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ABSTRACT Readily available RGB-D cameras in smart phones and improving 3D scanning technologies
have made it possible to produce detailed point cloud and point-based models of real world objects even
in real time. Rendering such models in high quality and at satisfactory frame rates is needed for realistic
extended reality (XR) applications. This publication reviews real-time photorealistic point cloud rendering
methods which directly ray trace or rasterize point cloud models, with an emphasis on ray tracing and real-
time performance. We found that real-time direct point cloud ray tracing research has been focused on
static non-animated content, and thus, open research possibilities include adapting modern dedicated ray
tracing hardware for increased performance for animated and live captured scenes, and adding path tracing
techniques to increase photorealistic effects in the rendering result. A categorization and discussion on the
capabilities of state-of-the-art photorealistic point cloud rendering methods is presented by surveying both
real-time and offline methods, which are assumed to become real-time capable with the advances in near-
future hardware. Challenges and future trends are derived by comparing different rasterization and ray tracing
methods as well as acceleration structures for point clouds in terms of produced rendering effects and speed.

INDEX TERMS Survey, point clouds, photorealistic rendering, ray tracing, real-time rendering, point-based
models, acceleration, rasterization.

I. INTRODUCTION
Point cloud and point-based visualization have been studied
for more than three decades. Levoy and Whitted suggested
using points as a geometric primitive for rendering instead
of polygonal meshes or parametric surfaces in 1985 [1]. The
argument was that the number of geometric primitives in
rendered scenes would keep increasing such that their pro-
jected sizes would decrease to sub-pixel areas in screen space,
thus, justifying the use of point primitives instead. Since then,
research on visualization of point cloud and point-basedmod-
els has produced techniques like splatting [2], [3] and direct
ray tracing of point cloud and point-based models [4], [5].

The challenge in point cloud visualization has been the
lack of a continuous surface representation. This poses both
benefits and disadvantages. On the one hand, point clouds
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FIGURE 1. An overview schema of the different pipeline steps from point
cloud capture to rendering. Within solid lines are the subjects covered
and in dashed lines are the subjects omitted in this survey. The arrows
represent the point cloud data flow. Generally, acceleration can be
considered either preprocessing or rendering, but in our case, we only
consider methods performant enough to reconstruct acceleration
structures at rendering time.

are more flexible than connected meshes and can be used
to store and visualize huge data sets with up to 100 million
points in real time [6]. On the other hand, generating correct

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 13151

https://orcid.org/0000-0001-9680-7113
https://orcid.org/0000-0001-8164-0031
https://orcid.org/0000-0002-5373-3190
https://orcid.org/0000-0002-5711-9729
https://orcid.org/0000-0001-5707-8544
https://orcid.org/0000-0003-4200-2584


P. E. J. Kivi et al.: Real-Time Rendering of Point Clouds With Photorealistic Effects: Survey

surface attributes between point cloud points in a rasterization
pipeline needs special handling compared to the interpolation
and intersection of values between vertices in a triangle or
other polygonal-based model. This is also true when finding
an intersection point between a viewing ray and the implied
surface representation of a point cloud.

Direct point cloud rendering challenges can be circum-
vented by reconstructing the whole point cloud into a render-
able surface representation such as a triangulated mesh. The
capturing and reconstruction of real-world scenes especially
with RGB-depth (RGB-D) cameras – reviewed in various
publications [7]–[9] – has seen a lot of research after the
seminal publication introducing KinectFusion [10]. Many of
the fusion-based systems reconstruct the scenes directly into
mesh representations with an intermediate scene description
based on signed distance fields (SDF) at capture time [10]–
[13]. However, full global reconstruction is computationally
expensive especially on large models, and it can be wasteful if
only parts of the scene are viewed ormodels become obsolete,
for example in animated or streamed point cloud scenarios.
Furthermore, recent advances in point cloud compression by
the MPEG standardization group [14] have enhanced the
possibilities of transferring raw point clouds efficiently, for
example from point cloud capture sites to end users. This
opens the possibility for doing the direct rendering effort at
the user’s end. Thus, the motivation behind this survey is
the availability of methods specifically for direct real-time
photorealistic rendering for surface point clouds.

A key aspect of photorealism is the detail level of the
model which, in the case of point clouds, means the number
of points used to represent a specific size object in the real
world. Available models in repositories such as The Stanford
3D Scanning Repository [15] have a typical point count in
the order of 106 and single detailed human-like models, such
as Lucy, have up to 107 points. The previously mentioned
KinectFusion and its successors work with up to 5123 grid
structures corresponding to almost 135 million potential data
points, but most of the data entries are empty space, making
it hard to illustrate their effective point resolution. Level of
detail (LOD) systems and culling techniques can further
reduce the number of points considered at rendering time,
easing computationally expensive rendering methods like ray
tracing. However, lowering detail and omitting points not
inside a view frustum need to be used carefully in conjunction
with ray tracing, because global illumination (GI) effects
might be negatively impacted. A comprehensive review of
LOD and culling techniques is out of the scope of this survey,
but several notable examples are included.

For applications such as holoportation [16] and other telep-
resence systems [17], [18], the end-to-end latency from scene
capture to rendered image frame in client scene is a moti-
vating factor. Multiple human models may be transferred,
leading to even more complex mesh or point cloud models
with a lot of data points. These systems have shown real-time
capabilities on large device clusters of up to 8 high-end PCs
and multiple simultaneous capturing devices. Furthermore,

these applications have focused on delivering a coherent
scene model from the capturing site to the client rendering
site. However, producing photorealistic lighting effects on
the transferred models has not been considered. High-quality
mesh and other surface generation methods for point clouds
have been thoroughly surveyed [19]–[27]. Thus, the subject
of surface reconstruction for point clouds is out of scope.

A. DEFINING THE RESEARCH PROBLEM
In the context of this survey, live-captured point clouds refer
to streams of point clouds that may not have any coher-
ence between consecutive frames. Contrary to this, synthetic
skeletal animated models can reuse lower-level parts of an
acceleration structure by applying the respective affine trans-
forms directly to subsets of the data structure. However, such
assumptions cannot be made for an unpredictable stream of
points in a live scenario, which leads to the reconstruction of
the acceleration structure for each frame.

A frame rate of over 75 FPS and an HD resolution of 1080p
or more for interactive content in XR is needed for a com-
fortable viewing experience on head mounted displays [28].
These requirements are satisfied with modern virtual reality
headsets with frame refresh rates of 80 to 144 Hz and up
to 2K resolution per eye [29], [30]. Furthermore, as soft
shadows and reflections tend to be ubiquitous in all rendering
applications, a stricter demand for photorealistic rendering is
applied. All of this should preferably be done in an end-to-end
fashion, meaning that the rendering pipeline starts after the
captured point cloud and ends in the photorealistically ren-
dered frame. Thus, we derive the following research question
for our survey:

What is the state-of-the-art technique for photorealistic
end-to-end direct point cloud rendering for a high-quality
human-sized model (107 points), in 75 FPS, and a resolu-
tion of 1080p on consumer hardware?

B. INCLUSION CRITERIA
There is no objective method found in the literature to classify
applications as real-time or interactive. For this survey, how-
ever, we defined a lower bound for real-time frame rate for the
surveyed methods as at least 10 FPS, interactive frame rate as
at least 1 FPS, and offline to refer to the rest. These definitions
ensure the inclusion of methods measured on older hardware
in the survey.

Point cloud ray tracing methods, including offline meth-
ods, were exhaustively surveyed and they were deemed to be
real time or interactive if they achieved these results with at
least a medium resolution of 512 × 512 and a small point
cloud in the order of 103 points. Computationally demanding
effects, such as caustics, were not required of the methods
because they require pre-calculations even in mesh-based
ray tracing. Similar requirements were demanded from ras-
terization papers with the exception of a point cloud size
in the order of 104 points (to accommodate the needed
resources for photorealistic effects implemented with raster-
ization) and at least some photorealistic effects supported,
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such as reflections or refractions. We estimated that these
requirements, considerably smaller compared to the research
question, correspond to the gain in performance when extrap-
olating from older to modern hardware.

C. CONTRIBUTIONS
This survey provides the following novel contributions to the
existing body of point cloud rendering literature:

• An exhaustive survey on ray and path tracing methods
for surface point cloud rendering (Section III).

• A review of real-time and interactive rasterization,
hybrid (combining rasterization and ray tracing), and
point-based neural rendering methods that exhibit pho-
torealistic rendering effects (Sections IV, V, and VI).

Additionally, we provide an overview of acceleration meth-
ods designed and applicable for real-time and interactive
photorealistic point cloud rendering that could be utilized in
an animated or live-captured point cloud scene (Appendix A).
Furthermore, the computational capabilities of older sur-
veyed methods are analyzed on and extrapolated to modern
hardware in Appendix B.

D. STRUCTURE OF THE SURVEY
The rest of the survey is structured in the following way.
Section II covers surveys and reviews related to real-time
photorealistic point cloud rendering with justifications on
what this survey provides compared to previous work on
the subject. The main contribution of this survey, namely,
reviewing real-time, interactive, and near interactive methods
for photorealistic point cloud rendering is presented in Sec-
tions III, IV, V, and VI. A discussion on current capabilities
and trends in real-time photorealistic point cloud rendering as
well as on future research possibilities is given in Section VII
together with answers to the research question. We conclude
the publication in Section VIII.
Additionally, Appendix A surveys acceleration methods

designed or easily applicable for point cloud rendering, and
Appendix B extrapolates the computational performance of
older surveyed methods to modern hardware.

II. RELATED SURVEYS AND REVIEWS
In this section, surveys and reviews that relate to point cloud
rendering and acceleration structures for point clouds are
covered. The goal is to briefly summarize what the previous
survey and review publications have covered and what this
survey contributes to the existing survey literature. Further-
more, parallel surveys related to the point cloud process-
ing pipeline from capture to pre-processing (depicted inside
dashed lines in Figure 1) are presented with justifications
why the subject matter in those surveys is not covered in this
survey. Finally, the contributions of this survey compared to
the existing survey literature are reiterated.

Related surveys and reviews include general point cloud
visualization mostly focused on rasterization-based methods
and techniques [31]. Specifically close to this survey is the

publication comparing different rasterization-based methods
to meshed model rendering for real time point cloud visu-
alization [32]. Our contribution, compared to [32], is the
review of photorealistic methods of point cloud rendering
and the review of modern methods, because the publication
in [32] is from 2004. Additionally, a book on point-based
graphics is available [33]. Participating media uses an under-
lying particle- or point-based schema, but generally they
approximate the effect of particles in the air as a density
texture instead of a point cloud (survey available in [34]).
RGB-D image registration techniques are surveyed in [7] and
simultaneous localization and mapping (SLAM)methods are
reviewed in [35], both of which are out of scope in this survey.
The subject of capturing and scanning real world objects has
been extensively surveyed with a focus on RGB-D images
in [8] and VR-centered capturing in [9]. The capturing and
scanning of point clouds is also out of scope in this survey.

Methods concerning smoothed-particle hydrodynamics
(SPH) fluid simulation and rendering have been reviewed
in [36]. SPH fluid rendering is closely related to surface
point cloud rendering as SPH methods consider the fluid
as single particles inside a fluid volume interacting with
each other. Compared to surface point clouds, SPH fluid
particles have attributes from the simulation, such as mass
and velocity, rarely present in generic point clouds. Thus,
by-product information like particle radii can be used in the
rendering of particles. Although this survey considers spe-
cific simulation techniques in SPH as being out of scope, the
rendering of SPH is reviewed. In [36], an overview of the SPH
rendering methods is given, whereas our survey concentrates
on methods with applicability to point cloud rendering and
provides a more in-depth analysis of the rendering features
and computational performance of these methods.
Augmented (AR) and mixed reality (MR) rendering sys-

tems strive to visualize real and virtual elements seamlessly
together. The immersiveness is enhanced by producing realis-
tic interactions between real and virtual objects, for example
correct occlusions and lighting effects between objects. Gen-
erally, point cloud rendering also tries to visualize objects in
different locations and lighting than their original environ-
ment. However, the virtual objects planted inside AR andMR
environments are almost exclusively in a mesh representation
and, as such, the rendering of the objects is done by mesh-
based methods. Thus, the review of AR and MR methods in
general have been excluded from this survey, and we refer the
reader to two state-of-the-art surveys on the subject [37], [38].

III. RAY TRACING POINT CLOUDS
In the literature, three main methods for direct point cloud ray
tracing have been established. These methods are illustrated
in Figure 2. Cone and cylinder/beam tracing are methods
which circumvent the problem of individual points having
no explicit surface to intersect, by expanding rays into a
volume object able to capture points inside volume segments
of the ray. Implicit and isosurface approaches use a metric,
such as Euclidian distance, to evaluate the proximity of a
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surface implied by points near a sampling point along an
intersecting ray. Finally, the moving least squares (MLS)–
based method produces a local polynomial fit, such as a
second-order curved surface, by projecting a sampling point
onto a weighted local reference plane, based on which the
polynomial fit is done [39]. This polynomial surface can be
iteratively or non-iteratively constructed and intersected by a
viewing ray. The main difference between general implicit
surfaces and MLS-based surfaces is that implicit surfaces
are locally linear, whereas MLS surfaces typically have a
higher-order local approximation.

The previous book on point-based graphics from 2007 [33]
has already covered many of the earlier ray tracing methods,
which we briefly summarize first. Beam tracing point cloud
was one the first methods to produce Whitted style reflective
and refractive rendering [4] for point clouds. A predefined
beam radius based on point density was used and points,
accelerated by an octree data structure and falling inside
a beam section within a leaf node, were weighted based
on orthogonal distance to beam center. Gaussian weighting
ensured smoothly blended attribute values. In [40], the idea
was expanded with cone tracing in order to support advanced
effects such as soft shadows. They used a dual resolution
model of a scene with high-resolution triangles and lower-
resolution point primitives in an octree data structure. A more
reconstruction-oriented approach used actual rays instead of
beams or cones to intersect a point cloud as locally recon-
structed MLS surfaces [39]. Points were stored in a bounding
sphere hierarchy (BSH), and the MLS surfaces were recon-
structed using the centers of the leaf node spheres as a ref-
erence point, providing a cached reconstruction for multiple
instances of intersection tests. Previous methods supported
only static point clouds, which was addressed in [41] for
animated and deforming scenes. Surfels (points with radii
and surface normal attributes) were lazily updated based
on underlying simulation nodes, i.e., only surfels visible to
primary and secondary rays were updated at rendering time.
Finally, the first interactive ray tracing method for static point
clouds represented as surfels was introduced in [5]. A k-d tree
was first traversed to a leaf node where implicit surface values
were evaluated at constant intervals. The interval where a sign
change occurred was further sub-divided until a threshold
value was reached and an intersection was registered at an
interpolated value. A commonality between these methods
was a CPU implementation without utilization of the GPU.

In this section, we review the various ray tracing meth-
ods not covered in other literature that are capable of
producing photorealism in a scene by rendering point
clouds in real time. The focus is on surveying purely ray-
tracing-based methods exhibiting one or more photorealistic
effects such as reflections, hard or soft shadows, refractions,
and GI.

A. OFFLINE METHODS
The methods introduced in this section do not achieve inter-
active frame rates of larger than 1 FPS with any of their

FIGURE 2. The three major methods for finding an intersections between
a ray and a point cloud. Top left: Point density–based cone and
cylinder/beam tracing. Top right: Implicit surface and isosurface
evaluation; isovalue is the distance between the sampling point along the
ray and the surface implied by the points. Bottom: Moving least squares
(MLS)–based local polynomial surface reconstruction; the intersection
point is found by first projecting the sampling point onto a reference
plane, and then fitting a local polynomial based on that.

reported point cloud sizes or screen pixel amounts. These
include the already covered methods in the point-based
graphics book [4], namely [39]–[41]. However, most of
the methods are from the early 2000s and they might be
implementable in real time on modern hardware. We dis-
cuss the possible application of these methods further in
Sections III-D and VII.

In [42], a splat-based ray tracing scheme was utilized.
A raw point cloud, possibly accompanied with surface nor-
mals, was used to generate intersectable surface splats. Splats
were created iteratively by expanding a linear plane fit onto
the point cloud until an error bound was violated. A normal
gradient field on each splat was solved as a linear system
of two unknown major gradient directions given the point
normals and locations within the neighborhood of the splat.
If normals were not present in the raw point cloud, then a
least squares plane fit on the nearest neighbors of a given
point was done as a preprocess and the direction of the plane
was used as the surface normal of the given point. The splat
generation took 4 seconds for the Fuel model of 35 thousand
points transformed into 28 thousand splats and 85 seconds
for the Buddha model of 544 thousand points transformed
into 384 thousand splats. The actual Whitted style ray tracing
accelerated by a dynamic splat octree with hard shadows,
reflections, and refractions took 84 seconds for 28 thousand
splats and 408 seconds for 384 thousand splats. In both cases
a resolution of 1200×1200 and 1 sample per pixel (spp) with
two ray bounces was used. A 3.06 GHz Intel Xeon CPU was
used for all processing.

13154 VOLUME 10, 2022



P. E. J. Kivi et al.: Real-Time Rendering of Point Clouds With Photorealistic Effects: Survey

B. INTERACTIVE METHODS
In [43], a LOD system accelerated with a k-d tree was gen-
erated to ray trace splat primitives acquired from a point
cloud. Later, their compression-based method was able to
achieve ray tracing at interactive frame rates of 0.5–2 FPS
with up to 28 million points [44]. The used compression
method generated a dictionary of MLS patches of points with
orientation and location placed in an instanced k-d tree for
accelerated ray-patch intersection. Once a k-d tree leaf node
with a few patches was traversed each patch was intersected
by iteratively refining MLS surface intersections until a suf-
ficient error tolerance was achieved and all patch intersection
were interpolated based on patch center distance. The perfor-
mance with huge point cloud models was due to the instanced
patch-based compression being able to fit the compressed
point cloud in GPU memory reducing CPU-GPU memory
transfers at rendering time. The number of spp and supported
rendering effects were not reported. However, based on the
rendered images only correct direct lighting without stochas-
tic effects were presented and thus 1 spp is implied. Several
hours of preprocessing time was reported for the compression
encoding and patch-based k-d tree construction.

C. REAL-TIME METHODS
As discussed before, the method in [5] was the first
CPU-based method that achieved interactive frame rates on
plausibly sized point clouds. However, the first parallel real-
time GPU-based point cloud ray tracer was published in [45].
As they did not use any acceleration structure for the sec-
ondary rays, they had to limit the ray depth of reflection ray
traversal to achieve reflections and refractions at interactive
frame rates. Contrary to the implicit surface approach, a local
MLS surface reconstruction was used to construct an inter-
sectable surface along the primary rays, which was a more
suitable algorithm for parallel execution. For secondary rays,
a coarse intersection point was generated with a single pass
of theMLS algorithm. A follow up publication [46] improved
the method by introducing a grid-based acceleration structure
and refraction rays.

A more traditional approach of using splats as the inter-
sectable primitive was done in [47] with a performant splat
octree method executed on the GPU. Up to 4 spp for primary
rays and 10 bounces for GI effects were used. However, the
octree was built in a preprocessing step and the execution time
was not discussed. The authors in [48] used the same method
of textured splats stored in an octree and used normal shading
for primary lighting and tracing rays to generate shadows.
The splat octree differed from the implicit and MLS surface
methods in that the intersection querying was done on the
splats themselves and not by ray marching implicit values
or reconstructing local surfaces. However, the challenge of
producing the input splats from a raw point cloud was not
discussed.

The same authors later improved their splat octree methods
by transforming the splats into an implicit representation.

This enabled real-time performance with reflections, refrac-
tions, and shadows [49]. Exactly like in [5], isosurface values
of the implicit function were stored in the leaf node corners
and interpolated when the ray intersections were queried.
Despite real-time performance claims, constructing the octree
and the implicit surface values in the corner points was a
preprocess step and took tens of seconds, making the method
applicable in real time only for static point clouds. Precom-
puted caustic effects were later added into a similar octree ray
tracing structure in [50]. A caustic sample map was stored
in the octree leaf node corners the same way as the implicit
function values and the luminance values were interpolated at
the intersection point to produce realistic caustics. However,
dynamic point clouds and lighting were not supported in real
time. Finally, the method in [51] uses splat primitives, with a
k-d tree to accelerate the intersection testing iteratively, pro-
ducing an intersection point and an average surface normal
from neighboring points at interactive frame rates.

D. SUMMARY AND DISCUSSION
Real-time direct surface point cloud ray tracing methods
mostly require oriented points with radii (splats) as input for
their rendering pipeline, implying a splat generation algo-
rithm for surface point clouds. The authors in [44] generate
their MLS-based surface from raw point clouds but require
heavy preprocessing and compression taking up to several
hours. Preprocessing is utilized by all methods ranging from
0.17 FPS (5.9 seconds) of point-set surface construction on
a 323 = 32768 voxel grid [45] to approximately 20 to
180 seconds for isosurface value octree construction [48],
[50]. Consequently, the methods were only capable of ray
tracing static scenes in real time with the reported hardware.

We identify the state-of-the-art methods in real-time pho-
torealistic point cloud rendering in terms of rendering speed
and the amount of supported photorealistic effects and sum-
marize all of the methods in Table 1. In order to make
the results as comparable as possible we have to account
for the three major factors affecting the rendering time: the
number of points/particles in the scene, the screen resolution,
and the number of spp. All methods use 1 spp except [52]
and [47], which use 2 spp for particle inter-reflections and
4 spp for supersampling, respectively. This makes most of
the methods’ spp counts fairly compatible when assessing
performance. We have categorized methods achieving real
time (≥ 10FPS) or interactive real time (≥ 1FPS), mutually
exclusively, and reported the closest maximum number of
points still renderable in real-time or interactive frame rates.
Further details on scalability based on resolution and point
count as well as the used rendering hardware are presented in
Table 5.
Surface point cloud ray tracing methods have challenges

achieving higher real-time frame rates. Generally, the meth-
ods have amedium resolution of approximately 512×512 and
work on point clouds ranging from a magnitude of 103 to
106 points. The most performant method in this category is
presented in [47], which achieves 55 FPS with a resolution
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of 512× 512 and 106 points. Furthermore, all the methods in
this category have omitted the time needed for preprocessing
the point cloud, including surface normal and point radius
generation.

IV. RASTERIZATION
In this section, rasterization-basedmethods for real-time pho-
torealistic point cloud rendering from the 2010s are sur-
veyed.With the increasing computational power of GPUs and
the introduction of more programmable processing units for
GPGPU computing, sophisticated real time rendering algo-
rithms for point clouds could be developed further in the new
decade. Nevertheless, the requirement for photorealism is
relaxed compared to ray tracing methods as rasterization does
not inherently support for example shadows and reflections,
and separate shading passes have to be executed to generate
these effects. The goal is to review methods that at least
support some sort of realistic shading model. Additionally,
the early general point cloud rasterization methods from the
2000s are briefly reviewed for context.

1) EARLY POINT CLOUD SPLATTING IN THE 2000s
Seminal methods for the popular splatting method (Figure 3)
were developed in both [2] and [53]. Even though they were
not focused on photorealistic effects as such, they paved the
way for other splat-based methods. Consequently in [54],
radiance (direct lighting and shadows) and irradiance (indi-
rect lighting) were stored into a splat cache on the CPU/RAM
and an octree splat cache on the GPU, respectively. It was
designed for splatting the radiance and irradiance on a tri-
angle mesh model, but it was extendable to point cloud
models if a method for point cloud splat generation was
available. For proper realistic GI, splat radii, normals, normal
gradients/interpolation, and material properties (BRDF defi-
nitions) were needed. The irradiance cache was rasterized on
a 60 × 60 unit hemisphere covering a single splat. Instead
of targeting photorealistic effects as such, fast splat rendering
was used in [55]. The method assumed a readily available
elliptical splat model with surface normals and ellipse axis
radii, but the generation time of such a model from a raw
point cloud was not discussed. Compared to [54], ellipti-
cal weighted average (EWA) filtering between the splats in
object space and approximate screen space anti-aliasing for
edge aliasing was added for rendering quality enhancement.
However, the method only supported traditional shading and
shadow maps and extendability for other photorealistic ren-
dering effects was not discussed. The method achieved a
rendering speed of up to 17.5 million splats per second.
A similar splatting method implemented on the GPU added
transparent, reflective, and refractive effects in [56] with
deferred blending, which already achieved interactive frame
rates with up to 2 · 106 points.
In order to reach real-time frame rates, a LOD system was

introduced for rendering point clouds of up to 107 number of
points [57]. Instead of accurate elliptical splats in the previous
method, they used screen space splatting with pixel sized

FIGURE 3. Splats are a prominently used point description especially in
point cloud rasterization. Points need a radius (dashed line) and a surface
normal (arrows) in order to be depicted as splats.

splats and a nested octree structure implemented as a parallel
memory optimized sequential point tree, which sequential-
ized a subset of vertices in the octree sorted by importance
into a buffer. Nevertheless, its applicability to dynamic scenes
was hindered by the construction times of the sequential
point tree [58], which took from minutes up to hours on the
CPU with point cloud sizes of 107 to 108. Furthermore, only
crude primary color shading was used due to the lack of
point normals. These problems were alleviated in [59] with
a fully real-time splat-based rendering method. The method
used a variation of the PSS definition called the algebraic
point set surface (APSS), which fit spheres with varying
curvature instead of polynomials onto the surface defined by
the circular splats. To further enhance the rendering quality,
the splats were upsampled before projection by placing a
constant amount of sub-splats on regular intervals inside a
square plane fit around the super-splat. Several acceleration
structures were utilized for efficient local reconstruction, and
their optimal redundant pyramid data structure yielded a
throughput of 100 thousand points in about 2 milliseconds.
Compared to using splats directly, APSS provided a smoother
reconstruction than using for example the previously popular
EWA filtering for splats.

2) MODERN POINT CLOUD RASTERIZATION PIPELINES IN
THE 2010s
Adopting the previous ideas of using splat-based rendering
for point data, a multi-layered splatting method with spheres
for particle-based liquid rendering was introduced in [60].
Effectively, using spheres provided a similarly smoothed
effect for liquid surfaces as the APSS approach, but needed
additional depth map smoothing with an iterative curvature
flow filter. The authors rendered several layers of the liquid in
order to produce separated foam and normal perturbed refrac-
tions. In [61], the authors took the idea of multi-layer depth
map rendering further by using up to four layers for trans-
parency with hard and soft shadows at real-time frame rates.
However, they returned to splat primitives and, thus, needed
screen space hole and occlusion filling as well as edge-aware
smoothing and anti-aliasing for consistent results. Another
application area for the splat primitive was the detailed
rendering of facial scans [62]. The authors adaptively dis-
tributed the splats depending on detail level and adjusted the
splat sizes accordingly with screen space hole filling applied
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FIGURE 4. A typical point cloud rasterization pipeline needs a
splat-based representation of the scene for sufficient surface coverage in
rasterization. For large point cloud scenes, hierarchical data structures
that cluster aggregate attributes from leaf node splats to parent nodes
are utilized for efficient level of detail (LOD) rendering. Geometry-aware
hole filling takes care of rendering artifacts in screen space.

accordingly. Self-shadowing with hard shadows on the face
and up to six layers of sub-surface scattering was achieved
in real time partly due to the reduced rendering effort with
the adaptive splat distribution, but the preprocessing work
entailed static models.

In [63], the authors demonstrated that a GPGPU-based
point cloud rasterization pipeline can outperform a
fixed-function pipeline optimized for triangle meshes.
Specifically, they implemented an OpenCL pipeline tailored
for point primitives, instead of relying on the more traditional
OpenGL 4 pipeline. With a real laser scanning dataset having
138 million points, their implementation achieved 56 FPS
on an AMD Radeon HD 7970 GPU, as opposed to their
OpenGL baseline achieving only 5 FPS, both with a 1024×
1024 resolution. However, the efficiency of their method
relies on having to perform a large number of z-tests. Hence,
the benefits of incorporating it into existing systems, where
a LOD mechanism usually reduces the amount of z-tests,
are not immediately evident. Moreover, their implementation
utilized only the scanned geometry and color information,
and did not focus on shading or producing any photorealistic
effects.

With increasing point and splat counts in more intri-
cate models, a LOD structure based on multi-way k-d trees
(MWKD) was introduced [64] (depicted in Figure 4). The
multi-way nature of the data structure was due to sev-
eral feature discrimination strategies such as normal devia-
tion clustering, entropy-based point reduction, and modified
k-clustering. These were used for splat count reduction with

a representative MWKD node and hashing as well as com-
pression reduced the resulting model size further. Addition-
ally, hierarchical interpolation between LOD levels increased
smoothness and temporal reusage decreased costly out-of-
core fetches. This approach was applied in an archaeologi-
cal setting with features such as relighting and shadows in
scenes with a torch tool and laser pointers with intersection
testing [65].

The computational challenges of preprocessing for
dynamic scenes were tackled in the AutoSplats method,
which did not assume point radii or surface normals [3]. The
authors generated object space oriented splats with a screen
space k-NN search algorithm that iteratively grew or shrunk
the considered area around points. The surface normals of
points were estimated with PCA on k-NN points, after which
a weighted average of the points was used for a plane fit.
Basic shading was incorporated but other realistic rendering
effects such as shadows were not present.

A. SUMMARY AND DISCUSSION
Surface point cloud rasterizationmethods are typically reliant
on pregenerated splats, i.e., both pregenerated surface nor-
mals and point radii. The most performant one out of those
showing one or more photorealistic rendering effects is the
implementation in [65], which utilizes a combination of [55]
and [64]: it achieves up to 100 FPSwith a resolution of 1920×
1080 and 14 · 106 points with 2 · 106 visible points. How-
ever, as discussed previously, the rasterization-based meth-
ods, with the exception of [61], only provide hard shadows
and Phong shading, which is considerably less photorealistic
than the effects produced by the ray tracing methods.

V. HYBRID RENDERING METHODS
Methods combining both rasterization and ray tracing for
their rendering pipeline are reviewed in this section. Specif-
ically, methods from the subject areas of point-based
indirect illumination and SPH fluid rendering are able
to produce photorealistic effects for point-based models,
with a hybrid approach incorporating the benefits of both
rasterization-based and ray-tracing-based techniques.

A. POINT-BASED GLOBAL ILLUMINATION
A precursor to the point-based global illumination (PBGI)
method produced meshless radiosity and GI effects [66].
An intersectable model was sub-sampled with splats and
stored into a multi-level R-tree with fine-to-coarse basis func-
tion approximations. Several ray traced bounces, including
support for three bounces of glossy reflections or multi-
light irradiance, were used to generate GI effects with irra-
diance gathering – the general concept behind PBGI is illus-
trated in Figure 5. The authors later increased the rendering
time performance by constructing the R-tree and ray tracing
single-bounce GI in a preprocessing step [67]. The original
method [66] was also re-implemented on the GPU with a
parallel implementation of the R-tree basis function hierarchy
evaluation and ray tracing [68]. They achieved an order of
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magnitude faster rendering time for meshless radiosity GI,
but due to the limitations of the GPU implementation, only
the indirect lighting was splatted and ray traced, whereas the
direct lighting was rasterized.

The original technical report on approximate PBGI intro-
duced GI effects with environment maps and spherical har-
monics projected onto surfels (surface splats) [69]. Surfels
were stored in an octree for accelerated environment map-
ping and spherical harmonics. The method was reported
to be extendable to any surface representation that can be
transformed into surfels with the necessary attributes for
photorealistic rendering effects. Because the spherical har-
monics approach was an approximation for GI, only smooth
effects such as glossy reflections, blurry refractions, and soft
shadows were supported. Actual ray tracing was suggested
as an extension to the rendering pipeline for sharp reflec-
tions, refractions, and shadows. Preprocessing took up to
minutes, of which the generation of surfels took 18 seconds.
An enhanced version significantly sped up the generation
of surfels and the octree structure from mesh models [70].
Furthermore, the extendability of the method to pure point
cloud models with rasterized primary visibility was explic-
itly discussed, but this approach assumed readily available
surface normals and point radii from the raw point cloud.

In [71], the PBGI indirect lighting method was further
improved in terms of image quality by introducing light
voxels for volume data points, which resembled probe-based
lighting. They added inward gathering and outward scattering
of indirect light for realistic light interactions inside a volume
point cloud and between the rest of the scene. Metric results
showed a 2.1–4.3 percent deviation from a reference rendered
with a Monte Carlo ray tracer, compared to 5.6–14.4 percent
with the method in [69].

The computational overhead of octree construction for
the surfels on the CPU was tackled in [72] with an out-of-
core point sample octree construction algorithm based on
efficient Morton code sorting. The octree provided a data
structure utilized by several CPU cores in parallel for LOD
ray tracing, producing GI effects like single-bounce diffuse
inter-reflections, ambient occlusion, and high-dynamic-range
environment map lighting. A similar PBGI implementation
was presented in a short paper [73], which was focused on
reducing the memory footprint of the point cloud size accom-
panying PBGI methods. They achieved up to two orders
of magnitude smaller point clouds with a multi-resolution
implementation of the octree structure. Instead of using
explicit ray tracing for the indirect lighting, an intricate pro-
gressive rasterization with hemispherical microbuffers was
used for radiosity gathering on surfels [74]. The idea was
that reduced microbuffer sizes of 32 × 32 were sufficient
to capture indirect lighting and glossy-to-glossy reflections
with additional glossy environment lobes. Furthermore, sur-
fels were clustered via k-means such that random samples
could be used as representatives of a clusters contribution
for performance gains. The microbuffer approach was further
advanced with LOD-like k-clustering of near and far surfels

FIGURE 5. Point-based global illumination uses a splat or surfel (ellipses
with black outlines) representation of the scene to both gather and
scatter secondary lighting information from the scene. The gathering of
irradiance can be achieved by either microbuffer rasterization or actual
ray tracing.

based on attribute mean values [75]. Faraway surfels were
approximated with the cluster mean values, whereas the near
surfels were further refined by their exact attribute values.
The method was offline, but it was able to reduce frame times
by a factor of 2 to 3 to the original PBGI method [69].

A return to explicit ray tracing for PBGI in [76] featured
a GPU-based implementation with accurate surfel occlusion
evaluations. The authors used a fixed budget of 500 thousand
surfels generated in a preprocessing step and inserted into a
tree structure in a few seconds. The novelty of themethodwas
a reduction step, which traversed the PBGI tree up and down
to find the optimal level in the hierarchy in terms of rendering
speed and GI quality. Ideas from photon mapping, PBGI, and
radiosity caching were combined in an approximate GI ray
tracing pipeline [77]. In addition to a traditional radiance-
and irradiance-based PBGI solution (shown in Figure 5), the
authors proposed a photon-mapping-like stage, where they
ray traced light rays from emissive objects to pre-generated
radiosity particle locations weighted by realistically correct
BRDF and normal-based coefficients. To accelerate scatter-
ing and gathering of light into the radiance particles, the
authors generated geometry lists between the most contribut-
ing particles in a preprocessing step.

For applications with purely static scenes, precomputed
PBGI was a more efficient approach. Volumetric shadows for
point cloud represented participating media were presented
in [78]. They generated a height field occlusion map in 2D
light space stored in a quad-tree for acceleration. At render-
ing time, the view rays were transformed into light space,
and shadows were cast in the participating media where the
sampled view ray locations were below the occlusion height
field values. Similarly in [79], real-time GI re-lighting in real-
world scanned cave scenes was achieved by storing a point
cloud and its direct illumination into a sparse voxel octree in
an offline preprocessing step. In [80], the result of radiosity
gathering and scattering inside a homogeneous volume was
stored into a precomputed PBGI octree, which was used at
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rendering time for accelerated light gathering. The system
supported multiple scattering events and light bounces inside
the volumes. A 60-fold decrease in computation time and
a 6-fold decrease in memory consumption compared to a
reference solution was reported. Later, a GPU version of the
method was implemented, which achieved real-time frame
rates with up to 50 million particles [81]. Furthermore, [82]
extended the original offline method in single-scattering
cases by transforming the angle-dependent light transport
values fromRGB-angle space into the frequency domain with
a covariance matrix eigenvector representation. They adopted
the idea from [83], where surface and participating media
events, such as free space transport and reflections, altered
the covariance space eigenvectors with an appropriate matrix
transformation.

An incremental improvement to the PBGI method ray
traversal was proposed in [84]. A BSH tree traversal was
implemented on 16-vector wide SIMD operations, which
achieved a 2 to 3-fold decrease in rendering time compared to
a non-parallel implementation. The authors elaborated their
methods further in [85], by introducing a hybrid parallel
BVH tree traversal scheme using a packet and single thread
SIMD depending on the BSH-tree detail level. They exam-
ined microbuffer sizes of 32×32 and 128×128 for radiosity
gathering in point samples, and also used an adaptive res-
olution method to refine glossy reflection areas. Recently
in [86], the surfel-based global illumination scheme was
further enhanced with an adaptive ray tracing heuristic and
dynamic surfel spawning for constant screen space surfel
occupation. Local variance and frequency of surfel visibility
were used together with global ray count limit to adaptively
send more rays in more frequently used and higher-variance
surfels. Also, advanced techniques such as importance sam-
pling with ray guiding, local surfel irradiance sharing, and
stochastic light cuts and reservoir sampling for multiple-light
sampling were used to produce fast converging and robust
irradiance results even in varying complex scenes and lighting
conditions.

B. INDIRECT LIGHTING WITH POINT-BASED METHODS
Using a point-based method solely for indirect lighting has
been explored for both shadow generation with imperfect
shadow maps (ISM) and reflection generation with reflective
shadow maps (RSM). These methods use a reduced repre-
sentation of the scene and splat it into second bounce screen
space microbuffers for sufficiently accurate effects, which is
depicted in Figure 6.

Real-time indirect lighting with virtual point lights (VPL)
and ISMs was presented in [87]. As in standard VPL meth-
ods, the scene was importance sampled via cube maps from
the view of the scene lighting, to generate points gathering
virtual light contributions. Holes in the ISMs were filled
with a push-pull filtering kernel, and finally the individual
VPL contributions were gathered and blurred with G-buffer
awareness. The authors later improved their method in terms
of quality by substituting the VPLs with a full splat-based

FIGURE 6. Both imperfect shadow map (ISM) and reflective shadow map
(RSM) techniques use a reduced point-based representation, such as
points or splats, of the scene to render microbuffers at light or pixel
locations. ISMs use it for efficient depth-based shadow mapping,
whereas RSMs achieve secondary lighting effects for plausible GI by
gathering full lighting information into the buffer. Hole filling in the
microbuffers is needed due to sparse point coverage.

surface representation stored in a BSH binary tree in [88]. The
splat-based scene representation was used for both indirect
and direct lighting, and locating a suitable-resolution tree
cut for LOD was based on solid angle coverage. The novel
contribution was that a preconstructed BSH was updated in
real time even in dynamic scenes.

Several publications took the ideas of ISM, RSM, and
instant radiosity with VPLs, and applied them in various
real-time rendering applications. In [89], the authors com-
bined differential rendering and instant radiosity, in order
to produce multi-bounce GI effects between real and virtual
objects in real time. Their contribution to the point-based
approach of ISMs was the use of surface normal aligned quad
splats and parabolic projection to achieve depth-based splat
sizes instead of the original inverse depth splat sizes. In a later
publication [90], the problem of unsupported double occlu-
sions and incorrect color bleeding between real and virtual
objects was resolved with rasterizing two depth maps: one
for real objects and one for virtual objects. Furthermore, the
authors achieved interactive scene reconstruction by integrat-
ing the KinectFusion [10] method to their rendering pipeline.

In [91], the ISM technique was extended to imperfect
volumes by rasterizing stochastic point samples based on
triangle sizes into a voxel grid and generating cached radiance
samples per voxel via ISMs, and finally rendering the voxels
with ray marching in screen space. Similarly, [92] presented
a voxelized shadow mapping technique by synthesizing VPL
shadow maps into a 3D grid, which they also extended to
ISMs in a later publication [93]. Instead of using VPLs
directly, virtual area lights were generated in [94] by clus-
tering VPLs with importance-sampling-based warping and,
thus, generating fewer ISMs with similar quality to VPLs
in real time. The remaining challenge of distributing VPL
samples in RSM and sampling the scene with points in ISM
was tackled in [95]. They generated a bi-directional RSM to
place VPLs in locations contributing the most to the final
lighting of the scene. Furthermore, they improved the point
sample distribution in ISM by placing stochastic samples
based on triangle solid angle contribution and distance in
view space. Finally, [96] used GPU-accelerated tessellation
shaders with point generation mode to produce point samples
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FIGURE 7. The ubiquitous particle-based fluid rendering pipeline for
refractive and reflective effects consist of the following steps: one or
multiple depth map generation with sphere splatting (rasterization),
depth map smoothing or reconstruction with screen space filter kernels,
and ray casting or rasterizing depth maps and environment map with
single or multiple reflective or refractive fluid surface events. Optionally,
fluid thickness-based color attenuation and alpha-transparency can be
added.

for fast ISM rasterization based on triangle areas. Further-
more, the adaptive VPL placement was based on Metropolis-
Hastings sampling.

C. REAL-TIME PARTICLE- AND FLUID-BASED METHODS
The ubiquitous screen space meshless rendering pipeline for
realistic real-time visualization of particle-based simulations,
utilized by almost all methods surveyed in this section, was
established in [97]. An overview of the method is depicted
in Figure 7. They utilized a sphere rasterization method
inspired by splatting [2], [53] for depth map generation
from point-based models and combined it with curvature-
flow-based depth map smoothing as well as fluid thickness
extraction to produce composited fluid effects like Fresnel
coefficient weighted environment map reflections and refrac-
tions in addition to thickness-based transparency and light
color attenuation.

In [98], existing SPH fluid simulation and rendering meth-
ods were improved by implementing fully GPU-based vox-
elized SDF rendering for particles. A surface particle subset
was extracted from the fluid by comparing the distances of
particles to their respective neighborhood mass centers. The
surface particles and their proximities were rasterized into
a 3D voxelized SDF texture with preset resolution and the
resulting SDF was ray cast from the camera and composited
into a final transparent image of the fluid and the surrounding
scene. In [99], actual refractive effects were produced with
a hybrid approach with combined rasterized sphere sprites
and bilateral smoothingwhich generated smoothed fluid front
and back face depth maps. Refraction rays were cast from
the front face pixel depth locations, and an iterative secant
technique refined the ray exit point in the back facing depth
map. Later, the authors improved the method in terms of
image quality and computational performance by separating
splash and surface particles and generating four layers of front
and back depth maps in total [100]. Four-layered refractions
with realistically blended specular reflections were achieved
at a considerably small resolution in real time. Further-
more, a light weight light attenuation model based on the

Beer-Lambert equations was added with negligible computa-
tion times to increase photorealismwith differently absorbing
wavelengths.

A similar technique was also applied in a deferred shading
pipeline [101] but only with single-layer depth maps. The
particles were quantized into a fixed resolution grid in order
to fit more points into memory and speed up rendering.
The authors generated an approximate refraction effect by
distorting the background transparent through the fluid based
on fluid surface normals. A simple ray casting technique for
adaptive rendering of transparent fluids was also published
in [102]. The method aimed at accelerating rendering of fluid
simulations by using a perspective grid acceleration structure
(consisting of pyramids with cut-off tops) and representative
rays for each grid cell for adaptive ray casting. Thus, ray
casting was only used for adapting the sample rate but not
to produce photorealistic effects other than aggregate trans-
parency.

Further optimizations for GPU utilization were presented
in several later publications. AGPUhashing schemewas used
for accelerated neighborhood queries and real-time rendering
of dynamic particle-based fluid simulations in [103]. The
method used familiar screen space splattingwith sphere prim-
itives but, instead of depth maps, generated a ray marchable
isosurface. Only the front-most surface of the fluid volume
was rendered, and an alpha transparency technique extracted
an approximate fluid thickness to produce fluid depth and
refractions. Multiple GPUs were utilized in a distributed
renderer in [104]. Instead of using curvature flow, the authors
used a more lightweight bilateral filter for depth map smooth-
ing. A full GPU implementation of a view aligned voxelized
sphere particle structure showed that inter-particle refractions
and reflections with up to seven fluid layers was possible
at interactive frame rates. A view-space aligned voxelized
sphere particle method fully implemented on the GPU was
published in [52]. With photorealistic inter-particle refrac-
tions and reflections between up to seven fluid layers, they
achieved interactive frame rates. The voxels were traversed
to find up to seven levels of continuous fluid surfaces based
on neighboring voxel cells, and finally the extracted and
linked surface cells were smoothed with an iterative curvature
flow kernel to produce continuous and smooth intersectable
surfaces. Finally, a modern implementation with the Nvidia
OptiX ray tracing framework [105] and a CUDA-based GPU
rendering system was presented in [106].

Overall, particle-based ray tracing methods are a viable
substitute for surface point cloud rendering methods. They
typically trump more sophisticated local reconstruction and
splatting rendering methods in speed, resolution, photoreal-
istic effects, and the number of rendered points. However,
due to the depth map rasterization approach, the method
is naturally limited only to effects produced by particles
inside the view frustum, which makes it similar to screen
space ray tracing in its extent. The basic rendering pipeline
for particle-based homogeneous fluid rendering popular-
ized in [97] and utilized in practically all the surveyed
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particle-based methods is depicted in Figure 7. It consists of
3 steps: sphere splatting into one or more screen space depth
maps, smoothing and filtering the generated depth maps
with sphere flattening and edge detail preserving filtering
kernels, and rasterizing or ray tracing the front-most depth
map and generating photorealistic effects with layered depth
map refractions, environment map reflections and fluid color
attenuation.

The focus in the particle-based rendering literature has
been to generate real-time rendering results with photore-
alistic fluid effects from SPH-based simulation, implying
rendering support for dynamic scenes and, thus, real-time
acceleration construction for ray tracing or direct depth map
rasterization methods. The SPH simulations usually yield
per-particle densities, masses, and motion vectors, which are
available for rendering time effects such as foam genera-
tion and velocity deformation on particles. However, these
attributes can be omitted in the surveyed methods and they
are still applicable to raw point/particle clouds with only
coordinate information and other optional attributes for tra-
ditional rendering pipelines (for example color and material
properties).

All surveyed particle-based methods exhibit real-time
frame rates with single-layer depth map [97], [103], [104],
[106] as well as double-layer front- and back-face depth
maps [99]. Additionally, foam and fluid separated parti-
cle depth maps [101] including up to four-layer depth
maps [100] and up to seven-layer depth maps with parti-
cle inter-reflections [52] are also supported in real-time or
interactive frame rates. All methods generate translucency,
thickness-based light attenuation, Phong shading, environ-
ment map specular reflections and approximated or exact
refractions, and Fresnel equation composited final color.

D. SUMMARY AND DISCUSSION
For point-based global illumination, [81] achieved real-time
frame rates with up to 50 million particles: 30 FPS when
moving the viewpoint, or 25 FPS when editing the light
position or thematerial parameters. As another highlight, [86]
demonstrated a promising future direction for producing
high-quality results, by combining hardware-accelerated ray
tracing with various advanced techniques for the purpose
of real-time gaming. Their method converged in about 2–7
seconds depending on the amount of lights in the scene, at a
4K output resolution on a PlayStation 5.

As for point-based methods targeting solely indirect illu-
mination, in [89], multi-bounce GI effects for mixed real-
ity were computed at 22–24 FPS on an Nvidia GeForce
GTX 285 GPU. They used 256 VPLs, with the scene being
represented by 1024 points per VPL and the output resolution
being 1024× 768 pixels. In [96], GPU tessellation was used
for ISM splatting. With 1024 VPLs in total, and 128 VPLs
evaluated at each shaded pixel, they achieved 30–54 FPS
at a 512 × 512 output resolution on an Nvidia GeForce
GTX 470 GPU.

Virtual area lights were used in [94], yielding indirect
illumination results at 74 FPS with fewer artifacts than with a
VPL-based approach, for a 1280×720 output resolution on an
AMDRadeon HD 6850 GPU. However, reducing the number
of indirect light sources degrades the quality of the indirect
shadow information; their solution for improving the shadow
sampling takes an additional 26 ms.

Particle-based volume methods work on larger frame res-
olutions compared to most ray tracing methods. Most of
them achieve relatively high frame rates even with a reso-
lution of 1280 × 720. The fastest method achieved a frame
rate of 97 FPS with a resolution of 1024 × 1024 and 16 ·
103 points [98]. However, the number of used points is com-
parably low, given the fact that the particle-based methods
have a lower number of actual surface points. Thus, a more
comparable method with a larger point cloud size is the
method in [100], which achieved 48 FPS with a resolution
of 1024× 768 and 4 · 106 points.
Out of the particle-based fluid volume rendering methods,

the one in [52] exhibited the most photorealistic effects at low
interactive frame rates with up to 7 · 106 volume particles.
Supported effects included 2 spp reflections for particle inter-
reflection-based GI, multi-layered (up to 7) refraction, and
extendability to other ray tracing effects such as shadows and
path tracing. In terms of rendering performance, the method
in [101] achieves real-time performance on particle-based
fluid volumes with up to 5 · 108 particle points. They used
a binning strategy with up to 2 · 103 brick bins for accel-
erated rendering with single-layer approximate refractions
and specular reflections. As discussed earlier, the number of
points/particles is not directly comparable to surface point
cloud rendering methods. We identify that the relationship
between the particle-based volume rendering and surface
point cloud rendering in this regard, and in terms of method
applicability and scalability in each domain, would be a
fruitful subject of future research.

VI. POINT-BASED NEURAL RENDERING
We briefly review the latest state-of-the-art neural network
solutions for point cloud and point-based model rendering.
Only a handful of current solutions can produce plausibly
photorealistic point cloud renderings in real time, and all of
them require scenes to have static geometry. Furthermore,
many of the neural networks have to be re-trained on target
specific point cloud inputs and they need to have ground
truth images for training, which are not readily available in
applications such as holoportation or teleconferencing solu-
tions. However, as the area of point-based neural network
rendering is emerging, more general and computationally
effective solutions independent of domain-specific training
might be possible in the near future.

A neural network solution for upsampling and filling a
splatted point cloud was published in [107]. Instead of using
a rendering network to learn a mapping from a point cloud
to final image, it used a GAN -based network to learn a
post-processing step from an incomplete and low-frequency
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splatted rendering to a high quality final frame. The splatting
method worked in real time by using a k-d tree to fit a
suitable point-wise normal and splat radius based on k-NN
in 12 sectors around the splat with similar surface normals.
However, the actual upsampling and filling GAN network
ran at interactive frame rates only for low-resolution images.
Thus, the authors used the network to render or pre-render
high quality key locations and viewpoints in a scene, and used
the lower-quality splatted results for interactive 3D scene
navigation.

One of the first neural network–based methods attempting
full scene capture (capturing or deducing scene geometry,
material properties and lighting information, from multiple
unstructured image sets in a single system) was proposed
in [108]. They used a point cloud, a depth map, and a
segmentation image constructed from multiple images of a
single landmark scene as an input to a two-stage network.
The first stage learned a descriptor vector set from the input
point cloud, depth map, and segmentation to further encode
various aspects of the scene. The descriptor set together
with the inputs were further fed to the second stage (render-
ing network), which mapped the inputs to a final rendered
image from a novel viewpoint with new lighting conditions.
Furthermore, the semantic segmentation was used to mark
non-relevant foreground and non-stationary objects in the
view of the rendered landmark so that the network could both
learn to remove and re-instantiate these elements in novel
views. The inference time during rendering and generation
was reported to be 330 ms at a resolution of 512× 512 on an
Nvidia Titan V GPU. Training time was not reported.

In [109], a two-part neural network, based on convolutional
U-Net architecture, was used to render a point cloud input in
novel viewpoints. The first part consisted of an 8 dimensional
point descriptor vector set and camera parameters, which was
rasterized into multiple-resolutions and given to the second,
neural rendering network part to learn the mapping of the
descriptors to an RGB image. Both the point-based neural
rendering network and the descriptor vector set were trained
in a two-step fashion. First, the rendering network and the
descriptor set were pre-trained on a general input sequence,
after which the descriptor set was reset and retrained with a
local input sequence (closely resembling the validation set)
with the pre-trained rendering network. The authors reported
better image quality compared to similar neural rendering
methods based on mesh primitives. However, their method
was also limited to scenes with static models and lighting,
making it non-transferable to scenarios like dynamic point
cloud streaming and re-lighting.

To alleviate the problems of rasterizing the descriptor
vectors directly onto the image plane, a voxelization-based
method was suggested in [110]. Instead of using a multireso-
lution approach on the same image plane with nearest depth
pixel selection, the authors suggested rasterizing the descrip-
tor vectors onto different depth planes on the view frustum
called frustum voxels. Additionally, they blended all the frag-
ments on single pixels based on a distance metric to the

pixel center on both the image plane and perpendicular depth
weighting the closer fragments more. This improved quality
on sparse point cloud inputs and decreased background bleed-
ing due to holes in the rasterized point clouds. Nevertheless,
the rendering times were not disclosed. Furthermore, the
method was similarly designed for static models and lighting.

The method in [111] used a radiance field (i.e., light
field) representation of the scene to render an image from
novel viewpoints via a volume rendering technique. The
radiance field, produced from images of multiple viewpoints,
was given as an input to two parallel fine and coarse fully
connected neural networks, which gave a color and density
output to a volume renderer for final composition. Entries
from the radiance field were encoded in a higher-dimensional
space in order to preserve fine geometrical details. The final
rendering time was measured in tens of seconds.

In [112], the authors introduced a temporally consistent
neural renderer with a differentiable point-based pipeline.
Multi-view stereo [113] was used for the initial reconstruc-
tion of the 3D geometry, followed by further per-view opti-
mization based on bi-directional EWA splatting, probabilistic
per-view depth testing, and effective camera selection. Their
main application was also novel-view synthesis, although the
method is suitable for multi-view harmonization and image
stylization as well. Their free-viewpoint rendering ran at
4.5 FPS on an Nvidia RTX 6000 GPU, once the network had
been optimized for the scene; training took several hours.

Neural rendering with a sphere-based geometry represen-
tation was proposed in the Pulsar method [114]. A fully
differentiable rendering pipeline simultaneously forward ren-
ders and backward propagates scene representation refine-
ment, projection operation, and neural shading. The sphere
representation included radii, transparencies, and feature vec-
tors describing local geometry and lighting, which were all
learned during training time and applied at rendering time.

A three-stage differentiable point renderer, called ADOP,
was able to beat OpenGL point primitive rendering in both
image quality and rendering speed [115]. The system con-
sisted of a differentiable rasterized (inspired by the efficient
compute shader point rendering in [116]) and tonemapper
with a neural renderer in between, which took the output
of the rasterizer as input and produced an HDR image for
the tonemapper. The system refined and updated the input
point cloud and camera model as well as both the neural
renderer weights and tonemapper HDR parameters. In order
to increase both speed and image quality compared to native
OpenGL point primitive rendering, a stochastic point discard
heuristic with discarded pixel geometry utilization for spatial
gradients was employed.

A. SUMMARY AND DISCUSSION
Various methods for point-based neural network rendering
have been proposed. Both image-based post processing of
splatted point clouds [107] and model-to-rendering direct
mappings [108]–[112] have emerged. Specific solutions tried
to tackle the problem of background bleeding in sparse point
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clouds with a multi-resolution image-space solution [109]
and an object space view frustum voxelization [110]. In [111],
a custom encoding of spatial and photometric data stored
information in a radiance field (light field), and the authors
in [108] were able to relight scenes based on non-organized
images of landmark locations and remove transient objects
from the foreground with segmentation. However, only a few
of these methods were able to perform in real time and all of
them rely on external algorithms to produce inputs like point
clouds, depth maps, segmentation, or splatting, which were
not included in final rendering time.

Nevertheless, we highlight two prominent novel viewpoint
point cloud renderers achieving 23.7 ms with 106 spheres
at a 1000 × 1000 resolution [114] and 5.7 ms rendering
time with 107 points in full HD [115], which are highly
usable neural point cloud renderers in scenes with static
lighting and geometry. The former of the methods can learn
the sphere representation from multi-view images, whereas
the latter method only needs coarsely triangulated textured
point clouds from RGB images with rough camera parameter
estimates as input. A summary of the real-time performance
of the methods is in Table 5.

VII. DISCUSSION
In this section, we discuss the state of the art in real-time pho-
torealistic point cloud rendering based on the surveyed meth-
ods, focusing on the capabilities of producing photorealistic
rendering effects in real time in Section VII-A. The posed
research question is answered in Section VII-B. Additionally,
we discuss the current capabilities of dynamic acceleration
structure construction and updating for point clouds. This
section is concluded with a discussion on the possibilities of
future research in Section VII-C.

A. STATE OF THE ART IN PHOTOREALISTIC POINT CLOUD
RENDERING
As shown in Table 5, over 20 point cloud rendering methods
achieve interactive or real-time frame rates. Particle-based
volume visualization methods have seen the most active
research in recent years, whereas publications on surface
point cloud ray tracing have been prominent in the late
2000s. Surface point cloud rasterization methods exhibiting
photorealistic effects have not been researched as actively,
but the computational efficiency of these methods compared
to ray tracing makes them a viable option in photorealistic
visualization.

Particle-based volume methods consider point clouds that
represent an object within a volume with possible interac-
tions, as discussed in SectionV. This sets it apart from surface
point clouds in two ways.

On the one hand, the number of points in a particle system
depicting the surface of the volume is much smaller than
the total number of points. As photorealistic effects, such
as reflections and refractions, are mostly concerned with the
interaction of light at surface boundaries, the visualization
effort is largely concentrated on the surface points. Thus, the

points within a volume can be ignored if the surface is opaque
or the volume is homogeneous in color and material. The
latter statement is true for all of the surveyed particle-based
methods as they work with homogeneous liquids. It should be
noted, however, that more accurate photorealistic refractions
would benefit from taking into account the effect of varying
volume densities if such information was available.

Particle-based systems almost always have an underlying
simulation governing the interaction between the particles
and their movement based on the particle characteristics.
Usually, these simulations produce extra attributes for the
particles, which eases the visualization part. These attributes
include for example the particle radius, which is used in
most of the hybrid approach methods where particles are first
projected into screen space as spheres with the accompanying
radius, and then ray traced in screen space.

The screen space nature of the particle-based volume sur-
veyed methods means that all the photorealistic effects are
inherently limited to the parts of the scene currently in the
view frustum and the pre-rendered environment map. This
means that the surface point cloud ray tracing methods pro-
vide more realism at least in theory because, for example,
their reflections and refractions can include interactions out-
side the view space. The screen space representation is both
a benefit in terms of rendering speed and a hindrance in less
realistic effects in real-time particle-based visualization.

1) SUPPORTED PHOTOREALISM
The supported photorealistic effects of real-time point cloud
rendering methods are summarized in Table 1. It should be
noted that all the methods concentrate on some photorealistic
aspects, but none of them report real-time capabilities with
a path tracing approach where actual GI effects would be
present. As such, it is still an open question whether point
clouds can be path traced in real time or whether GI effects,
in general, can be produced for point clouds in real time.

In general, the effects produced by the different meth-
ods can be categorized in the following way. All surface
point cloud ray tracing methods, except [47], use a Whitted
style ray tracing approach, which means that they support
hard shadows and sharp specular reflections. Furthermore,
single-layer refractions are supported in [46], [48]–[50],
whereas [47] provides soft shadows from multiple light
sources and sharp specular reflections with multiple bounces.

Real-time surface point cloud rasterization methods pro-
vide only hard shadows [55], [62], [65] or soft shadows [61]
with Phong shading as their photorealistic effects. This means
that even though rasterization methods are computationally
more efficient compared to ray tracing, the supported photo-
realistic effects for point cloud rendering are very limited.

All of the particle-based volume methods are concerned
with refractions through liquids and reflections on the
surface of liquids. The reflections exhibited in all meth-
ods, except [102], are sharp specular reflections from the
accompanying pre-rendered environment map or between
objects in the scene. The dividing factor between these
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TABLE 1. Rendering feature table for all real-time and interactive methods that show one or more photorealistic rendering effects.

TABLE 2. Marker legend for Table 1.

methods, however, is the approach to refractions. [97], [98],
[101], [103], [104] produce refractions only by sampling
the environment map, whereas [52], [99], [100], [106] also
refract light from other objects in the scene including intra-
refractions. Furthermore, the number of interaction layers
used for refraction varies between the methods with [98], [99]
having dual-layer refractions and [52], [100] having up to
four-layer refractions.

Photorealism in point cloud rendering is also affected by
the detail level of the point cloud model. In the point cloud
capturing literature, a definite point resolution has not been

established, and it varies depending on the application rang-
ing from smaller density of points for urban and outdoor
environments to high-resolution details for indoor and human
capturing. For the use case of most of the methods surveyed
in this publication, namely human-sized objects, some esti-
mates can be made on typical point cloud resolutions. For
example, the KinectFusion and its successors typically use
a grid structure of up to 5123 entries or over 108 potential
data points in an indoor environment. However, most of these
grid entries are empty, making the evaluation of the total
number of relevant points difficult. Models in The Stanford

13164 VOLUME 10, 2022



P. E. J. Kivi et al.: Real-Time Rendering of Point Clouds With Photorealistic Effects: Survey

3D Scanning Repository [15] give a rough estimate of the
model detail needed to represent scanned objects. The typical
size is around 106, whereas more detailed models, such as the
human-like Lucy model, can have up to 107 points. On the
other hand, urban and man-made structures typically exhibit
less geometric detail, and include areas like floors and ceil-
ings, which can be expressed with less data. Hybrid rendering
primitive approaches, like using meshes for linear static areas
of the scene and point clouds for more detailed areas, might
yield better results in these cases.

B. ANSWERING THE RESEARCH QUESTION
What is the state-of-the-art technique for photorealistic
end-to-end direct point cloud rendering for a high-quality
human-sized model (107 points), in 75 FPS, and a resolu-
tion of 1080p on consumer hardware?

As discussed in Section III-D, none of the surveyed direct
point cloud rendering methods are able to produce all of the
photorealistic effects with their respective hardware with the
established requirements. Therefore, no direct point cloud
rendering methods have shown photorealistic rendering at
1080p and 75 FPS for at least 107 points. The method closest
to these demands is presented in [47], capable of rendering
soft shadows frommultiple light sources and sharp reflections
withmultiple bounces for 106 points and a resolution of 512×
512 at 55 FPS. Moreover, as discussed in Appendix B, pro-
jecting the measurement provided on an Nvidia RTX 275 to
a modern RTX 2080 Ti could mean a ray tracing perfor-
mance of 75 FPS to 130 FPS with requirements posed in the
research question. Adding the needed acceleration structure,
namely the octree structure, presents a negligible computa-
tional overhead to the end-to-end pipeline if 106 points are
used or even up to 107 on modern GPUs. However, as splats
are assumed for the input of the ray tracing method, it is
difficult to estimate how much preprocessing effort is needed
to generate the splats. The methods in [52] and [89] achieve
real-time performance but lack the photorealistic effects
required.

Point-based neural rendering has showed promising results
for point cloud rendering from multi-view image inputs. The
Pulsar system [114] and the ADOP method [115] achieve
42 FPS with 106 spheres and a 1000 × 1000 resolution
and 175 FPS with 107 points and 1080p resolution, respec-
tively. However, the systems are primarily used for novel
view rendering and are thus limited to static geometry and
lighting.

Furthermore, we highlight the method in [117] as the
most efficient BVH generation method. As discussed in
Appendix A, the authors provided a state-of-the-art accelera-
tion structure construction method for both octrees and BVHs
with up to 1.77·106 points in real time. Specifically, the octree
construction took 0.88 ms, meaning an almost negligible
performance loss to an end-to-end pipeline. Extrapolating this
result to accommodate the desired 107 point count already
yields a significant cost of at least 8 ms. As discussed in
Appendix B, however, an optimistic lower bound estimate

for the performance of the construction on an Nvidia RTX
2080 Ti was established at 0.24 ms for BVHs and 0.62 ms
for octrees and 107 points. However, an acceleration structure
method for volumetric meshes showed a more conservative
construction time of 50ms and a referenceOptiX acceleration
structure construction time of 200 ms. This means that the
method may meet the posed requirements on modern hard-
ware, but an actual implementation is needed to verify the
capabilities.

C. FUTURE RESEARCH
The latest research on real-time point cloud ray tracing meth-
ods was published almost a decade ago. There is research to
be done especially on extending ray tracing with path tracing
for point clouds. Based on this survey, combining both rasteri-
zation and ray tracing techniques into a hybrid approach sim-
ilar to the particle-based volume rendering could be highly
beneficial in terms of computational efficiency. As particle-
based approaches have worked on volumes, novel approaches
applying the same techniques on surface point clouds would
be interesting. Nevertheless, as discussed before, these meth-
ods would inherently work in screen space and suffer from
similar problems as other methods such as screen space ray
tracing.

Further research could be done to establish the sufficient
detail needed in captured scenes and models. Researching the
trade-offs betweenmodel detail-level and network bandwidth
as well as the impact on photorealism and rendering speed
may provide an interesting aspect. Establishing the level of
photorealism with regards to point cloud size that can be
captured, transferred, and rendered in real time with current
hardware is a possibly fruitful avenue for research. Also,
modern point-based neural rendering methods have built-in
capabilities for point cloud and scene reconstruction due to
learnable geometry features. Utilizing the scene understand-
ing aspect of deep learning methods may provide an insight
to sufficient level-of-detail of point clouds and geometry
for photorealistic rendering in varying scene and lighting
settings.

With the recent arrival of GPUs with dedicated ray tracing
hardware, such as the Nvidia RTX series with Turing [118]
and Ampere [119] architectures, harnessing the support for
custom intersection functions for point cloud intersection
could yield interesting results. Combining this with accel-
eration structures specifically designed for point clouds and
comparing them to existing supported acceleration structures
could also be useful. Based on our evaluation in Appendix B,
meeting the requirements posed in the research question is
feasible. The publication dates of the reviewed methods span
two decades, and consequently, many generations of hard-
ware architectures have since been released. Implementing
and testing the highlighted methods for point cloud rendering
on identical modern hardware would provide a fair compari-
son between them and definitively answer our posed research
question.
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VIII. CONCLUSION
In this survey, we reviewed real-time photorealistic render-
ing methods for point cloud visualization. Specifically, ray
tracing methods for point cloud rendering were exhaustively
surveyed and real-time rasterization and hybrid methods for
realistic rendering were reviewed for comparison.

We found that direct photorealistic rendering is possible at
130 FPS and HD resolution [47] when estimating the perfor-
mance on modern hardware. For the desired point clouds in
the order of 107 points of size, an acceleration structure could
be constructed in negligible time on modern GPUs [117].
Furthermore, point-based neural rendering can achieve novel
viewpoint rendering for point clouds in static scenes with
107 points and 1080p resolution at 175 FPS.
Based on our findings, we highlighted that photorealis-

tic rendering of live captured point cloud content has open
research problems, such as utilizing path tracing for point
clouds directly. Extending the state-of-the-art methods with
path tracing to verify the performance of the methods on the
current dedicated ray tracing hardware is left as future work.

To conclude, the performance numbers achieved with the
state-of-the-art methods do not yet satisfy the requirement
of photorealistic point cloud rendering when considering a
sufficient end-to-end latency of at least 75 FPS, a minimum
high-quality screen resolution of 1080p, and an adequately
detailed point cloud in the order of 107 points. Direct point
cloud ray tracing is an order of magnitude behind in terms
of point cloud size and resolution. However, based on our
estimations, the posed requirements may be achievable on
modern desktop-scale GPUs with optimistic assumptions, let
alone on mobile scale GPUs where the AR use case is more
typical.

APPENDIX A
ACCELERATION DATA STRUCTURES FOR
POINT CLOUD DATA
In this section, we briefly review acceleration structures
designed and applicable to point cloud rendering, specifically,
acceleration for point cloud ray tracing. This serves the pur-
pose of estimating the performance of dynamic acceleration
construction in an end-to-end system with temporally inco-
herent point cloud input. For a more exhaustive review on the
acceleration of triangle-based animated ray tracing, we refer
to [120]. Based on our findings, the most prominent methods
for accelerating point cloud rendering specifically are k-d
trees and octrees. Both k-d trees and octrees are depicted in
Figure 8. Apart from these, we review also general spatial
data structures and K-nearest neighbors.

One of the first parallelized octree data structure construc-
tion methods taking advantage of the GPU was presented
in [58], which achieved approximately a ten-fold speed-up
compared to the seminal QSplat system in [2]. The render-
ing, LOD selection and fine-grained culling of the hierarchy
were done on the GPU, freeing the CPU for other tasks,
such as coarse initial culling. The method provided effi-
cient LOD queries and selection with a sorted node structure

FIGURE 8. The most prominent acceleration structures designed or
applicable for point cloud rendering, namely the k-d tree (left) and the
octree (right), are illustrated.

based on rendering distance and a hole-free result with slight
overlapping between hereditary nodes. Similarly, a layered
point cloud structure with a hierarchical LOD system for the
GPU was introduced in [121]. The multiresolution structure
precomputed and binned point cloud points into nodes in
world space hierarchically, and instead of rendering distance,
used coarse to fine sorting based on sampling densities. The
system also supported culling techniques and compression
for further computational efficiency. In [122], a k-d tree
acceleration structure was used for k-means clustering and
quantizing, which could also be applied to LOD support.
However, instead of point clouds their method was utilized
for spherical harmonics (SH) coefficients storage and they
utilized clustered averaged SH coefficients for the LOD sup-
port in a point-based global illumination (PBGI) rendering
system with a focus on quality, not real-time speed.

K-d trees were also used directly for ray tracing accel-
eration. A real-time k-d tree construction method on the
GPU was presented in [123] that used triangles or points
with color without any extra attributes as input. The method
used a greedy surface area heuristic (SAH) scheme, which
outperformed a thorough SAH-based CPU implementation in
smaller scenes. Furthermore, ray tracing and traversal speeds
indicated better quality in practice for all types of scenes
compared to the exhaustive CPU implementation. In [124],
k-d tree structures were utilized to support for volume ray
tracing. They extended the OpenVDB software [124] with
a novel contribution of offering fast dynamic updating and
ray traversal operations for a GPU implementation of an
accelerated volume ray tracing framework.

An extensive system that supported several different accel-
eration structures, such as Octrees and BVHs, for ray tracing
were built from a common binary radix tree representation
in [117]. The tree construction started with a Morton code
generation and sorting step, which placed 3D pointwise data
on a space ordered curve in lexicographical Morton code
order. Finally, a data structure for general k-NN querying on
point-based data implemented a random ball cover (RBC)
algorithm using a subset of representative points to bin a
set of 3D points [125]. Contrary to the exhaustive search
of iterating and sorting points per representative point bin,
their GPU implementation iterated the 3D points and placed
them to their respective representative bins, which sacrificed
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TABLE 3. Comparison of processing unit counts of the different GPUs used in the surveyed methods, with details retrieved from [128].

completeness for a efficient parallel algorithm. Even though
the authors did not mention ray tracing as an application,
k-NN querying is essentially a part of all the covered inter-
section testing algorithms for point cloud data.

A. SUMMARY AND DISCUSSION
K-d tree solutions in [123] for k-NN search and PCA-
based surface normals as well as in [122] for the storage
of SH coefficients of a surfel-based scene have shown their
effectiveness on point data. The former method achieved a
performance of 21 ms for static and 310 ms for dynamic
deforming scenes with 171 thousand points, yielding a frame
rate of 48 FPS and 3.2 FPS, respectively. The latter method
was quality-oriented and not specifically suitable for real-
time acceleration. Octrees were utilized for LOD-based ras-
terization acceleration in [58], but only the final rendering
speed of 50 to 80 million splats per second was disclosed
without mentioning the construction or update time of the
data structure.

The most prominent method for acceleration was pre-
sented in [117]. Even though the method was primarily ori-
ented for triangle-based scenes, the fact of using triangle
centroids to organize the data structures made the method
inherently point-based. For scenes with up to 1.77 million

points, 0.34 ms for BVH construction and 0.88 ms for octree
construction were reported. By extrapolating with the asymp-
totic behavior of acceleration structure construction n log(n),
the results for 107 points yields> 3 ms for BVH construction
and > 8 ms for octree construction. Furthermore, with a
modern Nvidia RTX 2080 Ti GPU, the construction time
decreases to a negligible 0.24 ms and 0.62 ms, respectively,
in the optimistic case of the construction algorithm fully
parallelizing.

The covered methods are mostly software-based methods
for constructing the acceleration structures. Dedicated hard-
ware solutions for further accelerating the construction have
been proposed [126], [127]. Utilizing hardware-accelerated
BVH and other data structure construction and updat-
ing for point cloud ray and path tracing could yield
even more performance and support for larger point
clouds.

APPENDIX B
COMPUTATIONAL PERFORMANCE ANALYSIS
To equally juxtapose the methods implemented on various
GPUs, we compare the increase in processing units/cores
from the original GPU in the publications to a state-of-the-art
desktop GPU, namely an Nvidia RTX 2080 Ti. This allows
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TABLE 4. Point-based acceleration structures achieving real-time construction time. We crudely estimated the frame rate projected onto a modern
consumer GPU (Nvidia RTX 2080 Ti, listed in Table 3) with the specifications posed in the research question (RQ), meaning 107 points. Note that the
acceleration construction times scale at n log(n) w.r.t. the number of points n.

us to get a crude estimate of the capabilities of the different
methods on modern hardware assuming that the algorithms
would fully parallelize and utilize all available cores, which
is an optimistic assumption. Also, for older hardware with
more fixed graphics pipelines the comparison is hard as they
do not have processing units comparable to modern GPUs.
However, this method was chosen to give the reader a general
idea of how the methods would compare on equal terms.
Furthermore, the task of actually implementing all of the
methods onmodern hardware is very time-consuming and out
of scope in this survey.

The different GPU platforms and their respective pro-
cessing unit or core counts are summarized in Table 3. For
the target platform of RTX 2080 Ti, we omitted the cal-
culation of RT cores into the total count of cores as it is
not clear how they could be compared to other cores on
older hardware. As an example calculation, we evaluate the
performance of the direct point cloud ray tracing method
in [47]. This evaluation assumes that the presented method
is fully parallelizable and that memory transfer and storage
do not present a bottleneck to the pipeline, which is of course
unrealistically optimistic. Consequently, this approximation
should be treated as an estimate of the optimistic potential
of the method. We approximate the number of processing
elements in the Nvidia GTX 275 used in [47] with the num-
bers for Nvidia GTX 280 in [130], which has a total of
240 streaming processors, i.e., processing units. Nvidia RTX
2080 Ti has 4352 CUDA ‘‘cores’’, comparable to processing
units, and additionally 68 RT cores which could further accel-
erate ray tracing. If we simply use the CUDA core number
for the estimate, the increase is 18×. Assuming a linear
increase in the workload when increasing the resolution from
512 × 512 to 1080p, almost an 8-fold increase in computa-
tion is gained. This would yield a total increase of 2.3× in

compute power and increase the reported 55 FPS in [47] to
130 FPS on a an RTX 2080 Ti. The frame rate projections
of the rest of the methods in Table 5 are done in a similar
way.

The calculations made for the projected frame rates of
the methods in Table 5 do not consider the number of
rendering primitives used in ray tracing. Acceleration con-
struction and updating is the most affected by the number
of rendering primitives. Similar to before, we evaluate an
upper bound estimate for the acceleration structure method
in [117] highlighted in Appendix A-A. The original method
was implemented on the Nvidia GTX 480, which means 9×
more cores on the Nvidia RTX 2080 Ti excluding the RT
cores (see Table 3). Assuming an O(n log(n)) increase in
computation time with respect to the n number of primitives
when constructing acceleration structures, the 0.34 ms BVH
and 0.88 ms octree construction time for 1.77 · 106 points
corresponds to 3.9 ms and 10 ms for 1.77 · 107 points,
respectively. As also shown in Table 4 before, in the utopic
scenario of a fully parallelizable construction algorithm with-
out considering the memory bottleneck, the RTX 2080 Ti
could perform the construction in 0.24 ms for the BVH
and in 0.62 ms for the octree construction. However, [131]
reported construction times for their acceleration structure
for volumetric tetrahedral meshes together with reference
times measured for the default OptiX acceleration structure
on an Nvidia RTX 2080 Ti. With up to 1.2 · 107 tetrahedrals,
their acceleration structure was constructed in slightly over
50 ms and the OptiX reference was constructed in less than
200 ms, or 20 FPS and 5 FPS, respectively. Based on their
results, the required 75 FPS can be achieved with approxi-
mately 0.7 ·106 dynamically changing primitives if the accel-
eration structure needs to be constructed from scratch for
each frame.
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TABLE 5. Point-based ray tracing, rasterization, hybrid methods, and point-based neural rendering achieving real-time frame rates and some
photorealistic rendering effects in scenes with various amounts of rendering primitives and at different resolutions. We crudely estimated the frame rate,
where applicable, projected onto modern consumer GPUs (Nvidia RTX 2080 Ti) with the specifications posed in the research question (RQ), meaning a
resolution of 1080p and 107 points.
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