
Received January 7, 2022, accepted January 20, 2022, date of publication January 26, 2022, date of current version February 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146336

Two Novel Semi-/Auto-Adaptive SNR Algorithms
to Efficiently Train Deep Neural SPA Decoders
CHUN-MING HUANG
Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632301, Taiwan

e-mail: huangcm@nfu.edu.tw

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 107-2218-E-150-008-MY2.

ABSTRACT In the past few years, deep learning has been widely used in various fields due to its outstanding
progress. One of the latest applications of deep learning is to use a neural network (NN) with trainable
multiplicative weights to design decoders for error-correcting codes. High quality data are essential for
deep learning to train robust NN models. In this study, two novel semi-/auto-adaptive SNR algorithms are
proposed to efficiently train the neural decoders based on the Sum-Product Algorithm (SPA). For illustration,
several neural SPA decoders for the Bose-Chaudhuri-Hocquenghem (BCH) code and low-density parity-
check (LDPC) code have been constructed as examples. Simulation results show that, compared with the
original neural decoders, the performance of these neural decoders trained by the proposed algorithms can
be improved in the range of 0.2 to 0.6 dB. Moreover, the training time required for these decoders to achieve
convergence can be reduced by up to 28.8% for the BCH code, and up to 35.6% for the LDPC code, without
increasing decoding complexity.

INDEX TERMS Neural network (NN), sum-product algorithm (SPA), Bose-Chaudhuri-Hocquenghem
(BCH) code, low-density parity-check (LDPC), semi-/auto-adaptive SNR algorithm.

I. INTRODUCTION
Owing to the presence of noise interference in digital mes-
sage transmission, the received message may not be exactly
the same as what was sent. To achieve reliable commu-
nication, it is necessary to detect and correct the errors
by using error correcting codes (ECCs). In the past few
decades, several near-capacity ECCs have been proposed for
error-free data transmission over noisy channels, such as the
turbo codes [1], low-density parity-check (LDPC) codes [2],
and polar codes [3]. Shao et al. provided an overview and
comparison of the turbo code, LDPC code, and polar code
in [4]. Detailed descriptions of the capabilities of these three
codes are given for meeting different requirements associated
with the enhanced Mobile Broad Band (eMBB), Ultra-
Reliable Low Latency Communication (URLLC), and mas-
sive Machine Type Communication (mMTC) applications
of 5G, as well as the application specific integrated circuit
(ASIC) implementation of the decoders. Among these codes,
LDPC codes have attracted widespread attention through
the excellent performance of the iterative belief propaga-
tion (BP) decoding algorithm [2]. Because of its widespread

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

popularity, adaptability, and parallelism in cost-effective
hardware implementations, LDPC codes have been used
to improve data reliability in various communication
applications [5].

The BP decoding algorithms are widely preferred in many
wireless communication standards because of their excellent
error rate performance. Because the BP decoding algorithms
involve great number of logarithmic and multiplicative oper-
ations when updating the check node, the high computational
complexity burdens the hardware. In an effort to reduce the
computational complexity, Fossorier et al. introduced min-
sum algorithm (MSA) for fast iterative decoding of LDPC
codes [6]. However, MSA has significant performance degra-
dation, because the computation of the check-to-variable
message is simplified to a minimum operation instead of
a hyperbolic tan calculation. Chen and Fossorier [7] intro-
duced the Normalized Min-Sum (NMS) and Offset Min-
Sum (OMS) algorithms to modify the MS algorithm to
achieve better performance. Numerical results showed that
with one properly chosen parameter for each of these two
algorithms, performances can be close to that of the BP
algorithm. In [8], one simple method with less complex
arithmetic operations to find the offset correction factor had
been demonstrated. Chang et al. [9] proposed a conditional

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12607

https://orcid.org/0000-0001-7748-9404
https://orcid.org/0000-0003-1118-7109


C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

variable node (VN) selecting metric to realize informed
dynamic scheduling (IDS) LDPC decoding schedules. The
goal is to find VNs with probable incorrect decisions and
correct the errors by updating them. To reduce decoding
latency, multi-edge updating versions of algorithms are real-
ized by increasing the degrees of parallelism of the update.
In [10], Roberts et al. conducted a comprehensive review of
various LDPC decoding algorithms based on their working
principles, error correcting capabilities, and computational
complexity. However, the BP decoding algorithm may be
not suitable for high density parity check (HDPC) codes,
such as Reed Solomon (RS) codes and Bose-Chaudhuri-
Hocquenghem (BCH) codes. Because these HDPC codes
have a large number of short cycles in the graph, there will
be correlation between the messages, which results in error
propagation.

In recent years, deep learning has demonstrated tremen-
dous progress in various tasks, such as machine transla-
tion, autonomous vehicles, and object recognition. Serval
researchers have presented methods of applying deep learn-
ing to wireless communication systems. Almohamad et al.
proposed to sample the received signals and generate the cor-
responding asynchronous amplitude histograms (AAHs) [11]
and two-dimensional asynchronously sampled in-phase-
quadrature amplitudes’ histograms (2D-ASIQHs)-based
images [12]. Due to the unique statistical properties of the
AAHs, they can be used to obtain the information about
different signal parameters (i.e., modulation type and SNR).
Next, the significant features of these AAHs (or 2D-ASIQHs
images) are extracted through Principal components analysis
(PCA) and used to train the Support Vector Machine (SVM)
based classifier and regressor. Simulation results show that
this SVM-based system has a good accuracy rate in iden-
tifying and predicting the modulation type and SNR value
of the received signal. Obtaining the modulation type and
SNR information in advance will enable the receiver to make
corresponding adjustments to improve system performance,
which is crucial for the receiver design in future wireless
communication systems. Nachmani et al. [13], [14] proposed
one deep neural network (DNN) architecture for decoding
HDPC codes. Because the edges of the Tanner graph are
assigned with trainable weights and biases, this DNN decoder
can be regarded as a weighted-BP (WBP) decoder. From
the simulation, it can be seen that the performance can be
improved by optimally training the neural network param-
eters. Gruber et al. [15] proposed to use a fully-connected
(FC) neural network (NN) to decode the random codes
and structure codes. When the code length was very short,
the simulation results showed that this NN decoder per-
formed as well as the maximum a posterior (MAP) decoder.
Kim et al. [16] demonstrated that trained recurrent neural
network (RNN) architectures can decode convolutional and
turbo codeswith close to optimal performance under the addi-
tive white Gaussian noise (AWGN) channel. Lugosch and
Gross [17] proposed to apply deep learning technology to the
offset min-sum algorithm (OMS) to achieve similar decoding

performance as that in [13], while requiring fewer trainable
parameters and lower hardware complexity. Wang et al. [18]
adopted model-driven deep learning and proposed shared
neural normalized min-sum (SNNMS) decoding to reduce
the number of correction factors and lower the complexity.
Vasić et al. [19] utilized DNNs to MSA for decoding LDPC
codes. The simulation results showed that the neural decoder
can perform no worse than conventional MSA. Chu et al. [20]
proposed a neural-network optimized low-resolution decod-
ing (NOLD) algorithm to improve the performance degra-
dation of the MSA incurred by low-resolution quantization.
In [21], we applied the DNN architecture to the Sum-Product
Algorithm (SPA) decoder to improve the performance of the
optical code-divisionmultiple-access (OCDMA) systemwith
LDPC codes.

Generating a suitable training dataset under various signal-
to-noise (SNR) ranges to train a robust neural network model
is an interesting and important issue. In [14], Nachmani et al.
demonstrated that different decoding performances on the
same validation set were obtained while training WBP mod-
els with varying SNR ranges. Gruber et al. [15] introduced a
metric to compare the training performance of an NN decoder
having a particular SNR with that of an MAP decoder over a
range of SNR values. If the training set includes the entire
codebook, for both structure and random codes, training the
NN decoders with a certain SNR value can generalize input
values with arbitrary SNR. Otherwise, only the NN decoder
used for structure codes would be capable of generalizing
unknown codewords. In [22], Lian et al. utilized param-
eter adapter networks (PANs) to establish the relationship
between the SNR and WBP parameters. Several shallow
NNs were used to estimate the SNR-dependency for each
parameter in the decoding algorithm. In [23], Be’Ery et al.
proposed two supervised learning methods, which actively
sampled the training data through hamming distance and
reliability parameters, respectively. It was shown that this
active sampling method provides an efficient way to separate
useful training data.

As the method of finding useful data is a key factor for
training the NN, we propose two novel semi-/auto-adaptive
SNR algorithms without increasing the complexity of the
decoder. These algorithms can be applied to the aforemen-
tioned DNN decoders, such as the neural SPA (NSPA), neu-
ral OMS (NOMS), and SNNMS. For clarity of exposition,
we take the NSPA used in [13], [14], [21] as an example
in this work. Intuitively, the BCH codes in [13], [14] and
LDPC codes in [21] are also used to verify the effec-
tiveness of the proposed algorithms. In addition, inspired
by [13], [14], two modified NSPA (MNSPA) decoders
are investigated and demonstrated. From the simulation
results, we can observe that the performance of these neural
decoders can be further improved using the proposed adaptive
SNR algorithms.

The remainder of this paper is organized as follows.
Section II introduces the necessary background for the neural
decoder. In Section III, two novel semi-/auto-adaptive SNR

12608 VOLUME 10, 2022



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

algorithms are described in detail. Section IV presents the
simulation results, and Section V concludes the paper.

II. PRELIMINARIES
Consider one (N , K ) linear block code with a parity-check
matrix H, where N is the code length and K is the message
length. Let x = (x1, x2, . . . , xN ) be the codeword transmitted
over the AWGN channel with common binary phase-shift
keying (BPSK) mapping to {+1} and y = (y1, y2, . . . , yN )
be the corresponding received output vector, where yv =
(−1)xv + nv for 1 < v < N, and nv is Gaussian noise with
standard deviation σ . The signal-to-noise ratio per bit used in
this work can be represented as SNR = Es/(RN0) = 1/(2σ 2),
where Es denotes the signal energy, R is the code rate of the
linear block code and N0 is the power spectral density of
noise.

Thus, the initial log-likelihood ratio (LLR) of the vth
received value can be calculated as

Lv = log
Pr (xv = 0|yv)
Pr (xv = 1|yv)

=
2yv
σ 2 (1)

A. SUM-PRODUCT ALGORITHM (SPA) DECODER
First, we review the sum-production algorithm, which is an
iterative computing algorithm for decoding the LDPC code.
For each iteration, the posterior LLRs of the received vector
are computed by exchanging the messages between process-
ing nodes. The symbols and notations used in SPA are listed
as follows:
• E : the number of edges in the Tanner graph.
• T : the maximum iteration number in the SPA.
• M (c): The set of variable nodes connected to check

node c.
• M (c)\v: The set of variable nodes connected to check

node c, not including variable node v.
• N (v): The set of check nodes connected to variable

node v.
• N (v)\c: The set of check nodes connected to variable

node v, not including check node c.
• Lk(a,b): The LLRmessage from node a to node b in hidden

layer k .
At the i-th iteration, the messages from variable nodes to

check nodes are computed by:

L i(v,c) = Lv +
∑

c′∈N (v)\c

L i−1(c′,v) (2)

Notice that L0(c′,v) = 0 due to no information being present at
the check nodes.

The messages from check nodes to variable nodes are
updated by:

L i(c,v) = 2 tanh−1

 ∏
v′∈M(c)\v

tanh

(
L i−1
(v′,c)

2

) (3)

The final output variable node value is calculated by:

x̂v = Lv +
∑

c′∈N (v)

L2T(c′,v) (4)

FIGURE 1. The NN architecture for the (9, 2) linear block code.

At the end of each iteration, the decoded codeword can be
obtained by:

ŷv =

{
1, if x̂v < 0
0, else,

for 1 ≤ v ≤ N (5)

Procedure stops if ŷ HT
= 0 or a maximum number of

iteration has been reached.

B. DEEP NEURAL NETWORK
Next, we introduce the structure of these DNN decoders,
whose network architectures are non-fully connected neural
networks. Essentially, this can be viewed as a Trellis represen-
tation of the Tanner graph, which extends two hidden layers
from one iteration of the SPA.

The decoder is composed of one input layer of size N , 2T
hidden layers of size E, and one output layer of size N . For
each hidden layers, each neuron in that layer indicates the
message transmitted over an edge in the Tanner graph. For
illustration, one 9 × 9 parity-check matrix H is constructed
as follows:

H =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0


(6)

By using Gaussian elimination, we can know that H has a
rank of 7, which means that it can be considered as a parity-
check matrix of (9, 2) linear block code. The code length N
is 9, and the column and row weights are both 3. Assume
that the maximum iteration number T is 3, the corresponding
decoder has one input layer, six hidden layers, and one output
layer. The first (last) layers have 9 input (output) nodes, and

VOLUME 10, 2022 12609



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

all six hidden layers have 27 neurons corresponding to the
27 edges over its Tanner graph, as shown in Fig. 1.

The connections among these layers are determined as
follow:
1. For the first (last) layer, neuron t is connected to a single

input node xv in the input (output) layer if xv is incident to
edge t , where 1 < v < 9 and 1 < t < 27.

2. For the remaining odd (or even) hidden layers, neuron t
in this layer is connected to the neurons in the previous
layer, whose corresponding edges in the Tanner graph are
incident to N (v)\c (or M (c)\v).
Note that since there is no information on the check nodes

after the first initialization, the first and second hidden layers
can bemerged together. The self LLRmessages Lv are plotted
as small arrows in Fig. 1.

C. NSPA DECODER
For the NSPA decoder [13], only the variable-to-check mes-
sages (i.e., odd hidden layers) and the output node are
assigned with trainable weights. For odd hidden layer i, the
messages are calculated as:

L i(v,c) = tanh

1
2

wivLv + ∑
c′∈N (v)\c

wic′,v,cL
i−1
(c′,v)

 (7)

where wiv and w
i
c′,v,c are trainable weights assigned to LLR

messages Lv and L i−1(c′,v), respectively. As stated previously,
L0(c′,v) = 0 due to no information being present at the check
nodes.

For even hidden layer i, the check-to-variable messages are
updated as:

L i(c,v) = 2 tanh−1

 ∏
v′∈M(c)\v

L i−1
(v′,c)

 (8)

The output marginalization is computed as

x̂v = σ

w2T+1
v,out Lv +

∑
c′∈N (v)

w2T+1
c′,v,c,outL

2T
(c′,v)

 (9)

where σ (x) = (1 + e−x)−1 is a sigmoid function to convert
the value to the range [0, 1]. If the output value is in the range
[0, 0.5], it is determined to be bit 1, otherwise, bit 0.

D. MNSPA DECODER
To reduce the number of trainable weights, two MNSPA
decoder are investigated as follows.

1) TYPE I
Inspired by [14], one simple method to reduce the trainable
weights of the NSPA can be easily implemented as follows.
For odd hidden layer i, the variable-to-check messages are
updated as:

L i(v,c) = tanh

1
2

Lv + ∑
c′∈N (v)\c

L i−1
(c′,v)

 (10)

FIGURE 2. The training flowchart of the DNN decoders.

Notice that the main difference between (7) and (10) is
that the trainable weights are removed in (10). Similarly,
L0(c′,v) = 0 as no information is present at the check nodes
in the beginning.

For even hidden layer i, the check-to-variable messages are
calculated as:

L i(c,v) = wic,v ·

2 tanh−1

 ∏
v′∈M(c)\v

L i−1
(v′,c)

 (11)

wherewic,v is the learnable weight parameter for the edge con-
necting check node c to variable node v. Note that the input
for the tanh−1 function is clipped in the range of −0.999 to
0.999 to stabilize the operation of the decoder.

Finally, the output marginalization is calculated as

x̂v = σ

Wv,out (v) · Lv +Wcv,out (v) ·
∑

c′∈N (v)

L2T(c′,v)

 (12)

where Wv,out (v) and Wcv,out (v) are the learnable weights for
the self LLR message Lv and the message from the check
node s to the variable node xv, respectively. The output bit
is determined to be 0 if the value is in the range (0.5, 1],
otherwise 1.

2) TYPE II
Similar to [22], the MNSPA Type II decoder can be viewed as
the NSPA decoder with simple scaling trainable weights. The
equations used to calculate the variable-to-check messages
for odd hidden layer i and output marginalization are the
same as (10) and (12), respectively. For even hidden layer i,
the equation for updating the check-to-variable messages is
modified as:

L i(c,v) = wi ·

2 tanh−1

 ∏
v′∈M(c)\v

L i−1
(v′,c)

 (13)

where wi is the learnable weight parameter for the edges
connecting to hidden layer i.

12610 VOLUME 10, 2022



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

For brevity, the two types of MNPSA decoders are named
MNPSA-I and MNPSA-II decoders for the remainder of this
paper. The main differences between the MNSPA decoders
and the NSPA decoder are summarized as follows:
1. NSPA decoder: Four types of weight matrices {[wiv],

[wic′,v,c], [w
2T+1
v,out ], [w

2T+1
c′,v,c,out ]} are used for training. The

first two matrices are assigned to the edges of odd hid-
den layer i (i.e., the variable-to-check messages), and the
remaining two matrices are assigned to the final output
marginalization. The sizes of these matrices are {N × E ,
E × E , 1× N , E × N}, in sequence. Assume that the row
weight ofH iswr ; the NSPA decoder must train [N+E(wr
− 1)]T + N+ NE weights.

2. MNSPA-I decoder: As discussed above, three types of
weight matrices {[wic,v], Wv,out , Wcv,out} are used for
training, but the sizes of these matrices are reduced to
{1 × E , 1 × N , 1 × N}, respectively. The MNSPA-I
decoder must train ET+ 2N weights, and the training pro-
cess and computation complexity can be greatly reduced.

3. MNSPA-II decoder: According to (12) and (13), two
types of weight matrices {Wv,out ,Wcv,out} of size {1×N ,
1 × N} and one trainable weight wi are assigned to the
output layer and each even hidden layer i, respectively.
Only T + 2N weights need to be trained, thus, the training
process and computation complexity of the MNSPA-II
decoder is the lowest among the three decoders.
The performances of the decoders are independent of the

transmitted codewords because the channel output is symmet-
ric. Thus, the training database is constructed by using the
zero codeword with noise. The goal is to train the decoder to
recognize the output as close as possible to the zero codeword.
The neural network is trained by using an optimization

process, which requires a loss function to calculate the model
error. In this study, the binary cross-entropy (BCE) loss func-
tion is used for training as follows:

LBCE = −
1
N

N∑
v=1

xv log
(
x̂v
)
+ (1− xv) log

(
1− x̂v

)
(14)

where xv and x̂v are the vth element of the transmitted code-
word and the neural decoder output, respectively.

III. SEMI-/AUTO-ADAPTIVE SNR ALGORITHMS
The NSPA, MNSPA-I, and MNSPA-II decoders are trained
and optimized by minimizing the BCE loss function (14)
using stochastic gradient descent (SGD) with mini-batch.
Assume that the mini-batch size is Nb, the size of each
training dataset can be represented as Nb × N . Therefore,
without loss of generality, we can derive the average mini-
batch BCE (MBBCE) loss function as follow:

LMBBCE =
1
Nb

Nb∑
j=1

LBCE (j) (15)

where LBCE (j) represents the BCE value calculated by substi-
tuting row j of the mini-batch training dataset.

FIGURE 3. The training flowchart of the DNN decoders with
semi-/auto-adaptive SNR algorithms.

The mini-batch training dataset consists of a range of
different SNRs. It is clear that the variance of noise increases
(or decreases) when the SNR decreases (or increases). If the
SNR is close to zero, the noise is too large for the NN to learn
the code structure. Similarly, if the SNR is close to infinity,
it is also redundant for training the NN to handle the noise.
Generating a suitable dataset under various SNR ranges is one
key factor for training the NN. This inspired us to determine
how to adjust the number of codewords with varying SNR
in one epoch. First, the symbols and notations used in the
algorithms are defined as follows:
• Let a be the number of SNR values used for generating

the training dataset, and S = {sk , for 1< k < a} denotes
the set of training SNR values.

• Ns = {ns(k), for 1 < k < a} is the set of the number of
codeword of each SNR.

• P = {pk = ns(k)/Nb, for 1 < k < a} is the set of SNR
ratios.

• Ne: the number of maximum epochs.
• Nf : the samples for each SNR.
Fig. 2 illustrates the flowchart of the DNN decoders.

Generally, the mini-batch training dataset is constructed
by generating codewords with uniform distribution SNRs
(i.e., Ns = {ns(k) = Nb/a, for 1 < k < a}). For clarity,
assume that the mini-batch size is 128, and the number of
training SNRs is 8 (i.e., from 1 dB to 8dB). Then, the number
of codewords for each SNR ns(k) is 16, and the pk is 1/8 for
1 < k < 8.

Because these decoders are optimized by minimizing the
loss function, one intuitive idea to realize the SNR adaption
is to modify the MBBCE equation as follows:

LMBBCE =
1
Nb

a∑
k=1

ns(k)∑
l=1

LBCE (l)

=

a∑
k=1

ns (k)
Nb

 1
ns (k)

ns(k)∑
l=1

LBCE (l)


=

a∑
k=1

pkLSNR (k) (16)

VOLUME 10, 2022 12611



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

where LSNR(k) represents the MBBCE value when SNR is k .
From (16), it can be observed that the MBBCE is modified to
calculate the value of each SNR, rather than the summation
of all SNRs in (15). Thus, we can utilize the set of SNR ratios
P to adjust the number of codewords of different SNRs in one
epoch.

The flowchart of the proposed algorithms is shown in
Fig. 3. The processes for initialization and input are the same
as the original flowchart in Fig. 2. The main difference is that
the proposed algorithms will determine whether to adjust the
set P in each epoch based on the optimization of MBBCE.
Next, these two SNR algorithms are described in detail.

A. SEMI-ADAPTIVE SNR ALGORITHM
In the following, the Semi-Adaptive SNR algorithm is
described in detail:

1) INITIALIZATION
• Set the values of a and Nb, then, the sets of S, Ns, and P

can be determined.
• Set the value of foptimal and fatt , where the former denotes

the desired optimal factor for the MBBCE value, and
the latter represents the desired attenuation rate for SNR
adaptation. Note that 0 < foptimal , fatt < 1.0.

• Let Lpre = 0, where Lpre denotes the MBBCE value for
the previous epoch.

• Let Lcur = 0, where Lcur denotes the MBBCE value for
the current epoch.

• Set Tatt = 0, where Tatt is the attenuation time of the
SNR.

2) TRAINING
As shown in Figs. 2 and 3, the value of Ns used for generating
the training data in one epoch is the same (i.e., if loop< Nf ).
The value of MBBCE is calculated by using (16) and then
used in algorithm 1 to process the SNR adaptation. If the
MBBCE value of the current epoch does not reach the desired
optimal value (line 2), algorithm 1 will set the counter as
a trigger condition to adaptively adjust the SNR ratios and
adjust the number of codewords for each SNR (lines 5-7).

The detailed adaptive adjustment process is summarized in
Algorithm 2. Because it is almost impossible to recover the
signal if the noise is large, we propose to sequentially attenu-
ate the codeword number of small SNRs. If the value of Tatt
is larger than zero, we multiply the SNR ratio pi by (1 – fatt )
to the power of (Tatt - i), where 1 < i < a (lines 6-13).
Next, the set of SNR ratios will be normalized and then used
to adjust the number of codewords of each SNR through
Algorithm 3.

It can be observed that Ns is the nearest integer rounded
to the product of the mini-batch size Nb and the set of the
SNR ratios (lines 2). As the summation of Ns should equal
Nb, we may need to randomly adjust (add or delete) the value
of Ns (lines 5-15).
Example: Let a= 8, the mini-batch size Nb = 128, and the

SNR training set S = {sk = k , for 1< k < a}. Then, the sets

Algorithm 1 Semi-Adaptive SNR Algorithm
Input: Lpre, Lcur , foptimal , fatt , Tatt , Nb, P
Output: P, Tatt , Ns

1 SemiAdaptSNR(Lpre, Lcur , foptimal , fatt , Tatt , Nb, P)
2 if Lcur > (foptimal × Lpre) then
3 Tatt ++;
4 end
5 if Tatt > 0 then
6 P, Ns ←AdaptiveResizePerSNR(P, fatt , Nb, Tatt );
7 end
8 return P, Tatt , Ns;

Algorithm 2 Adaptively Adjust SNR Ratios Set and
Resize SNR Set
Input: P, fatt , Nb, Tatt
Output: P, Ns

1 AdaptiveResizePerSNR(P, fatt , Nb, Tatt )
2 i = 0;
3 if Tatt > len(P) then
4 Tatt = len(P);
5 end
6 while i < Tatt do
7 if fatt == 1 then
8 pi ← 0;
9 else
10 pi ← pi× (1 - fatt )(Tatt−i);
11 end
12 i++;
13 end
14 P← Normalize(P);
15 Ns ← ResizeSNRSet(Nb, P);
16 return P, Ns;

P and Ns can be determined as P= {pk = 1/8, for 1< k < 8}
and Ns = {ns(k) = 16, for 1 < k < a}.

In this example, we set the desired foptimal = 0.9 and
fatt = 1.0. This means that if the decoder cannot reduce
10% of the MBBCE value of the previous epoch (line 2
in Algorithm 1), the SNR adaptation will be triggered
(lines 6-13 in Algorithm 2). The set P can be updated as

P = {0, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143}

Thus, through Algorithm 3, Ns for the next epoch can be
adjusted as follows

Ns = {0, 18, 18, 20, 18, 18, 18, 18}

B. AUTO-ADAPTIVE SNR ALGORITHM
Furthermore, one question comes to mind, is it possible for
NNs to automatically adjust the set of the number of code-
words for each SNR?We review the semi-adaptive SNR algo-
rithm. We can conclude that the SNR adaptation is achieved
by varying the set of SNR ratios P, which essentially affects
the change of Ns. This shows us how to let NNs learn to
automatically adjust Ns. The Auto-Adaptive SNR algorithm
is described in detail:

12612 VOLUME 10, 2022



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

Algorithm 3 Resize the SNR Set Ns

Input: Nb, P
Output: Ns

1 ResizeSNRSet(Nb, P)
2 Ns = Round(Nb × P);
3 dif = abs(Nb - Sum(Ns));
4 idx = randint(0, len(Nb)− 1);
5 if Nb > Sum(Ns) then
6 Nb[idx] + = dif;
7 else:
8 while dif > 0 do
9 if Nb[idx] > 1 then
10 Nb[idx] − = 1;
11 dif − = 1;
12 end
13 idx = randint(0, len(Nb)− 1);
14 end
15 end
16 return Ns;

Algorithm 4 Auto-Adaptive SNR Algorithm
Input: P
Output: P, Ns

1 AutoAdaptSNR(P)
2 P← Normalize(P);
3 Ns← ResizeSNRSet(Nb, P);
4 return P, Ns;

1) INITIALIZATION
• Set the values of a and Nb, the sets S and Ns can be

determined.
• Initialize the set of the SNR ratios P = {pk = ns(k)/Nb,

for 1 < k < a}. It is important to change the status of P
to trainable when programing the algorithm. This is the
key to enable the NN to automatically adjust the P value.

2) TRAINING
Algorithm 4 presents the realization of the auto-adaptive
SNR algorithm. The code is simple and easy to implement.
Because the set P is set to be trainable, the NN can automat-
ically adjust these weights in order to optimize the average
MBBCE value. Similarly, the set of SNR ratios P will be
normalized and used in Algorithm 3 to process the adjustment
of the number of codewords for each SNR.
Example: Let a= 8, the mini-batch size Nb = 128, and the

training SNR set S = {sk = k , for 1< k < a }. Then, the sets
P and Ns can be determined as P= {pk = 1/8, for 1 < k < 8}
and Ns = {ns(k)= 16, for 1< k < a}. Note that the status of
the set P must be set to trainable.

It can be observed that the set P will be auto-adjusted
according to the average MBBCE value for each epoch. For
clarity, one simple case is used for exemplification. If the setP

TABLE 1. Training hyper parameters.

is adjusted by the NN to P = {9.81e−03, 7.98e−03, 6.15e−03,
4.91e−03, 6.54e−03, 1.78e−01, 3.70e−01, 4.16e−01}, then the
Ns for the next epoch can be adjusted by Algorithm 3 as
Ns = {1, 1, 1, 1, 1, 23, 47, 53}.

IV. RESULTS AND DISCUSSION
We present the results of training and applying the proposed
algorithms to two different codes, BCH(127, 106) [24] code
and (155, 64) LDPC code [25]. The decoders were built in
Python 3.7 with the Tensorflow library. The training is per-
formed by using the SGD with mini-batch, and the optimizer
for training the neural network is set to RMSPROP [26].
All other training relevant hyperparameters are summarized
in Table 1. Let the number of iterations T of the SPA decoder
and all neural decoders be 5. Therefore, all neural decoders
have 10 hidden layers. The training dataset is generated by
sending all zero codewords with varying SNRs ranging from
1 dB to 8 dB. The codewords are not all zero, the testing
dataset is constructed in the same way. The input value needs
to be limited to the range of [-10, 10] to make the tanh
calculation in (7) and (10) stable, as with the SPA decoder.

During the training stage, the decoders are trained by
30,000 batches and validated by 10,000 batches in each
epoch. The early stopping function is used to monitor the
average MBBCE calculated by (16) at the end of each epoch.
Once the model performance measure stops improving for
5 consecutive epochs, training stops. Only the model with
the best performance will be saved. Then, this model will be
used to decode the non-all-zero codewords of various noise
variances at the testing stage. Simulation will be stopped at a
minimum of 100 frame errors or 4,000,000 simulated frames
for each SNR. If the performance is low, themodel is reloaded
and retrained.

Figs. 4 and 5 depict the bit-error-rate for the
BCH(127, 106) code and (155, 64) LDPC code with and
without semi-/auto-adaptive SNR algorithms, respectively.
For comparison, the performances of these decoders trained
by using pure high SNR are also included. First, the decoders
trained by different types of datasets are abbreviated as
follows:

1. TypeU: The dataset is composed of codewords with uni-
form SNR (i.e., from 1 dB to 8 dB).

2. TypeH: The dataset is composed of codewords of pure
high SNR with a value of 8 dB.

VOLUME 10, 2022 12613



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

FIGURE 4. Performance comparison of NSPA, MNSPA-I, and MNSPA-II decoders with/without semi-/auto-adaptive SNR algorithms for the
BCH(127, 106) code.

3. TypeS: The dataset is constructed using the Semi-
Adaptive algorithm.

4. TypeA: The dataset is constructed using the Auto-
Adaptive algorithm.

From the results in Figs. 4(a) to (c) and Figs 5(a) to (c), we can
observe that the distributions of the dataset Ns for training

these TypeS decoders are very similar. This is because the
distribution is directly influenced by fatt . In this study, the
value of fatt is set to 1, which means that if the average
MBBCE value of the current epoch does not reach the desired
target (i.e., foptimal × Lpre), the number of codewords with a
small SNR (from 1dB to 7dB) will be set to zero in sequence.

12614 VOLUME 10, 2022



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

FIGURE 5. Performance comparison of NSPA, MNSPA-I, and MNSPA-II decoders with/without semi-/auto-adaptive SNR algorithms for the (155, 64)
LDPC code.

Worth noting, different combinations of foptimal and Lpre gen-
erate different distributions of the dataset Ns, which may
cause slightly different training results. However, this is
beyond the scope of the study.

Figs. 4(d) to (f ) and Figs. 5(d) to (f ) present the distri-
butions of the dataset Ns for the TypeA decoders. It can be
observed that the training dataset Ns for the TypeA decoders
of the BCH(127, 106) code is mainly composed of codewords

VOLUME 10, 2022 12615



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

TABLE 2. Decoding results.

with an SNR of 7 and 8 dB and partial codewords of 6 dB.
For the (155, 64) LDPC code, the dataset Ns consists of a
large number of codewords with an SNR of 6-8 dB and partial
codewords of 5 dB.

The average MBBCE values for these two codes are pre-
sented in Figs. 4(g) to (i) and Figs. 5(g) to (i), respectively.
Obviously, the MBBCE value of the TypeU decoder had the
worst performance. Because the dataset consists of many
codewords with a small SNR, the noise is too large to be
useful for the NN to learn and recover the original code-
words. The MBBCE value of the TypeS decoder appears to
have sharp-edged improvements in specific epochs, where
the dataset Ns has been adjusted the number of codewords
of small SNR in sequence to zero. The MBBCE values of
the TypeH and TypeA decoders can be improved rapidly at
the second epoch. This is because the datasets for the two
types of decoders are constructed by the codewords with
higher SNRs, while the noise is lower when compared with
the TypeU and TypeS decoders at the initial training epochs.
Furthermore, we can observe that the TypeA decoder has
better performance than the TypeH decoder. The main reason
being that the dataset for the former consists of codewords
with multi SNRs, which is more helpful for the NN to learn
and optimize the weights.

From the results in Figs. 4(j) to (l), we can observe that,
for the BCH(127, 106) code, the TypeS decoder outperforms
the other decoders. Compared with the TypeU decoder, the
improvements of the TypeS decoder and the TypeA decoder
vary from 0.3 dB to 0.6 dB. For the (155, 64) LDPC code,
the performance of the TypeA decoder is better than others,
as shown in Figs. 5(j) to (l). Likewise, compared with the
TypeU decoder, the improvements of the TypeS decoder and
the TypeA decoder range from 0.2 dB to 0.6 dB. However,
these neural decoders are still unable to compete with the

existing excellent algorithms due to the following possible
reasons.
1. BCH code: Since the (127,106)-BCH code has a large

number of short cycles in the graph, the SPA is essentially
not suitable for decoding this code. Although these neural
decoders outperform the original SPA decoders, compete
with the existing excellent algorithms [27], [28], they still
have long way to go.

2. (155, 64)-LDPC code: Generally, as the number of iter-
ations increases, higher coding gain can be obtained.
As shown in Figs. 5(j) to (l), it can be observed that
the SPA decoder with iteration 50 outperforms all neu-
ral decoders for at least 1.3 dB. For the neural SPA
decoders, if the iteration number is set to 50, the NN will
have 100 hidden layers and this deep network is hard to
train because of the notorious vanishing gradient problem.
To build a deeper NN, our future work will apply the
residual network (ResNet) [29] to these neural networks.
The results of these decoders are summarized in Table 2.

As shown in Table 2, for the BCH(127, 106) code and
(155, 64) LDPC code, we can observe that the training epochs
of these decoders converge in a range from 19 to 32 epochs
and from 22 to 35 epochs, respectively. The average execu-
tion time Tave of the former, for training 30,000 batches in
one epoch, varies from 7361.9 to 9038.2 seconds, and the
latter ranges from 2903.3 to 4210.1 seconds. The ratio of
convergence time of the TypeS (or TypeA/TypeH) decoder to
the TypeU decoder is also calculated. It can be observed that
for the BCH(127, 106) code, the TypeS decoder and TypeA
decoder only need 71.2% and 73.8% of the training time of
the TypeU decoder at most, respectively. For the (155, 64)
LDPC code, the TypeS decoder and TypeA decoders only
require 64.4% and 69.7% of the training time of the TypeU
decoder at most, respectively. In addition, we can observe that

12616 VOLUME 10, 2022



C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

the TypeS decoders have the advantages in reducing the train-
ing time over the TypeA decoders. Another interesting result
is that the TypeA decoders outperform the TypeS decoders for
the (155, 64) LDPC code. However, for the BCH(127, 106)
code, the result is just opposite. This is because that the (155,
64) LDPC code has less short cycles than the BCH(127, 106)
code, the performance improvement of the former requires
more training time and high-quality training data to opti-
mize the weights of the NN. Since the TypeS decoders will
sequentially attenuate the codeword number of small SNRs
during the training stage, the dataset for the TypeS decoders
is composed of codewords of pure SNR with a value of 8 dB
in the last few training epochs. Meanwhile, the dataset for
the TypeA decoders consists of codewords with multi SNRs,
which is more helpful for the NN to learn and optimize the
weights. Moreover, these simulation results prove that the
proposed semi-/auto-adaptive SNR algorithms can not only
train the neural network to achieve better performance, but
also reduce the convergence time.

V. CONCLUSION
As the training data is an important factor for training a
neural network, two novel semi-/auto-adaptive SNR algo-
rithmswere proposed to adjust the composition of the training
dataset. The codeword number for each SNR is changed
according to the optimization of the average mini-batch BCE
in each epoch. For exemplification, three types of DNN
decoders for the BCH(127, 106) code and (155, 64) LDPC
code were trained with/without the semi-/auto-adaptive SNR
algorithms, respectively. Compared with the original neural
decoders, the simulation results showed that the performance
of these neural decoders for the BCH(127, 106) code can
be improved in the range of 0.3 to 0.6 dB and that for the
(155, 64) LDPC code can be improved by 0.2 to 0.6 dB.
The proposed algorithms can be easily implemented without
additional decoding complexity. Moreover, the training time
for these decoders to achieve convergence could be reduced
by up to 28.8% for the BCH(127, 106) code and up to 35.6%
for the (155, 64) LDPC code.

However, these neural decoders trained by the
BCH(127, 106) code and (155, 64) LDPC code may not
be sufficient to directly decode the signals under poor com-
munication conditions (i.e., at small SNR regions), because
the noise is too large for the NN to recover the original
codewords. An efficient way to overcome this problem is to
increase the code length of the adopted ECCs. But the main
limitation is that the GPU hardware requirement increases
significantly as the code length of ECCs code increases.
Therefore, our future work will focus on how to integrate
the ResNet into these neural decoders to build a deeper
network with less weights and complexity. In addition, since
the SVM-based system has the ability to predict the SNR
value of the received signal with a good accuracy rate, this
is helpful for the design and training of the neural decoders.
We can properly split the desired SNR values into parts,
and train these neural decoders with different SNR values,

respectively. Then, these well-trained neural decoders can
be set to the receiver end. Once the predicted SNR value
is obtained, the receiver can switch to the suitable neural
decoder simultaneously to recover the received signal.

REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima, ‘‘Near Shannon limit

error-correcting coding and decoding: Turbo-codes,’’ in Proc. IEEE Int.
Conf. Commun., Geneva, Switzerland, May 1993, pp. 1064–1070, doi:
10.1109/ICC.1993.397441.

[2] R. Gallager, ‘‘Low-density parity-check codes,’’ IEEE Trans. Inf. Theory,
vol. IT-8, no. 1, pp. 21–28, Jan. 1962, doi: 10.1109/TIT.1962.1057683.

[3] E. Arikan, ‘‘Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jan. 2009, doi:
10.1109/TIT.2009.2021379.

[4] S. Shao, P. Hailes, T.-Y. Wang, J.-Y. Wu, R. G. Maunder,
B. M. Al-Hashimi, and L. Hanzo, ‘‘Survey of turbo, LDPC, and
polar decoder ASIC implementations,’’ IEEE Commun. Surveys
Tuts., vol. 21, no. 3, pp. 2309–2333, 3rd Quart., 2019, doi:
10.1109/COMST.2019.2893851.

[5] Sonali, A. Dixit, and V. K. Jain, ‘‘SNR- and rate-optimized LDPC codes
for free-space optical channels,’’ IEEE Access, vol. 9, pp. 13212–13223,
2021, doi: 10.1109/ACCESS.2021.3051687.

[6] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, ‘‘Reduced complexity
iterative decoding of low-density parity check codes based on belief prop-
agation,’’ IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, May 1999,
doi: 10.1109/26.768759.

[7] J. Chen and M. P. C. Fossorier, ‘‘Density evolution for two improved BP-
based decoding algorithms of LDPC codes,’’ IEEE Commun. Lett., vol. 6,
no. 5, pp. 208–210, May 2002, doi: 10.1109/4234.1001666.

[8] M. K. Roberts, S. S. Mohanram, and N. Shanmugasundaram,
‘‘An improved low complex offset min-sum based decoding algorithm
for LDPC codes,’’ Mobile Netw. Appl., vol. 24, no. 6, pp. 1848–1852,
Dec. 2019, doi: 10.1007/s11036-019-01392-7.

[9] T. C.-Y. Chang, P.-H. Wang, J.-J. Weng, I.-H. Lee, and Y. T. Su,
‘‘Belief-propagation decoding of LDPC codes with variable node–centric
dynamic schedules,’’ IEEE Trans. Commun., vol. 69, no. 8, pp. 5014–5027,
Aug. 2021, doi: 10.1109/TCOMM.2021.3078776.

[10] M. K. Roberts, S. Kumari, and P. Anguraj, ‘‘Certain investigations on
recent advances in the design of decoding algorithms using low-density
parity-check codes and its applications,’’ Int. J. Commun. Syst., vol. 34,
no. 8, p. e4765, 2021, doi: 10.1002/dac.4765.

[11] T. A. Almohamad, M. F. M. Salleh, M. Mahmud, and A. H. Y. Sa’D,
‘‘Simultaneous determination of modulation types and signal-to-noise
ratios using feature-based approach,’’ IEEE Access, vol. 6, pp. 9262–9271,
2018, doi: 10.1109/ACCESS.2018.2809448.

[12] T. A. Almohamad, M. F. M. Salleh, M. N. Mahmud, I. R. Karas,
N. S. M. Shah, and S. A. Al-Gailani, ‘‘Dual-determination of modula-
tion types and signal-to-noise ratios using 2D-ASIQH features for next
generation of wireless communication systems,’’ IEEE Access, vol. 9,
pp. 25843–25857, 2021, doi: 10.1109/ACCESS.2021.3057242.

[13] E. Nachmani, Y. Be’ery, and D. Burshtein, ‘‘Learning to decode linear
codes using deep learning,’’ in Proc. 54th Annu. Allerton Conf. Com-
mun., Control, Comput. (Allerton), Monticello, IL, USA, Sep. 2016,
pp. 341–346, doi: 10.1109/ALLERTON.2016.7852251.

[14] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, ‘‘Deep learning methods for improved decoding of linear
codes,’’ IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119–131,
Feb. 2018, doi: 10.1109/JSTSP.2017.2788405.

[15] T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, ‘‘On deep
learning-based channel decoding,’’ in Proc. 51st Annu. Conf. Inf.
Sci. Syst. (CISS), Baltimore, MD, USA, Mar. 2017, pp. 1–6, doi:
10.1109/CISS.2017.7926071.

[16] H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath, ‘‘Commu-
nication algorithms via deep learning,’’ May 2018, arXiv:1805.09317.

[17] L. Lugosch and W. J. Gross, ‘‘Neural offset min-sum decoding,’’ in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017,
pp. 1361–1365, doi: 10.1109/ISIT.2017.8006751.

[18] Q. Wang, S. Wang, H. Fang, L. Chen, L. Chen, and Y. Guo,
‘‘A model-driven deep learning method for normalized min-sum
LDPC decoding,’’ in Proc. IEEE Int. Conf. Commun. Workshops
(ICC Workshops), Dublin, Ireland, Jun. 2020, pp. 1–6, doi: 10.1109/
ICCWorkshops49005.2020.9145237.

VOLUME 10, 2022 12617

http://dx.doi.org/10.1109/ICC.1993.397441
http://dx.doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1109/COMST.2019.2893851
http://dx.doi.org/10.1109/ACCESS.2021.3051687
http://dx.doi.org/10.1109/26.768759
http://dx.doi.org/10.1109/4234.1001666
http://dx.doi.org/10.1007/s11036-019-01392-7
http://dx.doi.org/10.1109/TCOMM.2021.3078776
http://dx.doi.org/10.1002/dac.4765
http://dx.doi.org/10.1109/ACCESS.2018.2809448
http://dx.doi.org/10.1109/ACCESS.2021.3057242
http://dx.doi.org/10.1109/ALLERTON.2016.7852251
http://dx.doi.org/10.1109/JSTSP.2017.2788405
http://dx.doi.org/10.1109/CISS.2017.7926071
http://dx.doi.org/10.1109/ISIT.2017.8006751
http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145237
http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145237


C.-M. Huang: Two Novel Semi-/Auto-Adaptive SNR Algorithms to Efficiently Train Deep Neural SPA Decoders

[19] B. Vasić, X. Xiao, and S. Lin, ‘‘Learning to decode LDPC codes with
finite-alphabet message passing,’’ in Proc. Inf. Theory Appl. Workshop
(ITA), San Diego, CA, USA, Feb. 2018, pp. 1–9, doi: 10.1109/ITA.
2018.8503199.

[20] L. Chu, H. He, L. Pei, and R. C. Qiu, ‘‘NOLD: A neural-network optimized
low-resolution decoder for LDPC codes,’’ J. Commun. Netw., vol. 23, no. 3,
pp. 159–170, Jun. 2021, doi: 10.23919/JCN.2021.000014.

[21] C.-M. Huang, C.-C. Yang, E. Wijanto, and H.-C. Cheng, ‘‘Analysis of
deep multilayer perceptron neural network in MWC coded optical CDMA
system with LDPC code,’’ Opt. Fiber Technol., vol. 60, Dec. 2020,
Art. no. 102385, doi: 10.1016/j.yofte.2020.102385.

[22] M. Lian, F. Carpi, C. Hager, and H. D. Pfister, ‘‘Learned belief-propagation
decoding with simple scaling and SNR adaptation,’’ in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Paris, France, Jul. 2019, pp. 161–165, doi:
10.1109/ISIT.2019.8849419.

[23] I. Be’Ery, N. Raviv, T. Raviv, and Y. Be’Ery, ‘‘Active deep decoding
of linear codes,’’ IEEE Trans. Commun., vol. 68, no. 2, pp. 728–736,
Feb. 2020, doi: 10.1109/tcomm.2019.2955724.

[24] M. Helmling. (2019). Database of Channel Codes and ML Simulation
Results. [Online]. Available: https://www.uni-kl.de/channelcodes

[25] J.-F. Huang, C.-M. Huang, and C.-C. Yang, ‘‘Construction of one-
coincidence sequence quasi-cyclic LDPC codes of large girth,’’ IEEE
Trans. Inf. Theory, vol. 58, no. 3, pp. 1825–1836, Mar. 2012, doi:
10.1109/TIT.2011.2173246.

[26] T. Tieleman and G. Hinton, ‘‘Lecture 6.5-RMSPROP: Divide the gradient
by a running average of its recent magnitude,’’ COURSERA, Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[27] M. P. C. Fossorier and S. Lin, ‘‘Soft-decision decoding of linear block
codes based on ordered statistics,’’ IEEE Trans. Inf. Theory, vol. 41, no. 5,
pp. 1379–1396, Sep. 1995, doi: 10.1109/18.412683.

[28] S. Fragiacomo, C. Matrakidis, and J. O’Reilly, ‘‘Novel near maximum
likelihood soft decision decoding algorithm for linear block codes,’’ IEE
Proc.-Commun., vol. 146, no. 5, pp. 265–270, Oct. 1999, doi: 10.1049/
ip-com:19990595.

[29] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jan. 2016, pp. 770–778.

CHUN-MING HUANG received the B.S., M.S.,
and Ph.D. degrees from the Department of
Electrical Engineering, National ChengKungUni-
versity, Taiwan, in 2000, 2005, and 2009, respec-
tively. From 2010 to 2018, he was working with
the National Chung-Shan Institute of Science and
Technology, Longtan, Taiwan, as an Assistant Sci-
entist. Since 2018, he has been with the Faculty
of National Formosa University, Yunlin, Taiwan,
where he is currently an Assistant Professor with

the Department of Electronic Engineering. His research interests include
error control codes and optical communications.

12618 VOLUME 10, 2022

http://dx.doi.org/10.1109/ITA.2018.8503199
http://dx.doi.org/10.1109/ITA.2018.8503199
http://dx.doi.org/10.23919/JCN.2021.000014
http://dx.doi.org/10.1016/j.yofte.2020.102385
http://dx.doi.org/10.1109/ISIT.2019.8849419
http://dx.doi.org/10.1109/tcomm.2019.2955724
http://dx.doi.org/10.1109/TIT.2011.2173246
http://dx.doi.org/10.1109/18.412683
http://dx.doi.org/10.1049/ip-com:19990595
http://dx.doi.org/10.1049/ip-com:19990595

