware
accelerator.

To summarize, the proposed pre-RTL simulator provides
the design space of hardware accelerators for dataflows under
memory constraints. In other words, the proposed pre-RTL
simulator evaluates the performances of hardware accelera-
tors in the design space, unlike the conventional pre-RTL sim-
ulators. Thus, it can be concluded that the optimum memory
bandwidth of the hardware accelerator depends on the amount
of communication of each data type and the computation
scheduling characteristics of the dataflows.

D. IMPACT OF MEMORY LATENCY IN CNN HARDWARE
ACCELERATORS
This subsection estimates the PPA results of hardware accel-
erators modeled with several memory constraints (as shown
in Table 7) and several dataflows, such as RS [24] and
WS [28] dataflows. The difference in the characteristics of
the hardware accelerators in the RS andWS dataflows means
that the following assumptions are needed to facilitate a com-
parison. First, WS0 indicates that the hardware accelerator
is configured with the same number of PEs as RS0. Second,
WS1 means that hardware accelerators are configured with
approximately the same area size as the RS0. The simula-
tion results in this subsection show that the superiority of
a dataflow depends on the layer shape of the convolutional
layer and the latency of the memory blocks.

Figure 30 shows the simulation results of hardware accel-
erators under RS [24] and WS [28] dataflows, respec-
tively, for the third convolutional layer of AlexNet (tAlex1).
Figure 30 (a) shows the size of the hardware accelerator area
under two dataflows. The RS dataflows approach assigns
registers for each data type to all PEs, in contrast with theWS
dataflows. That is, the hardware accelerator area of the RS0
case is 3.7x larger than that of the hardware accelerator area of
the WS0 case, which is assumed to have the same number of
PEs. In addition, WS1 adds PEs to the hardware accelerator,
to show that it almost matches the hardware accelerator area
under the RS dataflow. The simulation results of WS0 and
RS0 in Figure 30 (b) show that the execution time between
the two dataflows differs by up to 27% under increasing
memory latency. For example, the difference between the
execution time of WS0 and the execution time of RS0 is only
6% in Case 0. However, in Case 3, this difference increases
when the latency of the local memory block increases. This
is because no registers are allocated inside the PEs for the
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FIGURE 30. Simulation results of hardware accelerators assuming RS and WS, respectively, in a third convolutional layer of AlexNet (tAlex1): (a) hardware
area, (b) execution time, (c) energy consumption.

FIGURE 31. Simulation results of hardware accelerators assuming RS and WS, respectively, in a depthwise convolutional layer of MobileNet (tMobile):
(a) hardware area, (b) execution time, (c) power consumption.

reuse of activations (IAs and OAs) in WS dataflow. That is,
in WS dataflow, PEs require access to local memory blocks
for activation loads, and an increase in the hardware accel-
erator execution time is inevitable, owing to the latency with
which PEs are experienced. Owing to these characteristics,
the execution time of WS1 may not be significantly better
than that of RS0 execution time. For example, in Case 0, there
is a minimum latency in the local memory blocks of IAs and
OAs in Figure 30 (b). Therefore, the execution time of WS1
is 20% smaller than that of RS0 execution time in Case 0.
However, WS1 in Cases 2 and 3 has a higher latency than
RS0 when accessing local memory for activations, increasing
the execution time. These simulation results show that RS
dataflow tends to be less sensitive to memory constraints than
WS dataflow, because they utilize register reuse more aggres-
sively and therefore end up with fewer memory accesses.
In Figure 30 (c), the energy consumption of RS0 has a slight
advantage over the energy consumption ofWS0.More specif-
ically, it can be observed that the energy consumption in RS0
registers is at least 2.4x more than those of WS0. The reason

for this is that, in RS dataflow, registers are allocated to all
data types for the calculation of the psums of a row in all
PEs, whereas in the case of the WS dataflow, registers are
only used to store weights. That is, in the case of hardware
accelerators where the RS dataflow case is assumed, the
number of redundant accesses to the local memory block is
reduced, owing to the reuse of data inside each PE, and the
energy consumption attributable to the local memory block
access shows that the WS dataflow is more dominant than
the RS dataflow. As shown in Table 5, the energy consumed
by the local memory block access is 18.5x higher than that
of the register energy consumption, and the energy consumed
by the additional registers under the RS dataflow is amortized
by the local memory block access. Thus, it is shown that RS
dataflow achieves a significant energy saving because it can
lead to fewer memory accesses. In addition, WS1 shows that
the total energy consumption of the hardware accelerator is
increased by up to 2.2x compared with that under the RS0.

Figure 31 shows the simulation results of hardware acceler-
ators assuming RS [24] and WS [28] dataflows, respectively,
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FIGURE 32. Comparison of the number of operations of RS and WS
dataflows.

in a depth-wise convolutional layer of MobileNet (tMobile).
Figure 31 (a) shows the size of the hardware accelerator
area under two dataflows. As shown in the figure, most of
the RS0 area consists of registers allocated to each PE, and
an area size 2.7x area size larger than that of the register
area of WS0 is required. In particular, this shows that the
difference in the size of the hardware accelerators to which
the two dataflows are applied is smaller than the result of
Figure 30 (a). This can be considered a feature of the depth-
wise convolutional layer shape of MobileNet [i.e., weights
per input channel (input depth)]. In the figure, WS1 uses
fewer registers than RS0, though it shows that the MAC units
allocated in the hardware area of WS1 have increased. The
difference between the execution time of RS0 and that of
WS0 execution time in Figure 31 (b) is reduced by up to 3%
in Case 1, unlike the difference between the execution times
of RS0 and WS0 in Figure 30 (b). These simulation results
are attributed to the reduced number of times PEs access
local memory blocks when reusing IAs and OAs, owing to
the layer shape of the depth-wise convolutional layer in WS.
In addition, the simulation results show that the performance
of WS1 exceeds that of RS0 performance in all cases. For
example, WS1 provides a performance advantage over RS0
for Cases 2 and 3 in Figure 31 (b). This result contrasts with
WS1, which provides no performance advantage over RS0 in
Cases 2 and 3 in Figure 30 (b). To summarize, in a depth-
wise convolutional layer of MobileNet, the performance of
WS is better than that of RS performance, even in the case of
high memory latency. This implies that the proposed pre-RTL
simulator can be used to optimize the dataflows and mem-
ory constraints according to the convolutional layer shape.
The simulation results show that the difference between the
energy consumptions ofWS0 andRS0 in Figure 31 (c) is up to
38% larger than in Figure 30 (c). This is because the register
access required for a single PE of the RS dataflow is reduced,
owing to the layer shape of the depth-wise convolutional layer
of MobileNet. As shown in Figure 31 (c), in the case of WS1
(which is assumed to be the same hardware area as the RS0),
the energy consumption is increased by a factor of up to 2.2x
compared with the hardware accelerator implemented in the
RS dataflow.

It is difficult to estimate PPA results for the hardware
accelerator, owing to the characteristics of the dataflows,

local memory blocks constraints, tile parameters, and con-
volutional layer shapes. In particular, recalling that the
performance and energy consumption of the hardware accel-
erator estimated by conventional pre-RTL simulators can
only explore the effects of dataflows, the design space for
local memory constraints is not taken into account. The pro-
posed pre-RTL simulator estimates the hardware accelera-
tor performance and energy consumption according to local
memory constraints as well as dataflows in the early design
phases for latency- and bandwidth-insensitive controllers.
For example, when the latency of the local memory block
increases, the fact that the execution time of the WS dataflow
increases more than the RS dataflow can be explained by
the dataflow characteristics (e.g., number of local memory
operations). Figure 32 shows the number of operations for
each component of two specific dataflows (e.g., RS [24]
and WS [28]). The figure shows that RS dataflow has con-
siderably fewer memory accesses than WS dataflow, which
means the RS dataflow achieves more data reuse than the
WS dataflow by employing the register within the hardware
accelerator. This result implies that it is possible for the exe-
cution time of the hardware accelerator implemented under
WS dataflow to be heavily affected by the memory latency.
Thus, it can be concluded that the effect of the local memory
latency pertaining to the layer shape characteristics is reduced
through the simulation results.

VII. CONCLUSION
The proposed pre-RTL simulator helps to explore the design
space of CNN hardware accelerators. The use of an SDDG
makes it possible to accurately model a specific dataflow
under givenmemory constraints.More specifically, an SDDG
contains spatial information, such as which ALU/register
each of the instructions involves (e.g., which register location
the incoming pixel is loaded into). In addition, it is possible
to evaluate the impact of the memory constraints imposed by
memory block constraints in the memory hierarchy. In order
to maximize performance as well as functional correctness,
the pre-RTL simulator assumes a latency- and bandwidth-
insensitive controller for each PE.

According to the DSE, it is shown that the optimal
distribution method of local memory banks (considering
communication amount and computation scheduling) can
reduce the execution time of the hardware accelerator by up
to 37.6% (compared with the equal distribution). In addition,
the two well-known dataflows, WS and RS dataflows, are
compared in terms of performance, power consumption, and
area, assuming either the same number of PEs or the same
hardware area. The simulation results show that the supe-
riority of a dataflow depends on the layer shape of the
convolutional layer. For example, under identical hardware
areas, RS dataflow tends to be less sensitive to memory
constraints than WS dataflow, because it undertakes register
reuse more aggressively and therefore ends up with fewer
memory accesses. In addition, it is shown that RS dataflow
offers significant power savings, because it can lead to fewer
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memory accesses. This implies that the proposed pre-RTL
simulator can be used to optimize the dataflows and memory
constraints according to the layer shape, thereby facilitating
more efficient CNN designs.

The extension of the proposed pre-RTL simulator into the
case with dynamic (i.e., state-dependent) memory latency
appears promising as future work. Such an extension makes
the simulation results more realistic by taking into account
the impact of the row buffer status (e.g., row buffer hit/miss)
[63]-[65] and on-chip bus contention.
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