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ABSTRACT This paper presents a model-free fault detection and isolation (FDI) method for nonlinear
dynamical systems using Koopman operator theory and linear geometric technique. The key idea is to obtain
a Koopman-based reduced-order model of a nonlinear dynamical system and apply the linear geometric FDI
method to detect and isolate faults in the system.Koopman operator is an infinite-dimensional, linear operator
which lifts the nonlinear dynamic data into an infinite-dimensional space where the correlations of dynamic
data behave linearly. However, due to the infinite dimensionality of this operator, an approximation of the
operator is needed for practical purposes. In this work, the Koopman framework is adopted toward nonlinear
dynamical systems in combination with the linear geometric approach for fault detection and isolation.
In order to demonstrate the efficacy of the proposed FDI solution, a mathematical nonlinear dynamical
system, and an experimental three-tank setup are considered. Results show a remarkable performance of the
proposed geometric Koopman-based fault detection and isolation (K-FDI) technique.

INDEX TERMS Model-free fault detection and isolation, Koopman operator, extended dynamic mode
decomposition, geometric approach, reduced-order model.

I. INTRODUCTION
The issues of reliability, operating safety, availability, and
environmental protection concerns inmodern control systems
have become significantly important and receivedmore atten-
tion during recent years since faults may result in irrepara-
ble consequences for the safe and efficient operation of the
system. This gives rise to demands for research on fault
detection and isolation (FDI) approaches. The term ‘‘fault’’
simply means any unexpected deviation of system function
that disturbs the system’s normal operation [1]. Fault detec-
tion evaluates whether a fault has occurred or the system is
operating under a normal condition. On the other hand, fault
isolation methods locate and isolate the cause of the fault [2].
FDI methods can be broadly classified as model-based and
model-free [3].
In the model-based approaches, the analytical model

of the underlying dynamical system is considered for
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designing FDI algorithms [4], [5]. In case of linear mod-
els, model-based techniques basically have been categorized
as observer-based, parity equation, and parameter estima-
tion methods [6]. The observer-based approach itself divides
into deterministic [7] and stochastic [8] settings where the
Luenberger observers and Kalman filters are used for esti-
mating the system’s output from the measurements (or subset
of measurement) for each, respectively. In these approaches,
the weighted output estimation error is used as a residual.
In the parity space approach, the residual signals are gen-
erated based upon consistency checks on system input and
output data over a given time window [9]. The main idea in
the parameter estimation method is an online estimation of
the actual system parameters using the well-known parameter
estimation schemes and comparing them with the reference
model parameters [10].

In addition to the approaches for linear systems, the design
and analysis of FDI schemes for nonlinear systems have
also received more attention in recent years [11]. Unlike
linear systems, these techniques are only applicable to certain
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classes of nonlinearity. These methods are mostly the exten-
sion of linear model-based approaches. In [12], the unknown
input observer was extended to include nonlinearity. Further-
more, an extension of the parity space was developed in [13]
for some classes of non-linear systems and [14] derives the
parity vectors that construct optimized residual generators for
linear and nonlinear systems. Sliding mode observers have
been designed in [15] for non-linear FDI.

Meanwhile, the geometric approach plays an important
role in investigating the problem of fault detection and iso-
lation for a wide range of dynamical systems such as LTI
systems [16], Markovian jump systems [17], [18], LPV sys-
tems [19], linear impulsive systems [20], time-delay sys-
tems [21], multi-dimensional systems [22], and parabolic
PDE systems [23]. Furthermore, a geometric approach for the
problem of nonlinear FDI is proposed in [24]. The geometric
approach provides necessary and sufficient conditions that
allow for designing a residual generator, only sensitive to
certain faults in the system. Generally, the main drawback
of the model-based approaches is that all of the techniques
require a precise mathematical model of the system under
supervision while obtaining an accurate model is very hard
for many practical systems [25].

The difficulty of capturing systems complexities in first
principal models and the ability to collect a huge amount of
data from the system with the help of the smart industries and
digital communication have contributed to the rapid develop-
ment of model-free methods [26]. Since model-free methods
use soft-computing techniques, in some literature, they have
been referred to as soft-computing-basedmethods as well [6].
Model-free methods can be classified as qualitative such
as fuzzy [27] and quantitative like neural network [28] and
evolutionary algorithm [29]. Although artificial intelligence-
based methods are strong in detecting faults, these methods
have two main downsides. First, they do not provide a mean-
ingful representation of the underlying dynamics, which does
not let the analytical analysis of the system. Next, they rely
on classifiers for fault isolation, which requires faulty data
to train the classifiers. On the other hand, although several
strong techniques have been developed for model-based FDI,
they are not helpful in model-free schemes since they need an
analytical model of the plant.

An alternative data-driven approach that provides
meaningful insight into the dynamics of the underlying sys-
tem is through the Koopman operator. This linear, infinite-
dimensional operator describes the temporal evolution of
observable functions. A finite-dimensional approximation of
the Koopman operator has been applied to various control
applications [30]–[34]. In [35], a data-driven Koopman-
based method is proposed for the machinery health mon-
itoring and prediction problem of noisy industrial signals.
Furthermore, the anomaly detection framework based on
using Koopman model forms along with classical linear
systems and control approaches is presented in [36] and used
to detect faults in power grid applications.

In this paper, a novel model-free approach for fault detec-
tion and isolation of nonlinear dynamical systems is pro-
posed using the linear geometric technique by adopting
the Koopman operator perspective toward dynamical sys-
tems. The linear Koopman preditor obtained by a finite-
approximation of the operator serves as an equivalent linear
model of the underlying nonlinear dynamics in the whole
operating region with the same input-output characteristics as
the nonlinear dynamics. Thework in [35] only develops a new
DMD-based approach for dealingwith noisy low dimensional
data along with Koopman mode for fault detection and the
remaining useful life estimation; hence it is different from
the FDI framework developed in this paper. This work is
different from the one in [36], where the current work offers
both detection and isolation of the faults for nonlinear sys-
tems with actuation, but in [36] only the detection scheme
for the autonomous system is adopted. This work differs from
the method in [14], where [14] only focuses on detecting
the fault and is limited to a particular class of nonlinear
systems modeled via Hammerstein models. At the same
time, the proposed Koopman framework considers isolating
the fault in addition to detection and is valid for general
nonlinear dynamics. Unlike model-free methods mentioned
earlier, this method provides a meaningful representation
of the underlying dynamic, capturing its inherent properties
and allowing conducting an analytical analysis and design.
Using the reduced-order modeling techniques, a Koopman-
based reduced order model (K-ROM) [37] of the underlying
system is obtained, and then the FDI geometric approach is
used for fault detection and isolation of nonlinear dynamical
systems. The key features of the proposed FDI framework are
as follows:

1) Although it is possible to treat nonlinear FDI lin-
early using linearization, one needs to estimate the
parameters of the corresponding linearized system
around each operating point, and solutions are only
valid locally [38]. In the presented method, however,
by incorporating the Koopman operator in an FDI
framework, one can use linear model-based techniques
to treat the nonlinear FDI problem linearly, and the
solution is valid globally due to the global character-
istics of the Koopman operator.

2) Model-based FDI approaches are well-developed and
are easy to implement. However, the problem with
these methods is that they require an accurate mathe-
matical model of the underlying dynamics. Since the
proposed method approximates the Koopman opera-
tor from data using an extended DMD (EDMD) [39]
scheme, the method is entirely data-driven; hence no
knowledge about the underlying dynamic is needed.

3) There are statistical and artificial intelligence FDI
methods like PCA-based methods [40], and neural
network-based methods [41], that do not need any
knowledge of the dynamics. These methods do not
provide a meaningful representation of the system and
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do not let analytical analysis. Furthermore, to isolate
the fault, they rely on classifiers. These classifiers
need faulty data in their training phase to perform
proper fault isolation. The proposed method obtains
an interpretable and meaningful representation of the
nonlinear dynamics by estimating theKoopman predic-
tors. This system representation will lead to designing
the observers for fault isolation without needing any
faulty data to train any classifiers. Hence, the pro-
posed method only relies on the system’s healthy data
obtained during the system’s normal operation for FDI.

To summarize, the main contribution of the paper is to
develop a data-driven FDI approach where the structural
properties of the system are captured through the Koopman
approximation. Then, the geometric FDI approach is applied
to K-ROM for performing fault detection and isolation.
In other words, in our proposed FDI solution, the integration
of Koopman theory, dynamicmode decomposition, and linear
geometric framework lead to a data-driven FDI methodology,
which merges the advantages of model-based and model-free
FDI techniques in a unified framework.

The remainder of the paper is organized as follows.
The review of the basic geometric concepts and the geo-
metric approach to the FDI problem are presented in
Section II. Section III introduces the Koopman operator
theory and describes the numerical approximation of that
operator. In Section IV, the design procedure of the pro-
posed Koopman-based linear residual generator for nonlinear
dynamical systems is presented. In Section V, the effec-
tiveness of the proposed K-FDI method is verified by a
numerical example, and a comparative study is investigated.
In Section VI the proposed method is validated by an exper-
imental case study. Finally, the paper ends with a conclusion
in Section VII.

II. GEOMETRIC FAULT DETECTION AND ISOLATION
In this section, a FDI geometric approach is presented which
is indeed the problem of designing a residual signal only
sensitive to certain faults using a geometric perspective.
We refer the reader to [42] for more concrete discussions on
the geometric mathematics. Consider a discrete-time system
written as

x(k + 1) = Ax(k)+ Bu(k)+
M∑
i=1

Lifi(k),

y(k) = Cx(k), (1)

where x ∈ X ⊂ Rn is the state, u ∈ U ⊂ Rq is the control
input, y ∈ Y ⊂ Rl the system output, fi ∈ RMi , i ∈ M , are
the fault modes and Li, i ∈ M , are the fault signatures where
M denotes a finite set {1, 2, . . . ,M}.
Definition 1 (Invariant Subspaces [42]): Consider a lin-

ear map A : X → X , then a subspace S ⊆ X is said to
be an A-invariant if AS ⊆ S.
The null space of a linear map C : X → Y is denoted by

ker C and the largest A-invariant subspace contained in ker C

is then defined as

〈kerC|A〉 1=
n−1⋂
z=0

kerCAz . (2)

Definition 2 (Conditioned Invariant Subspace [42]): A
subspace S ⊆ X is said to be (A,C)-conditioned invariant if
and only if there exists a matrix D such that

(A+ DC)S ⊆ S. (3)

Let D(S) denote the class of all maps D : Y → X
such that (3) holds. One can compute the minimum (A,C)-
conditioned invariant containing L ⊆ X denoted by W∗(L)
using a recursive algorithm whereW∗(L) = lim

z→n
W z is given

by

W z+1
= L+ A(W z

∩ kerC),

W0
= 0. (4)

Definition 3 (Unobservability Subspaces [43]): A sub-
space S ⊆ X , is an unobservability subspace (u.o.s) for
system (1) if

S = 〈kerHC|A+ DC〉, (5)

where H : Y → Y is a measurement mixing.
Let us denote the class of all unobservability subspaces con-
taining L by S(L). Also one can compute the minimum
unobservability subspace containing L ⊆ X denoted by
S∗(L) where S∗(L) = lim

z→n
Sz is given by

Sz+1
= W∗ + (A−1Sz) ∩ kerC,

S0
= X . (6)

Since sensor fault can also be modeled as pseudo-actuator
faults, it is assumed that for sensor faults, A,B and the fault
modes have been modified accordingly [16].

Now by denoting �j ⊆ M, j ∈ N , as the coding set, the
FDI filter problem is the design of an LTI residual generator
that takes u and y as input and generates a set of residual
vectors ri, i ∈ N , such that (I) when no fault is present, all
the generated residuals ri decay asymptotically to zero, and
(II) the j’th component fault only affect the residuals ri for
i ∈ �j, i.e., other residuals ra for a ∈ N −�j, are decoupled
from this fault [16]. For this purpose, a predetermined family
of coding sets should be chosen so that by knowing which of
the ri are zero and which are not, one can be able to identify
the failure uniquely. One of the commonly used coding set is
to use so-called dedicated residual set [1], i.e., �i = {i}, and
N = M .

The fundamental problem of residual generation (FPRG) is
a simplified version of the FDI filter problem. In this problem,
the system given by (1) is considered with only two failure
events present, i.e., M = 2, and the goal is to design a residual
generator sensitive to the first fault and not to the second one.
The solvability condition of FPRG is stated in the following
theorem.
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Lemma 1 [16]: FPRG has a solution if and only if
S∗(L2) ∩ L1 = 0 where S∗(L2) is the infimal element of
S(L2) and Li = Im(Li).

This can be easily extended to the case whereM > 2, also
known as extended FPRG [16].

III. KOOPMAN BASED IDENTIFICATION FOR ACTUATED
SYSTEM
A. KOOPMAN OPERATOR THEORY
In this section, to provide some background for the approach,
the Koopman operator theory is briefly reviewed for
autonomous discrete-time nonlinear systems with no actua-
tion. Then, the generalization of the Koopman operator to the
systems with exogenous inputs is considered.

1) KOOPMAN OPERATOR-NO INPUT
Consider a discrete-time nonlinear system of the form

x(k + 1) = f (x(k)), (7)

where the state x ∈ X ⊂ Rn, and f : X → X . Next, a set of
output functions can be defined as g : X → R which will be
often referred to as observable functions. Now, the Koopman
operator is defined as K : F → F where F is a Banach
space of observable functions g : X → R associated with
the mapping function f : X → X as

Kg(x) 1= g(f (x)). (8)

Note that the space of observable functions F should be
closed under the action of the operator K. Having a linear
operator K since

K(c1g1 + c2g2) = c1Kg1 + c2Kg2, (9)

the eigen-value problem for that can be written as

Kϕj(x) = λjϕj(x), j = 1, 2, . . . ,∞. (10)

By taking the Koopman eigen-functions as a basis for the
space F , one can expand each of the observable functions on
this basis as

gi(x) =
∞∑
j=1

vijϕj(x). (11)

By considering vector-valued

g(x) =
[
g1(x) g2(x) · · · gp(x)

]T
, (12)

we can similarly expand the vector of observable functions as

g(x) =
∞∑
j=1

ϕj(x)vj, (13)

where the coefficients vj are the Koopman modes related to g.
Although Koopman is a linear operator but since it acts on
functions, this operator is infinite-dimensional which makes
it hard for representation. The Koopman invariant subspace

as introduced in [44] is a subspace given by the span of the
set {ψ}Mi=1 if all functions g in this subspace, i.e.,

g = α1ψ1 + α2ψ2 + . . .+ αpψp, (14)

remain in this subspace after being acted by the operator K:

Kg = β1ψ1 + β2ψ2 + . . .+ βpψp. (15)

Koopman eigen-functions will provide us such invariant sub-
space, and by restricting the operator to it, one can obtain a
finite-dimensional representation of the operator K.

2) KOOPMAN OPERATOR-WITH INPUT
Consider a discrete-time nonlinear system with inputs

x(k + 1) = f (x(k), u(k)), (16)

where the state x ∈ X , the control u ∈ U , and the vector field
f : X × U → X . As in [39], an extended state space can be
defined as the product of the space of original states and the
space of all control sequences. Then, consider the Koopman
operator associated to (16) as the Koopman operator evolving
the extended state variable defined as

Xe
1
=

[
x
u

]
, (17)

where u 1
= (u(i))∞i=0 is the sequence with u(i) ∈ U , R(U) is

the space of all sequences u, and Xe ∈ X ×R(U). Then, the
dynamics of Xe is described as

Xe(k + 1) = fe(Xe(k))
1
=

[
f (x(k),u(0))

Slu

]
, (18)

where u(0) is the first element of the sequence u, and Sl is
the left shift operator:

(Slu)(i) = u(i+ 1). (19)

The Koopman operator K : H → H associated to (18) is
defined by

K8(Xe)
1
= 8(fe(Xe)), (20)

where 8 : X × R(U) → R is the extended observable
function andH is the extended observable function space.

B. NUMERICAL APPROXIMATION OF KOOPMAN
OPERATOR
Since the Koopman operator is an infinite dimensional opera-
tor, in practice, obtaining a finite dimensional approximation
of this operator is necessary. Assume that we can measure
the full state of the system. We collect the snapshots of data
x(k), k = 1, . . . ,m+1, from the dynamical system and form
the matrices X and X ′ as

X =
[
x(1) x(2) . . . x(m)

]
, (21)

X ′ =
[
x(2) x(3) . . . x(m+ 1)

]
, (22)

where X and X ′ are both in Rn×m. Now by using DMD
algorithm [45], one can obtain the best fit linear operator
in the least square sense as A = X ′X† where † denotes the
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FIGURE 1. This figure presents an overview of the proposed Koopman FDI scheme. This framework mainly consists of two
parts: 1. Koopman Model development, and 2. FDI observer design. To develop a model from system measurements, one
needs to collect a rich dataset. Then the analogous Koopman operator of the underlying dynamics can be approximated using
numerical methods such as EDMD. A PCA model reduction scheme is adopted to reduce the dimensionality of the
approximated Koopman model, resulting in a Koopman-based reduced-order predictor. In the next phase, the residual
generators are designed based on the obtained K-ROM using the geometric FDI approach.

Moore-Penrose pseudoinverse of a matrix. In [46], the rela-
tion between Koopman operator and DMD has been pointed
out and it is shown that under the condition of having a
sufficiently large set of observable functions and rich enough
measurement data, DMD can be used in order to approximate
a finite dimensional form of the eigen-vector and eigen-
value of the Koopman operator. By considering the set of
observable functions gi : X → R, i = 1, . . . , p, and
vector-valued g(x) =

[
g1(x) g2(x) · · · gp(x)

]T
, one can use

EDMDwhich is the generalized form of the DMD and allows
for the approximation of the operator K using arbitrary basis
functions [47]. In other words, the regression is performed on
an augmented vector which is containing nonlinear observ-
able functions and this is indeed the key difference between
the standard DMD and EDMD algorithms.

For the systems containing inputs, one can construct a new
measurement snapshot matrix U for inputs having the form

U =
[
u(1) u(2) . . . u(m)

]
, (23)

where U ∈ Rq×m. Using DMDc method [48] along with the
modified version of the Koopman operator introduced earlier,
it is possible to decouple the effect of the actuation and obtain
an approximated equivalent linear system associated with the
nonlinear system (16) having the form

z(k + 1) ≈ Az(k)+ Bu(k),

y(k) ≈ Cz(k), (24)

where z(k) , g(x(k)). Due to the high dimensionality of
the system matrix, it is preferred to use a reduced order
model (ROM) for designing the residual generator. One of

the method to reduce the dimensionality of the matrices is
the use of their projection on their POD modes instead of
using the actual high dimensional matrices for evolution of
our measurements [49]. The reduced order system will be
defined on POD coordinate system as below

z̃(k + 1) ≈ Ãz̃(k)+ B̃u(k), (25)

where Ã and B̃ are the reduced-order system and the control
matrices, respectively. Assuming only to project our data on
first r̃ POD modes, we get Ã ∈ Rr̃×r̃ and B̃ ∈ Rr̃×q. Since it
is computationally much easier to evolve the lifted dynamic
on this low dimensional state, it is preferred to evolve the
measurements in this space and then project them back into
the high dimensional space to get the actual behavior of the
system.

IV. DESIGN PROCEDURE
In this section, Koopman operator theory-based perspective
toward nonlinear systems is used to obtain an affine linear
model (also referred to as linear predictor) purely from data
in higher dimensions which provides a global picture of the
nonlinear system’s behavior. Next, based on the obtained
linear model, a residual generator is designed using the geo-
metric method introduced in Section II to both detect and
isolate the fault that occurred in the system. Contrary to local
linearization methods, it is only needed to evaluate our model
once, and it is valid globally (or at least in a large subset
of the state space). It should also be noted that by a good
choice of observable functions, the complete evolution of the
underlying system on a lifted state space of higher dimension
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(feature space) can be described using a linear operator. This
paves the way for applying the methods developed for linear
systems to nonlinear systems. Fig 1 depict a summary of the
proposed Koopman FDI scheme.

A. MODEL DEVELOPMENT
For the construction of the model, we need to stack up some
measurements and build data matrices X , X ′, and U defined
in (21), (22), (23). By having good knowledge about the sys-
tem’s nonlinearity, one can choose the observable functions
to lift the dynamics to a higher dimension. The lifted data
matrices Z and Z ′ can be constructed from (21) and (22) as

Z = [z(1), z(2), . . . , z(m)],

Z ′ = [z(2), z(3), . . . , z(m+ 1)]. (26)

The matrices A and B of the linear model given by (24) can
be obtained using

min
G
‖ Z ′ − G� ‖F , (27)

where G = [A,B], � = [ZT ,UT ]T , and ‖ · ‖F denotes
the Frobenius norm of a matrix [48]. Now by considering
the projection of the A and B on the first r̃ POD modes, the
reduced-order linear model of the form (25) can be obtained.
The output matrix C can be computed as the best linear
estimate of X given Z , in a least-square sense by minimizing

min
C
‖ X−CZ ‖F . (28)

B. RESIDUAL DESIGN
The key part in designing the residual generator is to place the
range of the fault signature that needs to be decoupled, i.e., the
fault signature that the residual to be insensitive to, i.e., L2,
in the unobservability subspace of r1, and then factor out the
unobservable subspace to achieve fault decoupling.

According to [16], by letting the S∗(L2) to be an unobserv-
ability subspace satisfying Theorem 1, then there exist maps
D0 ∈ D(S∗) and H such that S∗ =< kerHC|A + D0C >,
where H can be obtained using KerHC = S∗+ kerC . LetM
be a unique solution ofMP = HC , A0 = (A+D0C : X /S∗)
where A0 is the include map of A+D0C to the quotient space
X /S∗ and P : X → X /S∗ is the canonical projection satis-
fying P(A+ D0C) = A0P. By construction, the pair (M ,A0)
is observable, hence there exists a D1 such that σ (F) = 3,
where F = A0 + D1M , 3 is an arbitrary symmetric set, and
σ (F) denotes the spectrum of F . With P−r denoting the right
inverse of P, let D = D0 + P−rD1H , E = PD, and G = PB.
The following detection filter generates the desired residual
which is only sensitive to the fault signal f1 and is decoupled
from the fault signal f2,

w(k + 1) = Fw(k)− Eỹ(k)+ Gu(k),

r1(k) = Mw(k)− Hỹ(k). (29)

Similarly, a detection filter can be designed for detecting f2.
Remark 1: The diagnosis accuracy of the generated resid-

uals relies on the construction of the Koopman predictor.

It is assumed that the data used to form the Koopman pre-
dictor is rich, and the bases are appropriately chosen. If the
constructed predictor has high accuracy, then the generated
residuals can detect and isolate the fault accurately, which
leads to a low false alarm rate.

FIGURE 2. Normalized singular value spectrum of the matrix �. The
first 15 modes are plotted in red to show the truncation order.

FIGURE 3. Prediction comparison between the linear reduced order
model and true dynamic in case of r̃ = 15.

V. SIMULATION AND RESULTS
A. NUMERICAL EXAMPLE
In this section, the effectiveness of the proposed K-FDI
method for nonlinear systems is demonstrated. For this pur-
pose, consider the nonlinear system of the form

ẋ1(t) = −10x2(t)− x1(t)+ u1(t),

ẋ2(t) = −x32 (t)+ 10x1(t)+ u2(t), (30)

and the system is discretized by sampling time of Ts = 0.01
using Runge-Kutta four method. In the data collection phase,
300 trajectories are simulated each for 10 seconds where the
initial conditions and the inputs were chosen randomly with
the uniform distribution on the unit box [−1, 1]2 and over
[1, 1], respectively. The observable functions gi are chosen as
the state itself (i.e., g1 and g2 are x1 and x2, respectively), and
with 100 thin plate radial basis functions with centers selected
to be uniformly distributed on the unit box. A thin plate radial
basis function at center c0 is defined as

‖x − c0‖2 log(‖x − c0‖). (31)

Since the proper orthogonal decomposition is an Singu-
lar Value Decomposition (SVD)-based method, choosing the
order of truncation is of great importance. Here the simple
hard thresholding is used, which is based on retaining over

14840 VOLUME 10, 2022



M. Bakhtiaridoust et al.: Model-Free Geometric FDI for Nonlinear Systems Using Koopman Operator

the 98% of the variance in data, which leads to r̃ = 15 to
obtain a reduced-order model. Fig 2 shows the singular value
spectrum resulting from the SVD of the matrix�. Moreover,
Table 1 indicates the prediction accuracy of each ROM using
root mean square error (RMSE) as a function of truncation
order. It can be seen from Table 1 that the average error
between the nonlinear model and the equivalent Koopman
model can be reduced by choosing higher truncation order.

TABLE 1. Model validation of various Koopman reduced order model
(K-ROM) using average prediction RMSE over 100 randomly chosen initial
conditions as a function of truncation order.

FIGURE 4. (a) The input and fault signals, (b) Generated residuals for
different truncation order r̃ .

As it is shown in Fig 3, the reduced order model perfectly
follows the true dynamic. By applying the inputs u1, u2 and
fault modes f1 and f2 as shown in Fig. 4a, it can be seen that
r1 and r2 in Fig. 4b with r̃ = 15 are only sensitive to changes
of the fault modes m1 and m2 while they are insensitive
to other system inputs. Also Fig. 4b shows that despite the
fact that by reducing the system order the average RMSE
increases, one can still detect and isolate both faults for r̃ ≥ 6.

B. COMPARATIVE STUDY
Since the linearization of nonlinear dynamics and the use
of linear FDI techniques is by far the most common and
practical approach for dealing with nonlinearities, and both
Koopman-based methods and linearization-based analysis
use linear techniques to solve the problem linearly; we choose
to compare a data-driven linearized-based FDI method and
the proposed Koopman-based FDI and illustrated the versatil-
ity of the proposed Koopman approach against the linearized-
based FDI. As a comparative study, the method in [38], which
performs FDI by approximating Markov parameters of the

FIGURE 5. The grid showing cell centers and test operating
points p1 and p2.

FIGURE 6. Comparison results.

system in each operating point, is used for the fault detection
and isolation of the system introduced in (30). To this end, the
state space is divided by 0.1×0.1 cells as it can be seen from
Fig. 5 and then, a bank of residuals is designed for the center
of each cell as indicated in Fig 5. In order to compare this
approach with our proposed approach, consider two system
operating points p1 =

[
0.25 0.25

]T and p2 =
[
0.26 0.24

]T
which both are located in one cell. An additive fault scenario
is considered where a fault with amplitude of 2 is added to
u1(t) and u2(t) at t1 = 15s and t2 = 20s, respectively. Fig. 6
shows that the residuals generated using the approach in [38]
keep the general form by changing the operating point from
p1 to p2 while a DC-gain is added to the residual generated
at the operating point. Consequently, detection and isolation
of the fault can not be properly done based on the threshold
for p2. This indeed indicates that a slight deviation from the
operating points considered for the design of residual leads
to false alarms. In this example, nine banks of filters were
used to cover a 0.3 × 0.3 box in the state space and were
still unable to perform FDI. The cells should be smaller to
improve the method’s accuracy, resulting in far more com-
putational costs. On the contrary, residuals designed using
the geometric Koopman FDI method can be applied for all
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points of the considered region due to the global characteristic
of the Koopman operator. In other words, The geometric
Koopman FDI only needs one bank of filters for detection
and isolation of the faults in the entire state space, which is
far more efficient computationally.

VI. EXPERIMENTAL CASE STUDY
To illustrate the efficacy of the proposed approach, a labo-
ratory setup of a three-tank system is considered as shown
in Fig. 7a and Fig. 7b. In this study, it is assumed that the
underlying dynamics are not known. Yet, it is useful to give
the state equation of the system as

A
dh1
dt
= u1 − q13 − q10,

A
dh2
dt
= u2 + q32 − q2 − q20,

A
dh3
dt
= q13 − q30 − q32, (32)

where

q13 = az13Snsgn(h1 − h3)
√
2g|h1 − h3|,

q10 = az10Sl
√
2gh1,

q32 = az32Snsgn(h3 − h2)
√
2g|h3 − h2|,

q30 = az30Sl
√
2gh3,

q2 = az2Sn
√
2gh2,

q20 = az20Sl
√
2gh2, (33)

and sgn(·) denotes the sign operator.

TABLE 2. Parameter values and descriptions for the three-tank system
TTS20.

The information about equations parameter and con-
stants of the TTS20 are given in Table 2. In data collec-
tion phase, amplitude and duration of the input signals has
been randomly changing within [0, umax/1.35], [0, umax] and
[τmin, τmax] where τmin and τmax are minimum and maximum
input duration limits and chosen to be τmin = 1s and τmax =

170s by trial and error to excite all modes of the system
and umax = 10−4m3/s. The sampling rate is selected to be
Ts = 1s. Note that the upper limit of the first input is reduced
to prevent overflow of the first tank. In order to filter out
high-frequency noise components, the measured height data

(hi, i = 1, 2, 3) has been passed through a low pass filter
given by

Q(z) =
1

400z+ 1
. (34)

The observable functions gi are chosen as the state itself
with 50 thin plate radial basis functions with centers selected
to be uniformly distributed in the unit cube. For the model
validation, an open-loop scenario is considered where u1
and u2 are a repeating stair sequence with amplitude of
[0, umax/2] and with switching time of 1700s and a chirp
input with initial frequency of 10−6 and target frequency of
3×10−3 with amplitude of umax/4 and mean of 0.55×10−4,
respectively. Fig. 8 shows that by applying u1 and u2, the
obtained reduced order model with r̃ = 30 perfectly follows
the true dynamic of the three-tank system. Table 3 indicates
prediction accuracy of each K-ROMwith different truncation
orders. In this study, two scenarios for the additive fault case,
two scenarios for the leakage fault case, and two scenarios for
the case of loss of effectiveness actuator fault are analyzed
for a K-ROM with r̃ = 30. It also should be noted that all
faults are applied when the system has reached its steady
state. To obtain steady-state tracking, two discrete-time PI
controllers are designed and implemented. The values of PI
controller gains are as follows:KP1 = 0.002,KI1 = 3×10−9,
KP2 = 0.01, and KI2 = 8.2× 10−6.

FIGURE 7. (a) Three-tank system TTS20, (b) The three-tank system TTS20
schematic.

Based on the identified K-ROM, the residuals are obtained
using the geometric FDI. Since each observer produces two
residuals with a non-zero offset, first, the non-zero offset of
residuals is compensated by subtracting the obtained offset
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TABLE 3. Model validation of various Koopman reduced order models
(K-ROMs) using prediction RMSE with zero initial conditions as a function
of truncation order.

FIGURE 8. Prediction comparison between the linear reduced order
model and three-tank system true dynamic in case of r̃ = 30.

during the system’s normal operation. Then norm-1 of the
acquired signal is used as the residual evaluation signal.

1) ADDITIVE FAULT
In the additive fault scenario, two different cases have been
tested.
CASE 1. An amount of umax/5 is added to u1 during 5143s

to 12000s and to u2 during 9473s to 13846s.
CASE 2. An amount of umax/8 is added to u1 during 3086s

to 7200s and to u2 during 5682s to 8307s.
An example of additive fault can be the case of having a

biased regulator/controller or a biased pump in the three-tank
setup.

2) LOSS OF EFFECTIVENESS ACTUATOR FAULT (LOE)
Two different cases are considered for loss of effectiveness
actuator faults.
CASE 1. In this scenario, gains of pump1 and pump2 drops

to 50% at t1 = 4500s and t2 = 8100s, respectively.
CASE 2. In this scenario, gains of pump1 and pump2 drops

to 80% at t1 = 4500s and t2 = 7200s, respectively.
This type of faults can happen typically resulting from semi

burnt windings in pumps.

3) LEAKAGE FAULT
Leakage fault for a tank is also considered one of the com-
mon faults occurring in tank systems by opening the leakage
valve of the corresponding tank. Two different cases are then
considered as follows:
CASE 1. Leakage faults are added to Tank1 and Tank2 by

opening the leakage valve of each corresponding tank for
50% at t1 = 4500s and t2 = 7200s, respectively.
CASE 2. Leakage faults are added to Tank1 and Tank2 by

opening the leakage valve of each tank for 20% at t1 = 4500s
and t2 = 8200s, respectively.

FIGURE 9. The performance of the residuals in face of the additive fault -
(a) case 1, (b) case 2.

FIGURE 10. The performance of the residuals in face of the loss of
effectiveness actuator fault- (a) case 1, (b) case 2.

The performance of the residuals for additive fault, loss
effectiveness actuator fault, and leakage fault are presented
in Figures 9 to 11, respectively. The results show that vari-
ous faults can be effectively detected and isolated using the
Koopman-based geometric FDI method. Table 4 shows the
diagnosis time of the proposedmethod in each scenario. Since
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FIGURE 11. The performance of the residuals in face of the leakage
fault - (a) case 1, (b) case 2.

the Three-tank benchmark has a slow dynamic, the amount of
time that it takes to perform FDI by each residual, as shown in
Table 4, is reasonable. The sensitivity of each residual can be
increased by proper pole placement, which is useful in more
severe fault scenarios.

TABLE 4. Diagnosis time of the geometric K-FDI.

It should be emphasized that none of the existing model-
free FDI approaches in the literature can achieve the above
performance using only healthy data as the data-driven
approaches such as neural network, PCA, etc., require to have
faulty data for fault isolation. In contrast, model identification
methods such as [38] require obtaining the linearized model
of the system at different operating points. As shown in
the previous example, a slight deviation from these oper-
ating points leads to false alarms. However, the proposed
Koopman-based FDI does not have any of the above weak-
nesses and can be utilized for fault detection and isolation
using the available healthy data from the system.

VII. CONCLUSION
This paper presents a data-driven method for fault detection
and isolation of the nonlinear dynamical systems by integrat-
ing Koopman-based system identification within a linear geo-
metric FDI framework. The key idea is to use the Koopman
operator for obtaining a meaningful, linear representation of
the underlying (nonlinear) dynamical system, which is valid
globally and captures the inherent properties of the system.
Afinite-dimensional approximation of theKoopman operator
yields a linear model, which uses model-based analytical FDI
techniques. Specifically, we proposed using a reduced order

form of the Koopman-based linear model in combination
with the geometric approach to the FDI problem of nonlinear
systems. Case study results are presented to illustrate the
effectiveness of the proposed method.
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