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ABSTRACT The control of a flexible beam using ionic polymer metal composites (IPMCs) is investigated
in this paper. The mechanical flexible dynamics are modelled as a Timoshenko beam. The electric dynamics
of the IPMCs are considered in the model. The port-Hamiltonian framework is used to propose an
interconnected control model of themechanical flexible beam and IPMC actuator. Furthermore, a passive and
Hamiltonian structure-preserving linear quadratic Gaussian (LQG) controller is used to achieve the desired
configuration of the system, and the asymptotic stability of the closed-loop system is shown using damping
injection. An experimental setup is built using a flexible beam actuated by two IPMC patches to validate the
proposed model and show the performance of the proposed control law.

INDEX TERMS Port-Hamiltonian system, IPMC, flexible beam, passivity-based LQG control.

I. INTRODUCTION
The port-Hamiltonian system (PHS) formulation and
passivity-based control have been widely used and demon-
strated to be effective for the modeling, analysis and control
of nonlinear systems [1], [2]. The classical port Hamilto-
nian system was first introduced for the finite-dimensional
system described by ordinary differential equations [3] with
application to mechanical, electrical and chemical systems
using port energy variables. Later, the authors in [4] discussed
the infinite-dimensional port-Hamiltonian system with a
new geometric structure called Stokes–Dirac structures. The
well-posedness of the infinite-dimensional PHS was investi-
gated in [5], which shows that the passive propriety is very
helpful to prove the well-posedness of the PHS.

It is of great interest to use the PHS formalism for complex
multi-physics systems. Under the PHS framework, physical
natures are considered: energy conservation, dissipation and
energy exchanges between system components. The PHS
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enables the direct and clear interconnection of different com-
ponents of the complex system via energy ports. Furthermore,
when associated with structure-preserving model reduction
and passivity-based control techniques, the port-Hamiltonian
framework with physical interpretation is of great interest.
Many studies have been dedicated to passivity-based control
for multi-physics physical systems [6]–[10].

Ionic polymer-metal composites (IPMCs) are widely used
because of their core advantages: ease of fabrication, fast
response, large strain, and low actuation voltage [11]. Thus,
IPMCs have been increasingly used in various domains in
recent decades. Of particular interest is the application of
IPMCs in medical endoscopes. The use of smart material pro-
vides additional degrees of freedom, which contribute to the
avoidance of irreversible damage and alleviation of suffering.
In [12], a micro-endoscope actuated by IPMCs to drive the
bending movement was proposed for endonasal skull base
surgery.

The proposed IPMC actuated endoscope system is com-
posed of two components: the electric dynamics of IPMCs
described by an ordinary differential equation and the
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mechanical flexible beam described by a set of par-
tial differential equations. Different physical properties of
IPMC-actuated endoscopes lead to a complex multi-physical
system problem. Port-Hamiltonian modeling of an IPMC
patch actuator was proposed in [10]. The mechanical struc-
ture is a polyethylene polytube, modelled as a flexible beam
using Timoshenko beam theory in a first approach. The com-
plexity of the multi-physics system motivates the use of the
port-Hamiltonian framework. Using the PHS formulation, all
physical properties of the complex system, such as the physi-
cal nature of IPMC actuators and the mechanical flexibility of
the beam, are considered. These components are considered
interconnected by the PHS formalism via the energy ports.

Many studies have been dedicated to the control of
IPMC actuators and flexible structures. The reader can find
some classical control analysis and control design meth-
ods for flexible structures in [13], [14]. A reduced-order
linear-quadratic-Gaussian (LQG) controller was proposed
in [15] using an early lumping approach. However, the
closed-loop stability was not investigated, and only numerical
results were obtained. Of particular interest are the results
in [16], where a reduced-order LQG control design tech-
nique for high-dimensional port-Hamiltonian systems was
proposed. The results are based on the LQG controller [17],
[18]; then, an equivalent port-Hamiltonian formulation and
structure-preserving model reduction were proposed. In [19],
these results were generalized to the infinite-dimensional
case. In [20], a nonlinear lumped parameter system of a flexi-
ble structure using the PHS framework of a class of 1-D IPMC
actuated flexible structures was proposed. In that work, a state
feedback control lawwith a state observer for practical imple-
mentation is proposed. However, with the increase in number
of links, the proposed model becomes very complex and
challenging to control design. To address these constraints,
a classical passivity-based interconnection damping assign-
ment passivity-based control (IDA-PBC) method is proposed
based on a distributed parameter model in [21]. However,
the early lumped approach is considered in the previous
work, i.e., and the control design is based on the discretized
model of the distributed parameter system. The closed-loop
stability has not been discussedwhen the designed discretized
state feedback control law is implemented in the original
distributed parameter system.

Unlike previous works, the proposed paper designs a
passivity-based optimal LQG control of the ODE-PDE cou-
pled system under the port Hamiltonian framework. The
PDE is used to address the structure’s flexible nature, and
the ODEs are used to describe the main dynamics of the
IPMC actuators. By choosing the weighting operators in
a special manner, the designed optimal LQG controller is
passive and has a Hamiltonian structure, which can guarantee
the asymptotic stability of the closed-loop system even when
we apply the reduced-order optimal controller on the original
PDE-ODE system. This stability issue is not considered in
previous works [15], [22]. Furthermore, the effectiveness of
the proposed control is validated by experimental results.

The control law is implemented on the experimental setup
to validate the effectiveness of the proposed method and
achieve the desired performance of the flexible structure in
both mono-actuated and multi-actuated cases. Preliminary
results were reported in [22], where a passive LQG controller
was proposed for a mono-IPMC actuated flexible structure.
Only simulation results were presented.

In Section II, a PDE-ODE interconnected model in the
port-Hamiltonian framework of a one-dimensional IPMC
actuated flexible structure is presented. In Section III, an LQG
and damping injection-based reduced-order controller is pro-
posed to improve the dynamics of the flexible beam sys-
tem. The closed-loop stability analysis is also illustrated in
the same Section III. An experimental setup is applied to
validate the proposed model and the proposed control law
in Section IV. Some conclusions and perspectives of future
works are given in SectionV.

II. IPMC ACTUATED FLEXIBLE BEAM
We modelled the IPMC actuated endoscope using the PHS
framework. The considered flexible endoscope is on the 1-D
spatial coordinate z from a to b, as depicted in Fig 1. The
IPMC actuator patches are attached to the endoscope and
subsequently actuated to control its configuration.

FIGURE 1. Flexible structure actuated by IPMC.

A. FLEXIBLE BEAM WITH DISTRIBUTED CONTROL
Endoscopes are used for high-frequency scanning tasks in
medical diagnosis. IPMC actuators are attached to the struc-
ture, which leads to a composite material structure for the
overall system. When a high-frequency mode is excited
and the composite material structure is considered, the
shear deformation cannot be neglected [23]–[25]. Hence, the
mechanical behaviour of the endoscope is described by a
distributed Timoshenko beam model (PDE). An actual endo-
scope may undergo large deflection. However, in the first
instance, we focus on small deformations and control design
and keep themodeling as simple as possible. An experimental
setup is used to validate the results, for which a Timoshenko
beam model is sufficient to handle the primary dynamical
behaviour. Themathematical modeling for beams undergoing
large deflections can be found in [26] and its PHS formulation
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in [27]. The extension of the linear beam model to the large
deflection case using the port Hamiltonian formulation is
direct.

The flexible beam is defined on the 1-D spatial domain
z ∈ [a, b] and driven by the distributed bending moment,
denoted by ud .This bending moment is generated by the
IPMC patches when we apply the applied voltage. We con-
sider the Timoshenko beam model [28], [29] with distributed
input and power conjugate output yd under the port Hamilto-
nian framework to be described as:{

ẋ = (J −R)Lx + Bud
yd = B∗Lx

(1)

where J =
(
P1 ∂∂z + P0

)
is a skew symmetric differential

operator on the state space X = L2([a, b];R4)1 and

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, P0 =


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


(2)

The state variable vector of the system x = [x1, x2, x3, x4]T

∈ X is defined as follows: x1 = ∂w
∂z (z, t)− φ(z, t) is the shear

strain, x2 = ρ(z) ∂w∂t (z, t) is the transverse momentum distri-
bution, ∂φ

∂z (z, t) is the angular strain, and x4 = Iρ
∂φ
∂t (z, t) is

defined as the angular momentum distribution for z ∈ (a, b),
t ≥ 0 with transverse displacement w(z, t) and rotation angle
of the beam φ(z, t). We consider the total mechanical energy
of the flexible beam as a Hamiltonian, which is defined by
the energy variables:

Hb(x) =
1
2

∫ b

a
(Kx21 +

1
ρ
x22 + EIx

2
3 +

1
Iρ
x24 )dz

=
1
2

∫ b

a
x(z)T (Lx)(z)dz. (3)

The energy of the flexible beam can also be presented in the
norm form as Hb(x) = 1

2 ‖ x ‖
2
L with the operator L, which

is defined as

L = diag
[
K

1
ρ

EI
1
Iρ

]
.

The coefficients ρ and Iρ are the mass density and mass
moment of area, respectively. E , K and I are the Young’s
modulus, shear modulus, and moment of area, respectively.

Let us define the dissipation operator as:

R =


0 0 0 0
0 Rt 0 0
0 0 0 0
0 0 0 Rr


where constants Rt and Rr represent the translational and
angular viscous fractions, respectively.

An important advantage of the port Hamiltonian formula-
tion (1) is that one can prove the existence of a solution only
by a proper parametrization of the co-energy variableLx(z, t)

1L2([a, b];Rn denotes the vector space of 2 integrable functions.

at the boundary a and b [5] and a simplematrix condition. The
boundary port variables can be defined by[

f∂
e∂

]
=

1
√
2

[
P1 −P1
I I

] [
Lx(b, t)
Lx(a, t)

]
(4)

From [5, Theorem 4.1], we can choose the boundary input as

u = WB

[
f∂
e∂

]
(5)

where WB is full rank and WB6W T
B ≥ 0 with 6 =

[
0 I
I 0

]
,

then the operator Ax = (J −R)Lx with domain

D (A) =
{
Lx ∈ H1

(
[a, b] ;R4

) ∣∣∣∣[f∂e∂
]
= KerWB

}
generates a contraction semigroup on X .
In the following, we consider the boundary condition

according to Fig. 1. The flexible beam is clamped at one side
(a) and free at the other side (b). Thus, at the fixed side,
the velocity and angular velocity are zero; at the free side,
the force and moment are zero. The boundary conditions are
defined as the boundary input:

ub =
[
v(a) w(a) F(b) T (b)

]T
. (6)

where the matrixWB is chosen as:

WB =
1
√
2


−1 0 0 0 1 0 0 0
0 0 −1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1

 (7)

which satisfies the conditionWB6W T
B ≥ 0.

According to the boundary conditions, the power conjugate
outputs at the boundary are the reaction forces F(a) and T (a)
at the fixed side and the velocity and angular velocity at the
free side.

yb =
[
F(a) T (a) −v(b) −w(b)

]T
. (8)

The distributed control of the beam is defined as follows.
The input mapping over the spatial domain is denoted bt B :
Ci
7→ X ; ud ∈ Ci is the distributed moment density applied

to the beam,2 and yd ∈ Ci is the distributed angular velocity,
which is the power-conjugated output of ud . Each distributed
input is defined over the i−th interval on the spatial space
Ibi = [αi, βi] and denoted by operator bi(z)udi(t), where
bi(z) = 1 if z ∈ Ibi and bi(z) = 0 elsewhere and the index
i ∈ {1, 2, · · · ,m} with m actuators attached to the beam. The
mean angular velocity is the output over the same intervals
fdi = ydi =

∫ b
a bi(z)

1
Iρ
x4dz. Hence, we define the distributed

input of the flexible beam as:

Bud =


0
0
0
b(z)

 ud (t) (9)

where B : Cm
7→ X , b(z) = [b1(z), · · · , bm(z)] and

ud (z) = [ud1(z),· · ·, udm(z)]T . We define its power conjugate

2Ci is an i-dimensional complex space.
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FIGURE 2. Physical principle of the IPMC actuator and its simplified
electrical model.

variable as the output variable as yd = B∗Lx. Then,
the energy balance of the system can be computed as:
∂Hb
∂t ≤ y

T
d ud .

B. IPMC ACTUATOR MODEL
The dynamics of IPMC actuators can be separated into three
different physical phenomena: the electric part, the diffusion
phenomena and the mechanical deformation dynamics. The
first part comes from the electric distribution over the double
electric layers between the electrodes. The diffusion phenom-
ena are the water molecules and caution flux due to different
potentials caused by the applied voltage on the double electric
layers. The last dynamics of the actuators are the mechanical
contributions due to their flexible structure. The main phys-
ical deformation induced by the applied voltage is mainly
caused by the diffusion of cation flux between the double
electrode layers (see Fig 2) [11].

In this work, we assume that the IPMC actuator and
beam are perfectly interconnected. Hence, the mechanical
contribution of the IPMC patch is assumed to be a part of
the Timoshenko beam model. The IPMC electric dynamics
are modelled by a simplified lumped RLC control-oriented
mode [30]. The torque generated by the IPMC patch is pro-
portional to the applied voltage.

The port-Hamiltonian formulation of the equivalent elec-
trical model is given by:


ẋa =

[
−R1 −Im
Im −R2

]
∂Ha
∂xa
+

[
Im
0

]
u(t)+

[
0
Im

]
ua

y =
[
Im 0

] ∂Ha
∂xa

, ya =
[
0 Im

] ∂Ha
∂xa

(10)

with the state variables vector xa =
[
ϕ

Q

]T
where ϕ is the

electric flux and Q is the charge of the capacitor for each
IPMC equivalent electrical model:

ϕ = [ϕ1 · · ·ϕm]T ∈ Rm,

Q = [Q1 · · ·Qm]T ∈ Rm.

We define the dissipation matrices R1 ∈ Rm×m and R2 ∈
Rm×m of the IPMC actuator with resistances r1i and r2i of

each equivalent IPMC model:

R1 =


r11 0 · · · 0
0 r12 · · · 0
...

...
. . .

...

0 0 · · · r1m

, (11)

R2 =


1
r21

0 · · · 0
0 1

r22
· · · 0

...
...

. . .
...

0 0 · · ·
1
r2m

. (12)

The Hamiltonian of the m IPMC actuators is their electric
energy defined as:

Ha =
1
2
Q2

C
+

1
2
ϕ2

L
(13)

with capacitance matrix C ∈ Rm and inductance matrix
L ∈ Rm:

C =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cm

, (14)

L =


L1 0 · · · 0
0 L2 · · · 0
...

...
. . .

...

0 0 · · · Lm

. (15)

The input variable u is the applied voltage on two elec-
trodes of the actuators, and ua is the current input, which
is generated from the mechanical deflection of the actuator
structure. From the power conjugate viewpoint, their associ-
ated outputs are the current y = ∂Ha

∂ϕ
over inductance L and

voltage ya =
∂Ha
∂Q of capacitor C .

According to the state variables and input-output defini-
tions, the interconnection relation between the flexible beam
dynamics and the IPMC patch dynamics is defined as:

[
ud
ua

]
=

[
0 +k
−k 0

] [
yd
ya

]
, k =


k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...

0 0 · · · km


The bendingmoments generated by the IPMC actuators are

proportional to voltage ya with constant coefficients ki. Since
the interconnection is power conservative, the applied current
ua on the capacitor is caused by flexible structure movement.
Considering the IPMC actuator equation (10) and flexible

equation (1), using the power preserving interconnections, the
total system is defined by:

ẋ =
[
J −R Bk
−kTB∗ J − R

]
︸ ︷︷ ︸

J−R

∂H
∂x
+

 0
Im
0

 u
y =

[
0 Im 0

] ∂H
∂x
, (16)
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FIGURE 3. Closed-loop schema.

where u, y ∈ Rm, x = [x, xa]T ,

J − R =
[
0 −Im
Im 0

]
−

[
R1 0
0 R2

]
,

where 0 is the zero matrix with the appropriate dimension.
The state space of the coupled system is X = L2([a, b];
R4)× R2m.

Due to the energy-preserving interconnections (16), the
energy of the interconnected system can be rewritten as the
sum of the energies of the two parts:

H(x, xa) = Hb(x)+ Ha(xa) =
1
2
xTQx

=
1
2
‖ x ‖2L +

1
2
QTC−1Q+

1
2
ϕTL−1ϕ

The energy matrix of the coupled PDE-ODE system is
defined by Q = diag[L,L−1,C−1].

III. CONTROL DESIGN BY THE LQG METHOD WITH
DAMPING INJECTION
The control goal is to obtain a desired configuration of the
flexible beam with the desired performance by regulating the
input voltages of the IPMC patches. A control law of the
endoscope system (16) using an LQG control design coupled
with damping injection is proposed. The closed-loop control
schema is shown in Fig 3.

A. LQG AND DAMPING INJECTION CONTROL DESIGN
The design is divided into two parts. First, we consider
an LQG controller to eliminate the vibration of the endo-
scope. By definition, LQG control is a combination of
linear-quadratic state estimation (LQE) and a linear quadratic
regulator (LQR). Thus, the disadvantage is that it has the
same order as the system itself. In our case, the LQG con-
troller is also a coupled PDE-ODE system as the system (16).
To implement this type of controller, its order must be
reduced. However, when the lower-order (finite-dimensional)
controller is applied to the PDE system, closed-loop stability
cannot be guaranteed in the general case, which is known as
the spillover effect. Hence, in this work, an LQG controller
using the port-Hamiltonian formulation and model reduc-
tion method is applied to obtain a lower-order controller.

This controller can be easily implemented in real physical
systems, while closed-loop stability is simultaneously guar-
anteed. Second, damping injection is applied to reduce the
settling time of the system.

The LQGcontroller can be formulated as an observer-based
dynamical feedback:{

˙̂x =
(
(J− R)Q− BK − FB∗Q

)
x̂+ Fuc

yc = K x̂
(17)

with the LQG controller state x̂, filter gainF and optimal state
feedback gainK . The two gains F andK can be computed as:

K = R̄−1B∗Pc and F = PfQBR−1w

with the unique solutions Pc = P∗c > 0 and Pf = P∗f > 0 of
the two Riccati equations [31]:

(J−R)QPf +PfQ (J−R)∗−PfQBR−1w B∗QPf +Qv= 0

(18)

Q (J−R)∗ Pc+Pc (J−R)Q−PcBR̄−1B∗Pc+Q̄= 0

(19)

Qv and Rw denote the state and output white noise, respec-
tively. The weighting operators Q̄ and R̄ are taken from the
optimal control problem, which minimizes the energy cost
function:

Jc =
∫
+∞

0

(
‖ x ‖2Q̄ + ‖ u ‖

2
R̄

)
dt. (20)

Remark 1: The two Riccati equations (18) and (19) are
well posed and have unique positive definite solutions if the
following holds. (i) The pair ((J− R)Q,Q1/2

v ) is exponen-
tially stable. (ii) The pair (Q̄1/2, (J− R)Q) is exponentially
detectable [31]. By using the energy function as the Lya-
punov function and considering the dissipation term R, these
two conditions can easily be verified on the system (16).
In general, LQG controllers are not passive, and we cannot

preserve the Hamiltonian structure when the controller is
interconnected with the plant system. However, when we take
the exceptional choices of weighting operators Q̄ and R̄ and
covariance operators Qv and Rw, the closed-loop system cou-
pled with the LQG controller has a port-Hamiltonian system,
as presented in [19]:
Theorem 2 (Hamiltonian LQG Method): If the control

weighting operators R̄, Q̄ and covariance operators Rw,
Qv are chosen such that

R̄ = Rw. (21)

Qvz = Q−1
(
2QJ∗Pc + 2PcJQ+ Q̄

)
Q−1z, (22)

the LQG controller (17) is passive and has a port-
Hamiltonian realization. Moreover, the two unique solutions
of the operator equations (18) and (19) are related by

Q−1Pc = PfQ (23)

The above theorem results in an LQG controller with a
port Hamiltonian formulation. Using this Hamiltonian LQG
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control formulation, we can preserve the port Hamiltonian
structure in the closed-loop system. Furthermore, this passive
LQG method can provide a balanced reduction coordinate
because PcPf 6= I . This relation implies that the state space
can be separated into two parts based on different importance
values of their contributions to the controller design. By tak-
ing this advantage, the design and reduction of the controller
can simultaneously proceed. We define the balanced reduc-
tion coordinate for the port-Hamiltonian system as follows:
Definition 3: If two Riccati equation solutions Pf and Pc

satisfy

Pf = Pc = 6 = diag(σn)n∈N ∈ L(`2), (24)

where (σn)n∈N is a positive and non-increasing sequence
with σ1 > σ2 > · · · > σn > · · · > 0. Then, we say that the
port Hamiltonian system (16) is Hamiltonian LQG balanced.

Define the transformation operator T that can diagonalize
Pc and Pf as:

TPf T ∗ = T+PcT+∗ = 6. (25)

Then, we can denote the realization of the port-Hamiltonian
system (16), i.e., Hamiltonian LQG balanced realization, as:{

ẋb = (Jb − Rb)Qbxb + Bbu
y = B∗bQbxb

with xb ∈ `2 (26)

To obtain the reduced-order system of the balanced realiza-
tion (26) and the reduced Hamiltonian LQG controller while
preserving their passivity and Hamiltonian structure, we use
the Petrov-Galerkin projection method. The details of this
method are shown in [32]. The reduced port-Hamiltonian
system is written as:{

ẋr = (Jr − Rr )Qrxr + Bru
y = BTr Qrxr

with xr ∈ Rn (27)

The reduced-order LQG controller is obtained using the
reduced-order system (27) and Theorem 2 and formulated as
a strictly passive PH control system:{

ẋc = (Jc − Rc)Qcxc + Bcuc
yc = BTc Qcxc

with xc ∈ Rn (28)

Then, this controller (28) is implemented in the original
coupled PDE-ODE system (16) to eliminate the vibration of
the endoscope using the passive preserving interconnection:{

uc = y
u = −yc

(29)

To improve the response time performance, output feed-
back damping injection [33] is employed:

u = −rcy, (30)

The output of system y is the current of the IPMC patch,
which can be easily measured. The main purpose of using
damping injection is to improve the response performance.
The dynamics of the system can be accelerated using positive

damping injection, i.e., the dissipation parameter of the con-
troller rc > 0. Furthermore, this parameter must be bounded
below the natural damping coefficient rc > −r1 to guarantee
the stability of the closed-loop system.

The oscillation of the flexible beam becomes more impor-
tant if the response dynamics are faster. The LQG controller
will be combined with the damping injection to find the
desired compromise between the vibration flexible beam and
the response time.

B. CLOSED-LOOP STABILITY ANALYSIS
In this part, we analyse the closed-loop stability of the orig-
inal coupled PDE-ODE system (16) with the reduced-order
controller (28). First, the existence of a solution is considered
in the following theorem.
Theorem 4: Let the state of the open loop system of (16)

satisfy 1
2
d
dt ‖ x ‖

2
≤ uT y and let the controller (28) be strictly

passive. Then, the closed-loop system with the interconnec-
tion relation (29) is defined by

ẇ(t) = Jclw(t), w(0) ∈ X̃ (31)

where X̃ = X × Rn is the state space of the closed-loop

system, w =
[
x
xr

]
∈ X̃ and Jcl : X̃ → X̃ is a linear operator

defined by

Jclw(t) =

(J −R)Q BkQ 0
−kTB∗Q (J − R)Q −BTr Qr

0 BrQ (Jr − Rr )Qr


×

[
x
xr

]
(32)

with

D(Jcl) = H1([a, b];R4)× R2m×n. (33)

Moreover, the operator Ac defined by Acw = Jclw with

D(Ac) = D(J)× Rn (34)

generates a contraction semigroup on X̃ .
Proof: The open-loop operator A = J− R of the

system (16) is a generator of the contraction semigroup [34],
[35]. The closed-loop operator is a consequence of the power
preserving interconnection of the system (16) with the con-
troller (28). Then, from the Lumer-Phillips theorem, the
closed-loop operator Ac generates a contraction semigroup.

�
The stability of the closed-loop system (31) is considered

in the following theorem.
Theorem 5: Let the controller (28) be strictly positive

real. Then, the closed-loop system (31) is globally asymp-
totically stable, i.e., for any initial condition w(0) ∈ X̃ , the
unique solution of (31) asymptotically approaches zero, i.e.,
limt→∞ ‖ w(t) ‖X̃= 0.

Proof: Since the controller (28) is strictly posi-
tive real and the system (16) satisfies 1

2
d
dt ‖ x ‖2≤

uT y, the closed-loop system (31) has a compact resolvent
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FIGURE 4. Experimental setup.

[34, Thm 2.25]. We can choose the closed-loop energy func-
tion as a Lyapunov function candidate, and the asymptotic
stability can be proven using the Lyapunov argument in com-
bination with Lasalle’s invariance principle. To use Lasalle’s
invariance principle, we need the solution trajectory of the
closed-loop system to be precompact. Since the system is
linear, the precompact condition for the trajectory can be
reduced so that the closed-loop operator has a compact resol-
vent. In our case, we can prove the norm of operator ‖
(λI −Ac) x ‖X̃≥ a ‖ x ‖X̃ with a > 0 because of the dissipa-
tivity of the closed system. Thus, using Theorem 2.25 in [34],
we obtain that the closed-loop system operator has a compact
resolvent. From 1

2 ‖ xr ‖
2
Qr< −Rrx

2
r , the equilibrium profile

satisfies ur = yr = 0, and from Remark 1, it reduces to
zero. �

IV. EXPERIMENTAL METHOD
In this section, we will use the experimental setup to validate
the proposed model and show the effectiveness of the pro-
posed control design method. In Subsection IV.A, the flexible
beam and the IPMC actuator dynamics are identified and val-
idated from the experimental data. Subsection IV.B uses the
positive damping injectionmethod to track the periodic signal
reference. Subsections IV.C and IV.D present experimental
results of the passive LQG controller implementation to the
flexible beam for bothmono- andmulti- IPMC patch actuated
cases.

The experimental setup is depicted in Fig. 4. A dSPACE
MicroLabBox compact prototyping unit and a computer with

FIGURE 5. Identification curve fit of the flexible beam.

TABLE 1. Identified parameters of the flexible beam.

MATLAB Simulink are used to acquire the measurements
and implement the designed control law in the system by gen-
erating a voltage across the IPMC patches. The displacement
measurement is acquired by a KEYENCE (LK-G152) laser
sensor to identify unknown parameters.

The dimension of the flexible structure L is 160 mm, the
width W is 5 mm, and the beam thickness T is approx-
imately 0.20 mm. The mass density ρ is 936kg/m3. The
inertia moment of area I and angular moment of inertia Iρ
can be calculated by physical parameters L and W since
the Timoshenko beam model is used, and their values are
4.7× 10−15 m4 and 4.34× 10−12kg/m, respectively.
Remark 6: The controlled beam in the experiment is

actuated by the IPMC patches, which leads to a composite
structure. The actuation of the beam is driven by the torques
generated from the IPMC actuators. Hence, the Timoshenko
beam assumptions fit quite well with the proposed experimen-
tal setup even if the considered beam is quite thin.

The Timoshenko beam model is discretized for the iden-
tification procedure in MATLAB R©. A structure-preserving
discretization method (mixed finite elements method [36]) is
used to preserve the port-Hamiltonian structure of the model.

Sequential quadratic programming (SQP) and trust-region-
reflective algorithms (’fmincon’) are used to identify the
unknown parameters. This optimal nonlinear model identi-
fication algorithm can be found in the identification toolbox,
which has been implemented in the MATLAB software R©.

Fig 5 illustrates the result obtained by the identification.
With a fitting percentage of 89.69%, the curve fitting of the
proposed model and the experimental data are validated. The
identified parameters of Young’smodulus, shearmodulus and
two dissipation constants are shown in Table 1.

A. VALIDATION OF THE IPMC ACTUATOR
The length of the IPMC patch La is measured as 3× 10−2 m.
The inductance in the RLC circuit is considered negligible
compared to other electrical parameters in Table 2.
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TABLE 2. Parameters of the IPMC actuator.

FIGURE 6. IPMC actuated compliant endoscope.

The blocking force of the IPMC has been measured by
different researchers and shown in [11], [30]. It has an almost
linear relation with respect to the applied voltage:

F
U
= 3.75× 10−4N/V (35)

where F is the measured blocking force and U is the applied
voltage. The bending moment of the IPMC actuator can be
computed by the blocking force as follows [30]:

M =
2La
3
F (36)

From (35) and (36), we can find the coupling constant

ki =
M
U
= 7.5× 10−6N .m/V (37)

In the setup in Fig. 4, the flexible structure is actuated by
one IPMC patch on the clamped side. Fig. 6 illustrates the
identification result of the IPMC actuator with u = 1.5V .

B. TRAJECTORY TRACKING OF THE FLEXIBLE BEAM
Trajectory tracking of the flexible beam tip is an important
control problem. In this part, this problemwill be investigated
by using the experimental setup. We employ the damping
injection (30), where output y is the current. The following
figure shows the experimental validation of the proposed
control law for reference tracking.

In Fig. 7, the tracked reference is a periodic signal. The
open-loop response cannot reach the reference since the
response time of the open-loop system is too slow with
respect to the reference. The control law (30) is used to
track the reference. The solid red line shows the experimental
result. We observe that the closed-loop system tracks the
reference signal with good precision.

FIGURE 7. Reference tracking.

C. CONTROL OF THE IPMC ACTUATED FLEXIBLE BEAM
The settling time for the open-loop system is approximately
11s, as shown in Fig. 6. We illustrate the closed-loop per-
formances with the designed state feedback controls in
Section III. To apply the Hamiltonian LQGmethod defined in
Theorem 2, the control weighting operator is Q̄ = Q∗bBbB

∗
bQ,

where the operator and matrix are defined in the balanced
realization of the system (26) and R̄ = I . The cost function is
defined as shown in equation (20), which is the input output
energy function in this case. To guarantee the closed loop pas-
sivity and stability, we compute the covariance operators Rw
and Qv using (21) and (22), which are defined in Theorem 2.
For implementation purposes, the designed full-order LQG
controller is reduced in a structure-preserving manner to the
lower-order controller, as shown in (28).

Fig. 8 illustrates the comparison between 2 different con-
trol laws for position assignment and open-loop response.

We observe that with simple positive damping injection,
the raising time is approximately 6 s instead of 11 s for the
open-loop system. However, we observe a significant oscil-
lation of the displacement due to the vibration of the flexible
beam, which may gradually irreversibly destroy the flexible
structure. By using LQG control plus positive damping injec-
tion control, we observe that the response time is reduced
to 6 seconds. Furthermore, compared to only using the pos-
itive damping injection, the vibration has been significantly
reduced.

D. MULTI-ACTUATION OF A FLEXIBLE BEAM
To work in the human body environment, the endoscope
should be capable of being driven to the desired shape. In this
part, a multi-actuation case with two patches is considered,
as shown in Fig. 9. The first IPMC patch is attached at the
fixed side of the beam to achieve the largest deflection of
the beam’s free tip. The second patch cannot be placed too
close to the free end because the beam would be deformed by
the actuator and its wires. Hence, the patch is attached at the
middle of the structure. Then, the distributed input map B of
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FIGURE 8. Positive damping injection control and LQG+positive damping
injection control.

FIGURE 9. Multiple actuations of the flexible beam and the desired shape
of the flexible beam.

the flexible beam model (1) can be defined as:

B =


0 0
0 0
0 0

b1(z) b2(z)

 (38)

where b1(z) = 1 if z ∈ [0, 0.2L] and b2(z) = 1 if z ∈
[0.4L, 0.6L]3 and b1(z) = b2(z) = 0 elsewhere. The control

3L is the length of the flexible beam

FIGURE 10. Multi-actuated flexible beam.

weighting operators are defined in the same manner as the
mono-actuation case, as shown in IV-C.The control objective
in this case is to drive the beam to a desired shape (position)
as fast as possible while reducing the beam vibration. The
desired shape is presented in Fig. 9. We first use the clamped
side IPMC actuator to move the flexible beam such that the
beam tip is displaced 5mm. Then, the second IPMC actuator
is used to change the beam configuration in the middle.
In this case, we use the second actuator to drive the beam
tip to 10 mm.
In Fig. 10, we show the beam tip displacements (red dashed

line in the top figure) and middle displacement (solid blue
line). The clamped side actuator is activated at 3 seconds,
and the second actuator is actuated at 15 seconds. We see that
the tip displacement is changed by the two actuators, while
the middle displacement depends only on the clamped side
actuator. The second actuator has no impact on the middle
displacement except for a slight vibration at approximately
15 seconds.

V. CONCLUSION AND PERSPECTIVE
An interconnected control model and LQG control strategy
of the IPMC actuated flexible structure using the PHS frame-
work is presented. The mechanical flexible dynamics are
modelled as a Timoshenko beam, while the electric dynamics
of the IPMCs are considered a lumped RLC equivalent circuit
model. Flexible dynamics described by the PDEs and electric
dynamics of the IPMCs described by an ODE are intercon-
nected by the PHS formalism via the energy change ports.

The control strategy is composed of a Hamiltonian LQG
control method coupled with damping injection. Damping
injection is applied to improve the response time perfor-
mance, while the LQG controller reduces the oscillation.
The presented model has been identified and validated via
an experimental setup, where the flexible beam is driven by
IPMC patch actuators.

Finally, we implement the proposed control law in the
same experimental setup. The experimental results illustrated
the mono-actuation and multi-actuation cases to show the
effectiveness of the presented control methods.
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A perspective of this work is to consider the uncertainty
of the parameters due to environmental reasons and the
disturbance from external perturbations. During the experi-
ment, the actuation of the IPMC actuator is sensitive to the
humidity of the working conditions. The robustness of the
control law should be considered in future work. Moreover,
in [10], a complete IPMC actuator model, where the diffu-
sion phenomena were considered, was proposed using the
port-Hamiltonian approach. The control design based on this
complete actuator model should be considered in the future.
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