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ABSTRACT In order to make significant progress in the operation of power systems and minimizing cost
and air pollution, multi-carrier energy systems based on the economic and emission problem have been
proposed by implementing various solutions and using different sources. In this study, an energy hub (EH)
system includes a wind turbine (WT), photovoltaic (PV), and EVs that are exchanged energy with energy and
reserve market considering energy, thermal, and gas demand response program is proposed. But these units
due to uncertain behavior create a big problem in balancing between the demand and generated energy. Thus,
the uncertainty of WT, PV, load, and electricity market price are modeled with Mont-Carlo method. Besides
that, all parameters of the EVs with uncertainty behavior are modeled using a newmethod that classified EVs
based on the capacity of the battery and other features. This method is employed a stochastic optimization
approach to simplify the uncertainty modeling for increasing the system reliability. Hence, two objective
functions, namely economic cost, and environmental cost are considered. Finally, a three-step strategy is
introduced to solve the multi-objective problem as a single objective function. Finally, EH management
performance is investigated by implementing the proposed method and elements.

INDEX TERMS Demand response program, electric vehicle, energy hub, renewable energy sources,
uncertainty.

NOMENCLATURES
EH Energy hub.
CHP Combined heat and power.
DRP Demand response program.
GDRP Gas demand response program.
EDRP Electric demand response program.
TDRP Thermal demand response program.
ESS Energy storage system.
GAMS General algebraic modeling system.
RES Renewable energy storage.
TDRP Thermal demand response program.
TSS Thermal storage system.
UP Upstream grid.
WT Wind turbine.
PV Photovoltaic.
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Indices
t Time index.
n The number of

scenarios.
e Economic index.
m Emission index.
Parameters
Vco,Vci&VR Cut off, cut in, and

rated speed.
v(t) Wind speed.
ggridmin&g

grid
max Min and max

capacity of gas grid.
αmin
e &αmax

e Min and max
capacity of ESS.

αmin
h &αmax

h Min and max
capacity of TSS.

ηC/L Efficiency of fc.
glt Gas demand in

residential area.
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a1, a2,
b1, b2, c, d Cost coefficient of

CHP unit [$/kwh].
Px |X ∈ {A, B , D, F, G, H , I } Power of corner points

in CHP unit in
operation zones
[kwh].

Hx |X ∈ {A, B , D, F, G, H , I } Heat of corner points
in CHP unit in
operation zones
[kwh].

M̄x |X ∈ {A, B , D, F, G, H , I } Max coefficients of
Big-M method [kwh].

Mx |X ∈ {A, B , D, F, G, H , I } Min coefficients of
Big-M approach
[kwh].

LPFup,e, LPFdn,e Up and down level of
electricity load
coefficient.

LPFup,t, LPFdn,t Up and down level of
electricity load
coefficient.

LPFup,g, LPFdn,g Increased and
decreased gas load
coefficient.

ςche &ςdise Electricity storage
Charge and discharge
efficiency.

ςchh &ςdish Thermal storage
Charge and discharge
efficiency.

ςchEV&ς
dis
EV Charge and discharge

efficiency of evs.
Pboilerc &PCHPc Nominal capacity of

boiler & CHP.
PRMc Nominal capacity of

reserve market.
κFC Production price

of FC.
κet Price of supplied

power via upstream
grid.

κ
gas
t Natural gas price.
κWT Generated power cost

of WT.
κPV Generated power cost

of PV.
κEDRP Electricity demand

response price.
κTDRP Thermal demand

response price.
κGDRP Gas demand

response price.
κTSS Cost of generated

thermal by TSS.

κESS Cost of generated
energy by ESS.

κS Cost of generated
energy by evs.

Pj,0 Initial power of EV.
CObo2 , SO

bo
2 ,NO

bo
2 Emission coefficient

of thermal produced
by boiler.

COgrid2 , SOgrid2 ,NOgrid2 Emission coefficient
of bought energy by
upstream network.

COrl2 , SO
rl
2 NO

rl
2 Emission coefficient

of produced electricity
by residential area.

COrl2 , SO
rl
2 NO

rl
2 Emission coefficient

of bought energy by
reserve market.

COchp2 , SOchp2 ,NOchp2 Emission coefficient
of CHP unit.

ϕ Shape parameter.
ϑ Scale parameter.
ω,ψ Shape parameter of Beta

Distribution.
σ , τ Expectation and

standard deviation of load.
ςRMe Reserve market efficiency.
ςCHPgh Gas to heat

transformer efficiency of CHP.
ςCHPe Gas to electricity

transformer efficiency of CHP.
ςboilerge Gas exchange to heat

efficiency of the boiler.
ρCHP CHP obtainability.
ρgrid Upper network

obtainability.
ρwind WT obtainability.
ρRM Reserve market obtainability.
ς
grid
e Transformer efficiency.
ςwinde Converter of wind to electricity

efficiency.
ς
pv
e Converter of PV to electricity

efficiency.
ςFCe Converter of FC to electricity

efficiency.
DthermalIL Heat demand.
DELIL Electricity demand.
Variable
pfct Generated power by FC.
pet Imported power from upstream

grid.
pRMt Imported power from reserve

market.
Hbo
t Thermal generated by boiler.

pwit Produced power by WT.
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PPVt Produced power by PV.
PFCt Produced power by FC.
pCHPt Electrical power generated

by CHP.
HCHP
t Heat generated by CHP.

pch,et &pdis,et Charge & discharge electricity
of ESS.

pch,tt & pdis,tt Charge & discharge heat of
TSS.

Pchn,t ,P
dis
j,t Charge and discharge energy

of evs.
pGASt Imported gas from gas network.
pdemj Needed power to charge

batteries.
cos tdegj,t The degradation cost.

Pup,et , Pdn,et Increased and deceased
electrical load level.

Pup,tt , Pdn,tt Increased and deceased
thermal load level.

Pup,gt , Pdn,gt Increased and deceased
gas load level.

f (υ) Weibull distribution function.
f (θ ) Weibull distribution function.
f (x) Normal PDF function.
ofEM Total pollution emissions.
gbot Gas consumption of boiler.
obji I_th objective function.
Cst,e
t Obtainability energy of

electricity storage.
Cst,h
t Obtainability energy of

heat storage.
Pj,f Final battery power.
PEL,DRt Load of electricity in

the presence of DRP.
PT ,DRt Load of thermal in

the presence of DRP.
PG,DRt Load of gas in the

presence of DRP.
Ploss,et ,Ploss,tt Losses of energy

in ESS and TSS.
pfct Generated power by FC.
pet Imported power from upstream grid.
pRMt Imported power from reserve market.
Hbo
t Thermal produced through boiler.

pwit Produced power by WT.
PPVt Produced power by PV.
PFCt Produced power by FC.
pCHPt Electrical power generated by CHP.
HCHP
t Heat generated by CHP.

Binary variables
I ch,tt &Idis,tt Charge/ discharge of TSS.

I ch,et &Idis,et Charge/ discharge of ESS.

Iup,et &Idn,et Up and down level of electrical load.

Iup,tt &Idn,tt Up and down level of thermal load.
Iup,gt &Idn,gt Up and down level of gas load.
ICHPt Active and disactivate mode of CHP.
Z1
t , Z

2
t , Z

3
t zone activity.

I. INTRODUCTION
A. MOTIVATION
In recent years, in the power system structure, a multi-carrier
power system has been implemented instead of the single
entity generating [1], [2]. On the other hand, increasing the
emission pollution problem due to the use of fossil fuels
is one of the serious reasons [3]. Therefore, energy hubs
are supposed to play a critical role in the future for solving
power system problems [4]. RESs such as PV and wind
farms generate clean and unlimited energy [5], and the use
of renewable energy is an effective way to promote energy
transformation in the energy hub [6]. Today, the use of elec-
tric vehicles is increasing due to reducing air pollution and
exploitation as consumers and producers (as a battery) [7].
EVs are also profitable for car owners, in addition to the eco-
nomic and environmental benefits of the power system [8].
Therefore, integrating EVs and energy hubs is a good choice
for minimizing operation costs and air pollution. Renewable
resources have uncertain behaviors due to climate change,
which has a significant impact on the performance and relia-
bility of the EH. On the other hand, EVs include uncertainty
behaviors [9]. The most suitable operation of the EH will be
obtained using a suitable optimizationmethod and integrating
the energy market with the reserve market [10] considering
uncertainties in the presence of EVs.

B. LITERATURE REVIEW
Different studies of assessing and analyzing EHs abilities due
to many advantages such as economyminimization, emission
pollution mitigation, high flexibility, market infrastructure,
and energy management in various sections of power systems
have been done [2], [11], [12]. EH is made from two parts as
an input and output, which contain multi carriers in the input
section and multi demands in the output section. Employing
renewable resources, suitable converters, energy storages,
and redundant connection between EH input and output,
supply of demand, reliability, and energy management are
enhanced, the operation cost and emission pollution are min-
imized [13]. Implementing a good framework of EH and an
appropriate scheduling program is essential to obtain the best
results for EH operation. Alessandra Parisio et al. proposed
a robust optimization method of EH operations [14]. Also,
multi carriers’ input, stored and distributed in the EH con-
struction is implemented to supply energy demands. How-
ever, renewable sources are a good option for input in the EH
framework.

In [15], EH as a combined energy system contain-
ing renewable energy resources was proposed considering
demand response programs to supply electrical, cooling, and
heating demands. But, the stochastic nature in the production
of the RESRs has not been considered. In [16], a new
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mathematical method for analyzing the integrated EH with a
deregulated market was reported. This method is based on a
mathematic program with an equilibrium constraints model
to investigate the strategic performances of a profit-driven
EH in both the heating and electricity markets. Since the
economic issue is important in EH performance, at the same
rate, the pollution emission is important, too. So, Lu et al.
in [17], an optimal load program model for a community
EH represented. Both EDRP and TDRP to minimize the
total cost of the energy hub, including system economic
and environmental costs were considered. One of the most
effective methods to improve the performance of EH and
optimize the operation cost and emission pollution is using
an appropriate energy storage system. In [18], and EH man-
agement mechanism was introduced by employing two new
energy storages are called ice storage conditioner (ISC) and
solar-powered compressed air energy storage to minimize
operation and emission pollution costs considering combined
CHP, photovoltaic, and wind turbine. The other important
factor, which has the most effect on EH performance is using
a robust scheduling method. Shams et al. [19] suggested a
min-max min robust method for the short-term scheduling of
microgrids integrated with the natural gas network to model
the uncertainty of WT generation, electrical, and thermal
loads introduced. The proposed model was solved and lin-
earized using the column-and-constraint generation process
that divides the framework into a master problem and a sub-
problem. It should be better if the improved EH structure
behind a suitable scheduling method was analyzed simul-
taneously. In [20], novel energy storage integrated with an
energy hub in an industrial park was proposed and a bi-level
optimization scheduling method was introduced to analyze
the optimal bidding and programing in the daily market.
The main aim of this method is to minimize the day-ahead
operation cost.

Since renewable sources are subject to weather condi-
tions, their output power is not constant and has uncertainty.
Therefore, it is essential to study the causes of uncertainty
with appropriate methods. In [21], an MINLP method for
the optimal scheduling of the energy hub was modeled in
the presence of uncertainty factors. In addition, the effect
of implementing DRPs, determine the size of the energy
hub, and implementing a complete energy flow of loads are
introduced.

Using the risk-averse method is a good option for model-
ing the uncertainty of the energy hub to increase reliability.
A novel look-ahead risk-constrained based on the look-ahead
scheduling technique in the daily market of the energy hub
was proposed to reduce the total cost of the energy hub in the
presence of DRP in [22]. Mokaramian et al. [23], analyzed
the performance of the energy hub using a multi-objective
function as environmental, economic, load deviation, and risk
level objective functions conditional value at risk and second-
order stochastic dominance. Also, a new storage model as
PHESS has been utilized in EH to optimal energy manage-
ment considering DRP for water, gas, electricity, and thermal.

In [24], a spatiotemporal association of wind speed, solar
irradiation, and price responsive loads in the presence of
cooperative and non-cooperative modes of energy hubs using
a game-theoretic method is proposed, which has participation
by the energy market. In addition, mathematical scheduling
with equilibrium restraints was applied to solve the highly
competitive behavior of the energy hubs in this market in
the presence of system losses. Stochastic operation of energy
hub in the uncertain environment and using downside risk
restrictions was suggested to minimize the risk-in-cost versus
risk control parameter in the heating market with heat DRP
in [25]. In [26], a multi-objective method was represented
to optimize the operation cost and risk-averse in the energy
hub. The conditional value at risk method was implemented
to control the harmful effects of the uncertainties.

In [27], a multi-agent system is introduced to model the
operation of an EHwith electric vehicles andmodeled various
penetration rates and charging patterns of an electric vehicle.
A complete random dispatch algorithm was integrated into
a smart charging strategy to obtain the maximum capacity
and potential of the vehicle to the grid. XinhuiLu et al. [28]
presented a novel structure of optimal load dispatch model
for a community EH in the presence of thermal and electrical
demand response programs. In this model, the gas boiler,
CHP unit, PV array, heat storage unit,WT, the random admis-
sion of large-scale electric vehicles was considered, and using
the Monte- Carlo approach, the uncertainty of EVs is simu-
lated. Also, a robust optimization method was proposed to
simulate the price uncertainty. To improve the environmental
and economic aspect of the energy hub, a multi-objective
optimizationmethod in the presence of compressed air energy
storage was integrated with a battery energy storage system
in [29]. Also, in the structure of residential EH, a plug-in
electric vehicle-based demand response program, renewable
energy generation units, thermal energy storage, solar heat
collectors, and hot water storage was used. Finally, the load
demand uncertainty of EVs is modeled using their corre-
sponding coming–exit time, miles of dailymoved, and type of
vehicle. The optimal Pareto front of the multi-objective issue
was achieved by the ε-constrained approach for different
robustness alterations.

Regarding the reviewed literature in EH, some of the draw-
backs have seemed that should be improved as follow:
• In some studies, renewable sources, fuel cells, and EVs as

energy storage have not been used to improve environmental
and economic issues.
• Different DRP for water, gas, thermal, and electrical

loads have not been considered.
• The impact of all parameters of EVs uncertainties on the

operation of the energy hub has not been esteemed.
• Uncertainty of renewable sources, load uncertainty, mar-

ket price, and EVs have not been considered, simultaneously.

C. CONTRIBUTION
In this study, two objectives are considered to optimize the
total cost of EH performance as emission pollution and
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FIGURE 1. Structure of the proposed EH.

operation cost. The proposed model of EH includes a CHP,
boiler, WT, PV, Fuel cell, ESS, HSS, and EV considering
the uncertainty of WT, PV, load, price market, and EVs as
shown in Fig. 1. In addition, a demand response program
is implemented for gas, heat, and electricity demand. All
uncertainty factors of EVs as starting and stopping time
of charging/discharging period, the overall battery capacity,
initial energy, and their number, are not yet addressed for an
EH or a collector that uses these resources integrated with
renewables to contribute to different electricity markets. So,
in this study, we introduce a novel method to implement the
storage capacity of EVs as energy storage in EH structure in
the day-ahead market. Here, three factors of EVs uncertain-
ties are considered contains EVs capacity uncertainty, coming
and leaving time, the amount of energy left in the battery
when it becomes obtainable, and their total number.

Finally, the fundamental contributions of this study are
mentioned as follow:
• Participating EH with energy and reserve markets
• Integrating the EVs with day-ahead and reserve markets
• Proposing a new method to model all uncertainty param-

eters of EVs.
•Considering demand response programs for gas, electric-

ity, and thermal loads
• Solving the multi-objective problem using a novel three-

stage solution algorithm.

II. ENERGY HUB MODELING
This study presents an EH including different energy car-
riers with the ability to convert, storing and transferring.
The energy hub as shown in Fig. 1 is including utility grid,
natural gas network, fuel cell, and renewable sources (wind
turbine, PV) in the input section that integrated with ESS
and TSS as a storage system, CHP, and boiler in converter
section to supply load demand of gas, electricity, heat, and
EVs that operate as a mobile storage. The main aim of this
study is to minimize operating costs and emission pollution
problems. Also, the uncertainty of RES, load market, price of
the energy market, and three factors of EVs uncertainties i.e.:
EVs capacity uncertainty, coming and leaving time, and their
total number are modeled using the Mont-Carlo method.

FIGURE 2. CHP unit’s heat and power operation zones.

Noted that in this study, EH is assumed as a small city.
Electricity and natural gas as input carriers are considered to
supply the load demand. Wind turbines and PV can produce
electrical energy to use by the consumer. The EVs can operate
as bilateral equipment and in the charging mode, is assumed
as a consumer, and in discharging mode, the extra power is
saved and flow to the EH to use via consumer, in this mode
the EVs work as energy storage. The CHP unit in the EH
framework is fed from natural gas and produces heat and
electrical energy simultaneously. In addition, the auxiliary
boiler feeds the natural gas and generates heat to the heating
line.

The CHP unit has an important role in EH performance
because this unit involved three carriers of EH as natural gas,
heat, and electricity. In this study, the CHP unit works in
quadratic mode and contains three operational zones, which
are shown in Fig. 2.

The relation between the heat and power in CHP operation
as shown in Fig. 2, is a non-convex operation zone. When the
thermal is produced by the CHP unit, the amount of power
generation is limited and conversely. In order to simplify the
optimal operation of the CHP unit, the non-convex zone is
divided into triple zones which are shown by Zone 1, 2, and
3. Convexness is made by counting three binary variables for
the CHP. These zones are convex, and any point on any line
in each zone is related to that zone [30].

A. OBJECTIVE FUNCTIONS
The main aims of this study are divided into two parts. The
first aim is to minimize total operation cost and the second
aim is to optimize the emission pollution cost of the EH in
the day-ahead market.

B. ECONOMIC OBJECTIVE FUNCTION
The economic objective function includes two terms to opti-
mize the total cost of the EH as follow [23]:

OFop =
n∑
t=1

CostEH +
n∑
t=1

CostPRM (1)
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The first term denotes the operation cost of the EH, and the
second term represents the reserve market cost. The energy
hub system contains RESs, boiler, CHP unit, thermal and
electrical energy storage, and EVs. Demand response pro-
gram is considered for all types of load demand including
gas, thermal and electric demand with a specified cost. So,
the operation cost of EH is presented as follow:

CostEH = Costup
OC
+ CostDRP

OC
+ CostSS

OC

+CostRES
oc
+ CostCHP

OC
+ CostBOC + Cost

EV (2)

The energy hub system purchase energy from the upstream
grid of electric and gas station, which is calculated as follow:

Costupoc = κet P
e
t + κ

GaspGast (3)

In order to manage energy usage in peak load duration
by shifting the energy consumption to low periods, DRP
is implemented in the energy hub to cost-minimizing. The
main effect of the demand response program is based on
the balance between energy consumption and production in
each period. Electrical, thermal and gas demand program are
expressed as follow:

CostDRP
OC
=CostEDRP

OC
+CostTDRP

OC
+CostGDRP

OC

= κEDRP(pUP,Et +pDN ,Et )+κTDRP(pUP,Tt +pDN ,Tt )

+ κGDRP(pUP,Gt +pDN ,Gt ) (4)

Also, the operation cost of the storage system is made from
two-part including the electric storage system and thermal
storage system as follows.

CostSS
OC
= CostESS

OC
+ CostTSS

OC
= κESSs (pchE + p

dis
E )

+ κTSSs (pchT + p
dis
T ) (5)

The operational cost of the renewable sources is equal to
the set of operation costs of the WT, PV, and an FC that is a
function of output power.

CostRESOP = κ
WT pWTt + κ

PV pPVt + κ
FCpFCt (6)

The operation cost of the CHP unit is a quadratic function
of the generated power and heat and given by.

CostCHP =

(
a1.
(
pCHPt

)2
+ a2.pCHPt + b1.

(
HCHP
t

)2
+ b2.HCHP

t + c.pCHPt HCHP
t + d .ICHP

t

)
(7)

The operation cost of the boiler is a function of output
power and can be defined as follow:

Costboiler = κ
gas
t Hbo

t (8)

In order to provide a suitable economic program for elec-
tric vehicles, the objective function is defined based on the
amount of charging/discharging energy of electric vehicles.
The required energy for charging EVs is provided by EH,
Pdemj , with the specific cost, and at the same time when EVs
have been used as an energy storage system at time t with
specific degradation cost.

which is calculated as follow:

CostEV =
∑
J

(Pdemj ks)−
∑
j

cos tdegj,t (9)

The second term of Eq. (1) is the cost of purchasing energy
from the reserve market and is formulated by Eq. (10).

CostPRM (t, e) = κRMt PRMt (10)

C. ENVIRONMENTAL OBJECTIVE FUNCTION
The environmental issue of the energy hub is critical. So,
the emission pollution cost of the three most effective gases
(CO2, NO2, and SO2) which are generated through EH
equipment is considered in the objective function. The emis-
sion cost of EH is produced by the upstream grid, boiler, CHP
unit, and consumed residential gas [25].

OF2 = Min(Cem) = EMgrid + EMCHP + EMbo

+EMrl + EMRM

= pet (CO
grid
2 + SOgrid2 + NOgrid2 )

+ pCHPt (COCHP2 + SOCHP2 + NOCHP2 )

+ pbot (CObo2 + SO
bo
2 + NO

bo
2 )

+ prlt (CO
rl
2 + SO

rl
2 + NO

rl
2 )

+ peRM (COgrid2 + SOgrid2 + NOgrid2 ) (11)

D. LIMITATION OF THE EH OPERATION
1) LIMITATION OF ELECTRICAL DR PROGRAM
The equal and unequal limitations of electrical DRP are as
follow:

PEL,DRt = Pelt + P
up,e
t − Pdnt (12){

0 ≤ Pup,et ≤ LPFup,ePlt I
up,e
t

0 ≤ Pdn,et ≤ LPFdn,ePlt I
dn,e
t

(13)

Iup,et + Idn,et ≤ 1 (14)
H∑
t

Pup,et =

H∑
t

Pdn,et (15)

The constraint of up and low load levels of the EH is
formulated by Eq. (13). The increasing and decreasing load
level cannot be done at the same time which is modeled in Eq.
(14). The EH must save the overall electricity consumption
constant in the forecast cycle, which is restricted by Eq. (15).

2) LIMITATION OF THERMAL DR PROGRAM
The equal and unequal limitations of thermal DRP are as
follow:

PTL,DRt = PTLt + P
up,T
t − Pdn,Tt (16){

0 ≤ Pup,Tt ≤ LPFup,TPlTt I
up,T
t

0 ≤ Pdn,Tt ≤ LPFdn,TPlTt I
dn,T
t

(17)

Iup,Tt + Idn,Tt ≤ 1 (18)
H∑
t

Pup,Tt =

H∑
t

Pdn,Tt (19)
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Similar to the EDRP, Eq. (17) formulates the limitation
of increased/decreased load of the energy hub. The restraint
to cope with the increasing/decreasing of the thermal load
level at the same time is modeled by Eq. (18). The amount
of increasing/decreasing thermal load should be equal which
is formulated by Eq. (19).

3) LIMITATION OF GAS DR PROGRAM
The equal and unequal constraints of gas DRP are as follow:

PGL,DRt = PGLt + P
up,G
t − Pdn,Gt (20){

0 ≤ Pup,Gt ≤ LPFup,GPlGt I
up,G
t

0 ≤ Pdn,Gt ≤ LPFdn,GPlGt I
dn,G
t

(21)

Iup,Gt + Idn,Gt ≤ 1 (22)
H∑
t

Pup,Gt =

H∑
t

Pdn,Gt (23)

The exact definitions of the previous sections apply to
GDRP.

4) LIMITATION OF ESS
Another important factor in the EH framework is to save the
extra produced power by units. So, ESS is used to deal with
energy losses. The mathematical formulation and limitation
of ESS are stated as [20]. The electrical energy balance
restraint of the ESS unit is given by Eq. (24). The saved
electrical energy by the ESS unit should be restricted in a
confident range, which is given by Eq. (25). The maximum
charging/discharging powers of the ESS unit are restricted by
Eqs. (26) and (27), respectively. The electrical loss of ESS is
given by Eq. (28). Eq. (29) guarantees that ESS cannot be
charged and discharged at the same time.

Cst,e
t = Cst,e

t−1 + (pch,et ςche )− (pdis,et /ςche )− ploss,et (24)

αeminC
st,e
c ≤ Cst,e

t ≤ αemaxC
st,e
c (25)

αeminC
st,e
c I ch,et

ςech
≤ pch,et ≤

αemaxC
st,e
c I ch,et

ςech
(26)

αeminC
st,e
c I ch,et ςedis ≤ p

dis,e
t ≤ αemaxC

st,e
c Idis,et ςedis (27)

ploss,et = αelossC
st,e
t (28)

I ch,Et + Idis,Et ≤ 1 (29)

5) LIMITATION OF TSS
Thermal demand in the energy hub is at a high level, so it
is necessary to save the extra produced power by units. Thus,
TSS is used to deal with energy losses. The equal and unequal
constraints of TSS are [20].

Cst,tss
t = Cst,t

t−1 + (pch,tt ςche )− (pdis,tt /ςche )− ploss,tt (30)

αtminC
st,t
c ≤ Cst,t

t ≤ αtmaxC
st,t
c (31)

αtminC
st,t
c I ch,tt

ς tch
≤ pcht ≤

αtmaxC
st,t
c I ch,tt

ς tch
(32)

αttminC
st,t
c I ch,tt ς tdis ≤ p

dis,t
t ≤ αtmaxC

st,t
c Idis,tt ς tdis (33)

ploss,tt = αtlossC
st,t
t (34)

I ch,tt + Idis,tt ≤ 1 (35)

The exact definitions of the previous sections are imple-
mented to TSS.

6) ENERGY BALANCE CONSTRAINT
The produced or bought energy from the upstream grid in all-
time should be equal to the demand for energy. So, electrical,
thermal, and gas balance constraint are expressed as follow,
respectively.

DelectricalIL + pUPt − p
DN
t

= [ρgridpet ς
grid
e ]+ [pdis,et − pch,et ]

+ [ρRMpRMt ςRMe ]+ [ρchppchpt ςchpe ]

+ [ρwindpwindt ςwinde ]

+ [ρpvppvt ς
pv
e ]+ [ρFCpFCt ςFCe ]

+

∑
j

edis
n,t
ςdisEV −

∑
j

ech
n,t

1

ςchEV
(36)

Dthremal
IL

(t) = ςboghH
bo
t + [ρCHPHCHP

t ςCHPgh ]+ (Pdist − P
ch
t )

(37)

ggridt = gboilert + gCHPt + glt (38)

A nominal rate is definitely for purchasing power from
the upstream grid that should supply transformers nominal
capacity constraint and total bought gas limitation from the
gas grid.

ρgrid × Pet ≤ PTC (39)

ggridmin ≤ g
grid
t ≤ ggridmax (40)

7) RESERVE MARKET CONSTRAINT
Total buying power from the reserve market should be equal
to the nominal capacity.

PRMt ≤ PRMC (41)

8) MODEL OF BOILER AND CHP
The boiler is fed by natural gas and it is necessary to meet the
upper and lower level of natural gas input constraints [30].

ζ boilerge g
boiler

t ≤ Pboilerc (42)

As stated in the previous sections, the operation of CHP is a
nonlinear behavior with the triple-zone of electricity and ther-
mal production. The generated heat through the CHP unit is
frequently proportional to its electric generation. In addition,
heat operation constraints will be guaranteed if the electrical
performance constraint is confirmed [31]. Limitations associ-
ated with the CHP unit with three operational areas as shown
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FIGURE 3. Discretization of a continuous distribution into several
levels [34].

FIGURE 4. The reducing half gradient membership function.

in Fig. 4 are formulated as follows:

PCHPt − PB −
PB − PA
HB − HA

[HCHP
t − HB]

≤ [1− Z1
t ].
−

M
AB

∀t

PCHPt − PC −
PC − PD
HC − HD

[HCHP
t − HC ]

≤ [1− Z2
t ].
−

M
CD

∀t

PCHPt − PD −
PD − PE
HD − HE

[HCHP
t − HD]

≥ [1− Z2
t ].
−

M
DE

∀t

PCHPt − PE −
PE − PF
HE − HF

[HCHP
t − HE ]

≤ [1− Z3
t ].
−

M
EF

∀t

PCHPt − PF −
PF − PG
HF − HG

[HCHP
t − HF ]

≥ [1− Z3
t ].
−

M
FG

∀t

PCHPt − PG −
PG − PH
HG − HH

[HCHP
t − HG]

≥ [1− Z3
t ].
−

M
GH

∀t

(43)



HCHP
t
− HB ≤

∣∣∣1− Z1
t

∣∣∣ .ME1 ∀t

HCHP
t
− HB ≥

∣∣∣1− Z2
t

∣∣∣ .ME21 ∀t

PCHP
t
− PH ≥

∣∣∣1− Z1
t

∣∣∣ .MH1 ∀t

PCHP
t
− PE ≥

∣∣∣1− Z1
t

∣∣∣ .ME22 ∀t

PCHP
t
− PE ≤

∣∣∣1− Z3
t

∣∣∣ .ME3 ∀t

(44)

Z1
t + Z

2
t + Z

3
t = ICHPt (45){

PCHPt ≤ PA.ICHPt

HCHP
t ≤ HF .ICHPt

(46)

Using the big-M method, the upper and lower range are
defined via M̄ andM , that represent inactive at the predicted
time [30].

9) SOURCES MODEL
• Wind turbine

The produced power by the wind turbine is proportional to
wind speed and is given by [23].

Pwind =



0 v ≤ Vci

Pratewind (
v− Vci
VR − Vci

) Vci ≤ v ≤ VR

Pratewind VR ≤ v ≤ Vco

0 Vco ≤ v

(47)

• Photovoltaic
The imported power by the PV system is proportional to the
solar irradiance as follow [32]:

Ppvt = η
pv
t A

pvGt ∀t ∈ T (48)

• Fuel Cell
The power made through the FC in each period t∈ {1, 2, · · · ,
NT}, HFC

2t , which is proportional with the hydrogen feeding
in peck period is expressed as [32]:

HEL
2t = (PELt − P

FC
t /ηC/l)ηEL ∀t = 1 (49)

HEL
2t = H2FCt−1

(PELt − P
FC
t /ηC/l)ηEL ∀t > 1 (50)

Several constraints related to fuel cell performance are:
PELt ≤ P̄

ELyELt ∀t ∈ T

PFCt ≤ P̄
FCyFCt ∀t ∈ T

yELt + y
FC
t ≤ 1 ∀t ∈ T

(51)

10) EVs CONSTRAINTS
The constraints of EVs participation in EH operation and their
real-life restrictions are defined as:

Pj,f = Pdemj + Pj,0 n ∈ N (52)

Eq. (52) represents the final battery power of the EV when
the plug-in time is ended, which is equal to the total of the
demanded energy through j_th EV and the initial power of the
EV battery [33]. The plug-in time of EV is in the interval of
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[tb,j, te,j], and the demanded energy of the EV can be defined
by the difference between needed energy for charging the
battery and used energy by EVs in the day ahead and reserve
markets.

Pdemj,t+1 = Pdemj,t +

te,j∑
j=tb,j

pchj,tζEV ,ch − pDA,disj,t /ζEV ,ch

−pRES,disj,t n ∈ N (53)

For charging/discharging an EV battery, a certain bound is
considered equal to the battery conditions and existing equip-
ment minus the charging and discharging facilities. Also, the
charging and discharging operation cannot be done at the
same time.{

pdis,DAj,t + pdis,RESj,t ≤ DRn(1− uchn,t ) n ∈ N

pch,DAj,t ≤ CRnuchn,t n ∈ N
(54)

The amount of energy in EVs batteries at the arrival and
departure time is formulated as follow:

Pdemj,t = Parrj,t ∀j, t = Arrival time

Pdemj,t = Pdepj,t ∀j, t = Departure time (55)

The power of the j_th EV at time t is related to three factors
including the initial state of the battery, charging/discharging
power of the EV at the same time. The starting and stopping
time of the charging and discharging of the battery is also
formulated as follow:

pEVj,t = pEVj,t−1 + p
ch
j,tζch − pDA,disj,t − pRES,disj,t

∀t ∈ [tb,j, te,j], n ∈ N

pEVj,t = Pj,0 + pchj,tζch − p
DA,dis
j,t − pRES,disj,t t = tb,j,

∀n ∈ N

pEVj,t = Pj,f t = te,j,

∀n ∈ N

(56)

E. STOCHASTIC SIMULATION FOR MODELING THE
UNCERTAINTY
Some of the energy carriers’ parameters in the EH have
random and vague behavior. Therefore, it is hard to predict
this parameter’s behavior. Finding an appropriate method to
forecast these parameters’ function with high reliability is
significant.
The output power of WT and PV is related to climate

changes, and their forecasted power includes uncertainty.
So, using a stochastic model can try to achieve the most
exact model. Moreover, the price of the energy market and
load demand are affected by consumer demand and climate
behavior. Like WT and PV, it is essential to implement an
effective stochastic method to model the uncertainty of these
parameters.
Finally, for the first time in the EH performance, all of

the EV parameters that have uncertain behavior consist of
coming and leaving time, the energy remaining in the battery

when it becomes available, and the number of EH is consid-
ered.
A scenario-based stochastic model is implemented to

model the uncertainty behavior of all parameters.

F. SCENARIO GENERATION
In this model, a PDF of each parameter is used and shown
in Fig. 3. Scenarios of the PDF curve are divided into seven
levels. Each is of PDF contains a probability rate. It should
be noted that the center of the fourth scenario is the same
predicted value.

1) SOLAR IRRADIANCE UNCERTAINTY
Since the output power of the solar is a function of the solar
irradiance and weather variation. Beta PDF is used to model
the uncertainty of solar irradiance. Beta PDF is a function of
two parameters as ω and ψ [35]:

f (θ ) =



0(ω)0(ψ)
0(ω)+ 0(ψ)

θω−1(1− θ )ψ−1,

0 ≤ θ ≤ 1, ω ≥ 0, ψ ≥ 0
0,

otherwise

(57)

where the ψ and ω variables are computed as follow:

ψ = (1− µ)(
u× (1− µ)

σ 2 − 1) (58)

ω = µ[
µ(1− µ)
σ 2 − 1] (59)

2) WIND SPEED UNCERTAINTY
Similar to the solar operation, wind speed is a function of
weather changes. So, the Weibull distribution function is
implemented to model the wind speed uncertainty [36].

f (υ) =
ϕ

ϑ
(
υ

ϑ
)ϕ−1e−(

υ
c )
ϕ

(60)

3) UNCERTAINTY OF MARKET PRICE AND LOAD
Since the exact value of consumer demands and energy mar-
ket price is not definite. A normal PDF function is used to
model the load and market price uncertainty.

f (x) =
1

∂
√
2π

e−(
(x−τ )2

2∂2
) (61)

4) EVs UNCERTAINTY
In this study, EVs operate in a dual state as both consumer
and energy storage. The EV has three factors of uncertainty
behavior. The saved energy in the battery at the start, their
availability, and needed energy is unclear when the battery is
in the charge or discharge state.

Similar to another uncertainty parameter, EH can detect the
charging state and behavior of EVs in the parking lots.

In order to simplify the uncertainty modeling of the EVs,
like the [37], EVs are categorized into different types. Each
type of electric vehicle has its specifications. These futures
include the obtainability time, initial state of the battery, and
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capacity of the battery. In this method, 1000 different EVs are
classified into 100 types. So, in addition to the small number
of EVs and uncertainty parameters are studied, the EVs’
parameters are linked together, characterizing them causes
the chance to analyze the uncertainty in a more straightfor-
ward and improved way.

Each type of EV in the EH has grouped base on the {Eu,0,
[tb,u, te,u], Emax,u} by assuming that u ∈U.
Implementing this method is caused to reduce the sources

of the uncertainty parameter to the number of EVs. Here, the
number of EVs from each group is assumed as an uncertain
parameter.

The uncertainty of the EVs with w scenarios and type u are
formulated as follow:

nw,u =
∧
n
u
+errnuw u ∈ U (62)

To model the uncertainty of EVs numbers, the normal
distribution method with zero mean and σn as the distribution
error is implemented.

G. K-MEANS CLUSTERING METHOD
In this paper, five uncertainty parameters are modeled. The
PDF is divided into nine levels, and each level represents var-
ious scenarios and errors. In the first step, 1000 scenarios for
each parameter are generated with the mentioned method and
using the k-means clustering approach the scenario numbers
are reduced to 10 scenarios in the MATLAB environment.

H. MULTI-STAGE SOLUTION METHOD
In this study, two functions as economic and emission pol-
lution objectives are considered. A multi-stage solution is
proposed that consists of three stages [38].

First stage: payoff table establishment
Second stage: fuzzy linearization
Third stage: Objective weight calculation.

1) PAYOFF TABLE ESTABLISHMENT
The payoff table is implemented to investigate the relation-
ship between the various objective functions. This table is
used to calculate the weight coefficients. The stages of the
establishment are as follow:

The objective function is chosen as the optimization objec-
tive obji (i = 1, 2 . . . , I) where the i_th objective function
value is objii and another objective functions values are
objik(i, k = 1, 2, . . . , I).

The pay of table is structured as Table.1 based on the
obtained value of the objective functions. Then the lower and
upper value of the objectives is used for objective weight
competition and fuzzy linearization.

The fuzzy linearization and objective value competition are
described in the next section.

2) FUZZY LINEARIZATION
In this study, the descending half-line membership function is
used to process the objective functions of the minimum oper-

TABLE 1. Payoff table of the multi-objective functions.

ation cost and the minimum carbon emissions. The specific
method is as follows:

ρ(obji) =



1, obji ≥ obj∗i
obji − (obj∗i + θi)

θi
, obj∗i < obji

< obj∗i + θi

0, obji ≤ obj∗i

(63)

Eq. (63) represents the half-life reducing half gradient
membership function and is utilized to procedure the objec-
tive functions of the minimum operation cost, which is shown
in Fig. 4.

3) OBJECTIVE WEIGHT CALCULATION
The objective authorization approach is applied to compute
the weight coefficients. The pre-processed objective func-
tion decision matrix [objik]I×I is calculated by Table 1.
Then, to compute the weight of the objective function, the
entropy weight approach is used by implementing the dif-
ferent degrees of the objective function. So, the weights
of any objective could be calculated by the entropy weight
approach [39] as:

Ei = −ϕ
n∑
j=1

nij ln(r ′ij), i = 1, 2, . . . , k (64)

where ϕ = 1/ln(n) is the constant represented with the sample
number, where Ei ∈ [0, 1]. r′ij meets 0 < r ij′ < 1, and

∑
r′ij

= 1 when rij = 0, rijln(rij) = 0.
• Compute the weights of the objective function obji as

follows:

di = 1− Ei, i = 1, 2, . . . , k (65)

λi =
di∑i
i=1 di

, i = 1, 2, . . . , k (66)

Based on the weight coefficients of various objective func-
tions, the total single objective function can be formulated as
follows:

OBJ =
I∑
i=1

λiµ(obji), (67)

where, OBJ represents the total single objective function,
which can achieve the best acceptable solution for matching
all objective functions.
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FIGURE 5. The solution steps of the multi-objective functions.

Fig. 5 depicts the flowchart of the proposed solution
method to optimize energy management of the EH as a multi-
objective problem.

III. NUMERICAL RESULTS AND SIMULATION
In this section, the optimum scheduling of the proposed EH
as shown in Fig. 1 are studied in the energy and reserve
markets. It includes renewable sources as WT, PV, and fuel
cell, storages as ESS and TSS, and EVs in both states of
storage and generator.

A. INPUT DATA
In this part, all the essential data for implementing the short-
term optimized scheduling of the proposed EH is presented.
The main aim of the proposed structure is to minimize the
economic and emission pollution costs using participating in
the day-ahead energy and reserve markets. All of the needed
data are categorized in two sections a real-time data and
forecasted data. The needed forecasted data as WT speed,
solar irradiance, load demand, market price, and number of
EVs based on the real-time data are made using the Mont
Carlo approach in 600 scenarios, and the by k-mean cluster-

FIGURE 6. Produced and decreased scenarios for wind speed.

FIGURE 7. Produced and decreased scenarios for PV irradiance.

FIGURE 8. Produced and decreased scenarios for energy market price.

ingmethod these data are decreased to ten scenarios. In Fig. 6,
wind turbine speed scenarios with the red line, and 10 reduced
scenarios with different color is plotted. Similar to the wind
turbine, other mentioned uncertainty parameters are shown in
Figs.7-9.

The last uncertain parameter is the EVs number of each
type of electric vehicle based on the battery capacity in the
interval of [5 90] kwh and also charging/discharging enabling
which have enhanced all time significantly. Some of the
parameters used to classify electric vehicles are analyzed
in [40]. The obtained necessary data are integrated with the
proposed method of scenario generation. 11 types of popular
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FIGURE 9. Produced and decreased scenarios for electrical load demand.

TABLE 2. Typical EVs in the market regarding their storage capacity [40].

EVs, based on the availability, capacity, and another critical
behavior parameter, in the German market with sales statices
are introduced in Table 2 [40]. Moreover, their percentage is
used as a range in [0 1]. In every iteration, a random number
among the 0 and 1 states which type of EVs is chosen. Based
on the total capacity of parking lots, the number of each type
of EV is produced. The number of different types of EVs for
the day-ahead in each scenario, the overall number of EVs
in each scenario, and the reduced 10 number scenarios are
depicted in Fig. 10.

Fig. 11 shows the energy, gas, and heat demand of the EH
(kW). Table 3 lists the essential parameters of TSS, ESS,
and WT. The real-time energy demand and reserve market
price are exposed in Fig. 12. The data associated with the
various units in the energy hub (CHP, boiler, gas, grid, PV,
etc.) is given in Table 4. The emission factor of NO2, SO2,
and CO2 in each unit of EH in kg/kWh is presented in
Table 5. In Fig. 13, the required parameters of the CHP unit
are defined. The operation cost of numerous grids and units
are given in Table 6.

Finally, the proposed EHmodel with stochastic constraints
has a nonlinear behavior that is modeled using the equivalent
MINLP method and is solved with CPLEX in GAMS.

In order to assess the proposed method, three cases are
classified as follow:

Case 1: Simple EH without EVs and reserve market
Case 2: Considering the EVs and uncertainty factors
Case3: Considering EH with EVs and reserve market.

FIGURE 10. (a) The number of different types of EVs for the day-ahead in
each scenario (b) Total number of EVs for the day-ahead in each scenario
(c) reduced 10 number scenarios of each type of EVs.

TABLE 3. TSS, ESS, and WT parameters.

Case 1: In this case, the simple structure of the EH is
assumed and both objective functions are minimized using
the multi-stage solution method. At first, to investigate the
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FIGURE 11. Energy, gas, and heat demand of energy hub.

FIGURE 12. Electricity market and reserve market cost [24].

FIGURE 13. Cartesian diagram of CHP unit output.

difference between novel multi-stage method and other meth-
ods presented in [31], the results are shown in Table 7:

So, applying a new method, in addition to responding
quickly and easily, reduces the operation and emission pol-
lution costs. The total operation cost of EH without and with
EDRP, TDRP, and GDRP is $2581.700, $2487.808, respec-
tively. Also, the emission pollution of EH without and with
EDRP, TDRP, and GDRP are 10190.837kg, 10089.064kg,

TABLE 4. The required data of various units in EH.

TABLE 5. The emission coefficient of EH units.

TABLE 6. The operation cost of upstream grid and units.

TABLE 7. Compared methods.

respectively. It is obvious that implementing DRP is caused to
reduce both objective functions. The purchasing power from
the upstream and gas network are shown in Fig. 14. Also, the
output power of renewable sources is shown in Fig. 15.
Case 2: In this case, the EVs are integrated with EH, and

the uncertainty factor of solar irradiance, wind speed, market
price, load, and EVs are applied. The total number of EVs
is equal to 21. The operation cost and emission pollution
values are $ 2109.250 and 8139.657 kg, respectively which
is decreased about 15.2% and 19.32% rather than case 1,
respectively. It is clear that implementing the EVs is caused
to reduce both objective functions, as EVs don’t produce
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FIGURE 14. Imported power from upstream grid and gas network with
and without DRP.

FIGURE 15. The output power of WT, PV, and FC.

FIGURE 16. Imported power by a different unit.

emission pollution, this cost is significantly reduced but the
most effective of EVs is on the emission pollution issue
due these devices do not produce any pollution. In Fig. 16,
produced power by different units of EH is shown. Also, the
purchased gas from CHP, boiler, and gas network are plotted
in Fig. 17. Finally, the charged and discharge power of EVs,

FIGURE 17. Imported power by a different unit.

FIGURE 18. a). charge and discharge level of 11 EVs, (b) Charge and
discharge power of total EVs, ESS, and TSS.

ESS, and TSS is represented in Fig. 18. Most of the required
energy for EH is provided by EVs because the emission and
cost of EVs are appropriate for the ESS and TSS.

Charge and discharge power of total EVs, ESS, and TSS.
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FIGURE 19. Day-ahead forecast the cost of energy and reserve markets,
bought energy by the upstream grid and reserve market.

TABLE 8. The best result for three test cases using a multi-stage method.

It is clear from Fig.18 that part of the rechargeable energy
of electric vehicles is used to supply the demanded energy.
Case 3: Finally, in this case, EH is participating with the

reserve market for energy management. In this case, when
the load demand is high, EH tries to buy energy from the
reserve market at a low price. So, the amount of buying
energy from the upstream network with high costs is reduced.
In this case, the operation cost and emission pollution value
are $1638.577 and 7642.973 kg, respectively. The operation
cost of case 3 relative to the case 2 and 1 is decreased about
22.31% and 34.1%. Also, the emission pollution value of case
3 related to case 2 and case 1 is reduced by about 6.1% and
24.2%. Therefore, it can be concluded that the reserve market
has a greater impact on operating costs. In Fig. 19, day-ahead
forecasting cost of energy and reserve markets bought energy
via upstream grid and reserve market is shown. It is clear that
applying the reserve market is caused to flat the profile of
load.

Finally, the operation costs and emission pollution costs of
the 3 cases are listed in Table. 8. As expected, implementing
EVs is caused to the reduction of both objective functions
relative to case 1, but the second objective is significantly
reduced. Finally, participating in the reserve market is a good
choice for energy management in peak time and also opera-
tion cost minimization.

IV. CONCLUSION
In this study, the short-term optimal scheduling of EH as a
small city using a stochastic optimizationmethodwas applied
with two objective functions in the energy and reservemarket.
In EH, three storages consisting of TSS, ESS, and EVs in
discharging mode, were used. Renewable and nonrenewable

resources such as WT, PV, FC, CHP, upstream grid, and
natural gas station were considered. The economic operation
cost and air pollution problem were considered as a bi-level
objective considering EDRP, TDRP, and GDRP, to obtain
the EH optimal scheduling in an uncertain situation. The
wind speed, solar irradiance, loads, market price, and the
number of EVs were assumed as uncertain parameters. The
multi-stage solution method was applied to speed up sys-
tem performance and simplify procedures of the bi-objective
optimization problem. One of the main aids of this study
is integrating the EVs with the EH considering the three
uncertainties of EVs. This three-parameter is converted to one
uncertainty parameter which is the number of EVs. Also, due
to the uncertain behavior of some elements, implementing
appropriate storage is a good option.

Three test cases are defined to analyze the effectiveness
of the proposed method with considering reserve market and
EVs. Case 1 was considered as a base case of the EH without
EVs and reserve market, however, in this case, the effect of
applying different DRPs was investigated. In case 2, EVs
were integrated with the EH and both modes of consumer
and producer are applied. Two objective functions (economic
and environmental cost) were decreased by about 5.34%
and 3.54%, compared to Case 1, respectively. Finally, the
energy hub has traded with the energy and reserve markets
for bidding and sailing energy. In this case, the operation
and pollution emission costs were decreased compared to
Case 2 by about 6.27%, and 8.63%, respectively. It can be
concluded that the operation cost and pollution emission of
the EH is highly minimized by implementing the proposed
three-stage method and reserve market participation in an
uncertain environment.

REFERENCES
[1] M. Mohammadi, Y. Noorollahi, B. Mohammadi-Ivatloo, and H. Yousefi,

‘‘Energy hub: From a model to a concept—A review,’’ Renew. Sustain.
Energy Rev., vol. 80, pp. 1512–1527, Dec. 2017.

[2] X. Zhang, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, ‘‘Opti-
mal expansion planning of energy hub with multiple energy infras-
tructures,’’ IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2302–2311,
Sep. 2015.

[3] S. Bahramara and H. Golpára, ‘‘Robust optimization of micro-grids oper-
ation problem in the presence of electric vehicles,’’ Sustain. Cities Soc.,
vol. 37, pp. 388–395, Feb. 2018.

[4] H. Sadeghi, M. Rashidinejad, M. Moeini-Aghtaie, and A. Abdollahi, ‘‘The
energy hub: An extensive survey on the state-of-the-art,’’ Appl. Thermal
Eng., vol. 161, Oct. 2019, Art. no. 114071.

[5] S. R. Bull, ‘‘Renewable energy today and tomorrow,’’ Proc. IEEE, vol. 89,
no. 8, pp. 1216–1226, Aug. 2001.

[6] M. Murshed, ‘‘Can regional trade integration facilitate renewable energy
transition to ensure energy sustainability in south Asia?’’ Energy Rep.,
vol. 7, pp. 808–821, Nov. 2021.

[7] S. Li, W. Hu, D. Cao, T. Dragičević, Q. Huang, Z. Chen, and
F. Blaabjerg, ‘‘Electric vehicle charging management based on deep rein-
forcement learning,’’ J. Mod. Power Syst. Clean Energy, pp. 1–12, 2021.

[8] R. Gough, C. Dickerson, P. Rowley, and C. Walsh, ‘‘Vehicle-to-grid fea-
sibility: A techno-economic analysis of EV-based energy storage,’’ Appl.
Energy, vol. 192, pp. 12–23, Apr. 2017.

[9] W. Infante, J. Ma, X. Han, and A. Liebman, ‘‘Optimal recourse strat-
egy for battery swapping stations considering electric vehicle uncer-
tainty,’’ IEEE Trans. Intell. Transp. Syst., vol. 21, no. 4, pp. 1369–1379,
Apr. 2020.

VOLUME 10, 2022 17363



E. Mokaramian et al.: Optimal Energy Hub Management Integrated EVs and RES

[10] E. Mokaramian, H. Shayeghi, F. Sedaghati, A. Safari, and H. H. Alhelou,
‘‘A CVaR-robust-based multi-objective optimization model for energy hub
considering uncertainty and E-fuel energy storage in energy and reserve
markets,’’ IEEE Access, vol. 9, pp. 109447–109464, 2021.

[11] X. Lu, Z. Liu, L. Ma, L. Wang, K. Zhou, and N. Feng, ‘‘A robust opti-
mization approach for optimal load dispatch of a community energy hub,’’
Appl. Energy, vol. 259, Oct. 2020, Art. no. 11419.

[12] F. Jamalzadeh, A. H. Mirzahosseini, F. Faghihi, and M. Panahi, ‘‘Opti-
mal operation of energy hub system using hybrid stochastic-interval
optimization approach,’’ Sustain. Cities Soc., vol. 54, Mar. 2020,
Art. no. 101998.

[13] R. Li, W. Wei, S. Mei, Q. Hu, and Q. Wu, ‘‘Participation of an
energy hub in electricity and heat distribution markets: An MPEC
approach,’’ IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3641–3653,
Jul. 2018.

[14] A. Parisio, C. Del Vecchio, and A. Vaccaro, ‘‘A robust optimization
approach to energy hub management,’’ Int. J. Elect. Power Energy Syst.,
vol. 42, no. 1, pp. 98–104, 2012.

[15] B. Faridpak, A. Alahyari, M. Farrokhifar, and H. Momeni, ‘‘Toward small
scale renewable energy hub-based hybrid fuel stations: Appraising struc-
ture and scheduling,’’ IEEE Trans. Transport. Electrific., vol. 6, no. 1,
pp. 267–277, Mar. 2020.

[16] V. Davatgaran, M. Saniei, and S. Mortazavi, ‘‘Optimal bidding strategy for
an energy hub in energy market,’’ Energy vol. 148, pp. 482–493, 2018.

[17] X. Lu, Z. Liu, L. Ma, L. Wang, K. Zhou, and N. Feng, ‘‘A robust optimiza-
tion approach for optimal load dispatch of community energy hub,’’ Appl.
Energy, vol. 259, Feb. 2020, Art. no. 114195.

[18] M. Jalili, M. Sedighizadeh, andA. S. Fini, ‘‘Stochastic optimal operation of
a microgrid based on energy hub including a solar-powered compressed air
energy storage system and an ice storage conditioner,’’ J. Energy Storage,
vol. 33, Jan. 2021, Art. no. 102089.

[19] M. H. Shams, M. Shahabi, M. MansourLakouraj, M. Shafie-Khah, and
J. P. S. Catalão, ‘‘Adjustable robust optimization approach for two-stage
operation of energy hub-based microgrids,’’ Energy, vol. 222, May 2021,
Art. no. 119894.

[20] D.Wu, J. Bai,W.Wei, L. Chen, and S.Mei, ‘‘Optimal bidding and schedul-
ing of AA-CAES based energy hub considering cascaded consumption of
heat,’’ Energy, vol. 233, Oct. 2021, Art. no. 121133.

[21] P. Li, Z. Wang, J. Wang, W. Yang, T. Guo, and Y. Yin, ‘‘Two-stage
optimal operation of integrated energy system considering multiple uncer-
tainties and integrated demand response,’’ Energy, vol. 225, Jun. 2021,
Art. no. 120256.

[22] X. Xu, W. Hu, W. Liu, Y. Du, R. Huang, Q. Huang, and Z. Chen, ‘‘Look-
ahead risk-constrained scheduling for an energy hub integratedwith renew-
able energy,’’ Appl. Energy, vol. 297, Sep. 2021, Art. no. 117109.

[23] E. Mokaramian, H. Shayeghi, F. Sedaghati, and A. Safari, ‘‘Four-objective
optimal scheduling of energy hub using a novel energy storage, consid-
ering reliability and risk indices,’’ J. Energy Storage, vol. 40, Oct. 2021,
Art. no. 102731.

[24] A. Heidari and R. C. Bansal, ‘‘Probabilistic correlation of renew-
able energies within energy hubs for cooperative games in inte-
grated energy markets,’’ Electr. Power Syst. Res., vol. 199, Oct. 2021,
Art. no. 107397.

[25] M.-W. Tian, A. G. Ebadi, K. Jermsittiparsert, M. Kadyrov, A. Ponomarev,
N. Javanshir, and S. Nojavan, ‘‘Risk-based stochastic scheduling of energy
hub system in the presence of heating network and thermal energy man-
agement,’’ Appl. Thermal Eng., vol. 159, Aug. 2019, Art. no. 113825.

[26] M. Roustai, M. Rayati, A. Sheikhi, and A. Ranjbar, ‘‘A scenario-based
optimization of smart energy hub operation in a stochastic environment
using conditional-value-at-risk,’’ Sustain. Cities Soc., vol. 39, pp. 309–316,
May 2018.

[27] H. Lin, Y. Liu, Q. Sun, R. Xiong, H. Li, and R. Wennersten, ‘‘The impact
of electric vehicle penetration and charging patterns on the management
of energy hub multi-agent system simulation,’’ Appl. Energy, vol. 230,
pp. 189–206, Oct. 2018.

[28] X. Lu, Z. Liu, L. Ma, L. Wang, K. Zhou, and N. Feng, ‘‘A robust optimiza-
tion approach for optimal load dispatch of community energy hub,’’ Appl.
Energy, vol. 259, Feb. 2020, Art. no. 114195.

[29] S. Zeynali, N. Rostami, A. Ahmadian, and A. Elkamel, ‘‘Robust multi-
objective thermal and electrical energy hub management integrating
hybrid battery-compressed air energy storage systems and plug-in-electric-
vehicle-based demand response,’’ J. Energy Storage, vol. 35, Mar. 2021,
Art. no. 102265.

[30] S. M. Nosratabadi, M. Jahandide, and J. M. Guerrero, ‘‘Robust scenario-
based concept for stochastic energymanagement of an energy hub contains
intelligent parking lot considering convexity principle of CHP nonlin-
ear model with triple operational zones,’’ Sustain. Cities Soc., vol. 68,
May 2021, Art. no. 102795.

[31] S. M. Nosratabadi, R. Hemmati, and P. K. Gharaei, ‘‘Optimal planning of
multi-energy microgrid with different energy storages and demand respon-
sive loads utilizing a technical-economic-environmental programming,’’
Int. J. Energy Res., vol. 45, no. 5, pp. 6985–7017, Apr. 2021.

[32] F. Cingoz, A. Elrayyah, and Y. Sozer, ‘‘Optimized resource management
for PV–fuel-cell-based microgrids using load characterizations,’’ IEEE
Trans. Ind. Appl., vol. 52, no. 2, pp. 1723–1735, Mar. 2016.

[33] H. Rashidizadeh-Kermani, H. Najafi, A. Anvari-Moghaddam, and
J. Guerrero, ‘‘Optimal decision-making strategy of an electric vehicle
aggregator in short-term electricity markets,’’ Energies, vol. 11, no. 9,
p. 2413, Sep. 2018.

[34] T. Niknam, R. Azizipanah-Abarghooee, andM. R. Narimani, ‘‘An efficient
scenario-based stochastic programming framework for multi-objective
optimal micro-grid operation,’’ Appl. Energy, vol. 99, pp. 455–470,
Nov. 2012.

[35] G. Gruosso and P. Maffezzoni, ‘‘Data-driven uncertainty analysis of distri-
bution networks including photovoltaic generation,’’ Int. J. Electr. Power
Energy Syst., vol. 121, Oct. 2020, Art. no. 106043.

[36] S. Sánchez, V. Hidalgo, M. Velasco, and D. Puga, ‘‘Parametric study of
a horizontal axis wind turbine with similar characteristics to those of the
Villonaco wind power plant,’’ J. Appl. Res. Technol. Eng., vol. 2, no. 2,
pp. 51–62, 2021.

[37] A. Ashtari, E. Bibeau, S. Shahidinejad, and T. Molinski, ‘‘PEV charging
profile prediction and analysis based on vehicle usage data,’’ IEEE Trans.
Smart Grid, vol. 3, no. 1, pp. 341–350, Mar. 2012.

[38] L. Ju, Q. Tan, Y. Lu, Z. Tan, Y. Zhang, and Q. Tan, ‘‘A CVaR-robust-based
multi-objective optimization model and three-stage solution algorithm
for a virtual power plant considering uncertainties and carbon emission
allowances,’’ Int. J. Electr. Power Energy Syst., vol. 107, pp. 628–643,
May 2019.

[39] L. Ju, Z. Tan, H. Li, Q. Tan, X. Yu, andX. Song, ‘‘Multi-objective operation
optimization and evaluation model for CCHP and renewable energy-based
hybrid energy system driven by distributed energy resources in China,’’
Energy, vol. 111, pp. 322–340, 2016.

[40] Market Share of Electric Vehicles in Germany From 2014 to 2021.
Accessed: Mar. 2021. [Online]. Available: https://www.statista.com/
statistics/1166826/electric-vehicles-market-share-germany/

ELHAM MOKARAMIAN received the B.S. and
M.Sc. degrees in electrical engineering from the
University of Mohaghegh Ardabili (UMA), Ard-
abil, Iran, in 2013 and 2016, respectively, where
she is currently pursuing the Ph.D. degree in
electrical engineering. Her major research inter-
ests include hub energies, smart grids, renewable
energy, and application of artificial intelligence to
power systems.

17364 VOLUME 10, 2022



E. Mokaramian et al.: Optimal Energy Hub Management Integrated EVs and RES

HOSSEIN SHAYEGHI (Senior Member, IEEE)
received the Ph.D. degree in electrical engineering
from the Iran University of Science and Tech-
nology, Tehran, Iran, in 2006. He is currently a
Full Professor and the Scientific Director of the
Energy Management Research Center, University
of Mohaghegh Ardabili, Ardabil, Iran. He has
authored and coauthored of 12 book chapters in
international publishers and more than 425 articles
in international journals and conference proceed-

ings that received in Google Scholar more than 6505 citations with an
H-index equal to 40. His research interests include power system control
and operation, microgrid and smart grids control and energy management,
and FACTs device. He has been included in the Thomson Reuters’ list of the
top 1% of most-cited technical engineering scientists in 2015–2021 contin-
uously. He is the Editor-in-Chief of Journal of Operation and Automation in
Power Engineering and Journal of Energy Management and Technology.

FARZAD SEDAGHATI was born in Ardabil, Iran,
in 1984. He received the M.S. and Ph.D. degrees
in electrical engineering from the University of
Tabriz, Tabriz, Iran, in 2010 and 2014, respec-
tively. In 2014, he joined the Faculty of Engineer-
ing, Mohaghegh Ardabili University, where he has
been an Assistant Professor, since 2014. His cur-
rent research interests include renewable energies
and hub energies.

AMIN SAFARI received the B.Sc. degree in elec-
trical engineering from the University of Tabriz,
Tabriz, Iran, in 2007, the M.Sc. degree from the
University of Zanjan, in 2009, and the Ph.D.
degree from the Iran University of Science and
Technology, Iran, in 2013. He is currently an
Assistant Professor with the Department of Elec-
trical Engineering, Azarbaijan Shahid Madani
University, Tabriz. He has published more than
140 articles in international journals and confer-

ence proceedings. His research interests include the application of artificial
intelligence and heuristic optimization algorithms to power system design,
FACTS device, power system analysis and control, renewable energy, control
and management of microgrids, and smart grid. He was selected as a Distin-
guished Researcher of the Azarbaijan Shahid Madani University, in 2016.

HASSAN HAES ALHELOU (Senior Member,
IEEE) is currently a Faculty Member with Tisheen
University, Lattakia, Syria. He is included in the
2018 and 2019 Publons list of the top 1% best
reviewer and researchers in the field of engineer-
ing. He has published more than 100 research
articles in the high-quality peer-reviewed journals
and international conferences. He has participated
in more than 15 industrial projects. His current
research interests include power systems, power

system dynamics, power system operation and control, dynamic state esti-
mation, frequency control, smart grids, micro grids, demand response, load
shedding, and power system protection. He was a recipient of the Outstand-
ing Reviewer Award from Energy Conversion and Management journal,
in 2016, ISA Transactions journal, in 2018, Applied Energy journal, in 2019,
andmany other awards. Hewas also a recipient of the Best Young Researcher
in the Arab Student Forum Creative among 61 researchers from 16 countries
at Alexandria University, Egypt, in 2011. He has also performed reviews for
high prestigious journals, including the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, the IEEE TRANSACTIONSON INDUSTRIALELECTRONICS,Energy Con-
version and Management, Applied Energy, and the International Journal of
Electrical Power and Energy Systems.

VOLUME 10, 2022 17365


