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ABSTRACT The multivariate estimation problems arise if the observations are available for several related
variables of interest. The multivariate time series may be found in many fields of application such as
economics, meteorology and utilities. The current study has three main objectives. The first one is to develop
an approximate convenient Bayesianmethodology to estimate the parameters of multivariate moving average
processes. The second objective is to investigate the numerical efficiency of the proposed technique in solving
the estimation problems by conducting a wide simulation study. The last objective is to study the sensitivity
of the numerical efficiency with respect to the parameters values and time series length. The results show that
the proposed technique succeeded in estimating the parameters of themultivariate moving average processes.
The results are not sensitive to the changes in parameter values or in time series length.

INDEX TERMS Multivariate time series, multivariate (vector) moving average processes, Bayesian estima-
tion, matrix normal-Wishart prior, Jeffreys’ prior.

I. INTRODUCTION
The multivariate (vector) time series may be found in many
fields of application such as economics, business, meteo-
rology, hydrology and utilities. In economics, for example,
one may record quarterly money supply y(t,1), real interest
rate y(t,2) and gross national product y(t,3). These variables
are modeled, estimated, and forecasted jointly using a mul-
tivariate model in order to have an insight into the dynamic
interrelationship among them and increase the precision of
the estimates and forecasts (See [1]).

Usually the Bayesian and non–Bayesian approaches of
univariate and multivariate time series are based on a class
of parametric models such as moving average (MA) models.
Model estimation and forecasting are twomain phases in time
series analysis. Although they are closely connected, they
are usually treated as two separate steps. The non-Bayesian
literature on univariate and multivariate of time series is vast
and can be found in [1]–[6].

One may trace three different Bayesian approaches to ana-
lyze univariate time series processes. The first approach is
to use the numerical integration. [7] presented this approach
to implement the identification, estimation, and forecasting
phases of autoregressive moving average (ARMA) models
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with low orders. However, the use of numerical integration
is difficult and time consuming especially in the multi-
parameter’s cases. The second approach is the use of
analytical approximations in order to have standard poste-
rior distributions. Several approximations have been devel-
oped to solve the estimation and forecasting problems such
as [8]–[10]. The last approximation has been extended to
the case of seasonal models by [11], [12]. Finally, the third
approach is to use sampling based methods which include:
the Gibbs sampler technique ([13]), [14]–[17], data augmen-
tation algorithm ([18], [19]) and the importance sampling
algorithm ([20]).

Regarding the multivariate version, the estimation and
forecasting, from non-Bayesian viewpoint, of vector moving
average processes, denoted by VMA, have been extensively
studied and investigated. [21] gave methods to estimate the
parameters of pure autoregressive and pure moving average
processes. [22]) presented a practical iterative procedure to
estimate the parameters of mixed VARMA processes. [23]
extended the Box and Jenkins method [24] to derive the
exact likelihood function of pure vector moving average
processes. [25] proposed three different methods to compute
the exact likelihood function of vector moving average pro-
cesses. However, it seems that the non–Bayesian literature
on the estimation problems of multivariate processes tradi-
tionally focused on maximum likelihood methods because of
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their desirable properties. For more about these methods, the
reader is referred to [1], [26]–[29]. However, there have been
extensive investigations in order to ease the maximum likeli-
hood routine and make it faster. For instance, [30] developed
an efficient numerical expression for the likelihood func-
tion of stationary and partially non–stationary autoregressive
moving average processes. Another development was done
by [31] who proposed a new procedure for the exact maxi-
mum likelihood estimation of mixed VARMA models. [32]
proposed a consistent and fast iterative procedure to estimate
the parameters of VARMA processes. Many other investiga-
tions have been done to simplify the computation process of
VARMA models such as [33], [34].

On the other hand, the Bayesian analysis of multivariate
time series is being developed and the Bayesian literature
devoted to the analysis of VARMAmodels is sparse. [35] has
introduced approximate techniques to estimate the parame-
ters of VARMA process and predict their future values. [36]
used sampling-based inference to analyze VARMA mod-
els. [37] developed a Gibbs sampler for the basic VARMA
models. However, for well understood reasons, one may say
that an analytic Bayesian procedure to estimate the parame-
ters of vector moving average process and predict their future
values have not been explored yet.

The main objective of this study is to develop an approx-
imate convenient Bayesian methodology to estimate the
parameters of multivariate moving average, denoted by
VMAk(q), processes. Using n vectors of observations, the
joint posterior probability density of the model parameters is
developed in an approximate convenient form using a matrix
normal-Wishart prior density (or Jeffreys’ vague prior). Then,
one may use this approximate joint posterior probability den-
sity to develop point estimates or construct HPD (Highest
Posterior Density) regions for the parameters. A wide simu-
lation study is conducted, using the modern specialized SCA
package, in order to examine the numerical efficiency of the
proposed Bayesian estimation procedure.

The study is designed as follows: Section 2 defines the
multivariate (vector) pure moving average (VMAk(q)) pro-
cesses in scalar and matrix notations. Section 3 constructs
a convenient approximation for the likelihood function of
the VMAk(q) processes. In addition, it proposes appropriate
informative and non-informative priors. Section 4 derives an
approximate joint posterior probability density of the model
parameters in a standard form, namely matrix t distribution.
In addition, it explains how to construct point and interval
estimates for the parameters. Finally, section 5 is devoted
to examine and assess the numerical effectiveness of the
proposed Bayesian estimation procedure in solving the esti-
mation problems of some bivariate pure moving average
processes.

II. MULTIVARIATE MOVING AVERAGE PROCESSES
Let {t} be a sequence of integers, q ∈ {1,2,. . . }, k ∈ {2,3,. . . },
θi (i = 1, 2 . . . , q) are k×k unknown matrices of real con-
stants, {y(t)} is a sequence of k×1 real observable random

vectors and {ε(t)} is a sequence of k×1 independent and
normally distributed unobservable random vectors with zero
mean and a k×k unknown precision matrix. Then the Multi-
variate (vector) moving average process of orders q, denoted
by VMAk(q), is defined as

y(t) = 2q(B)ε(t) (2.1)

where

y(t) =
[
y(t, 1) y(t, 2) . . . y(t, k)

]′
,

θq(B) = Ik − θ1B− θ2B2
− · · · − θqBq

And

ε(t) =
[
ε(t, 1) ε(t, 2) . . . ε(t, k)

]′
Ik is the identity matrix of order k and B is the usual backward
shift operator. The k×k matrix polynomial θq(B), of degree q
in the backshift operator B, is known as the moving average
operator of order q. The process y(t) is invertible if all the
roots of determinantal equation |θq(B)| = 0 lie outside the
unite circle.

Consider the special case VMA2(1), which is called bivari-
ate moving average process of order one, with moving aver-
age coefficients

θ = θ1 =

[
θ11 θ12
θ21 θ22

]
Then the model (2.1) can be written as

y(t) = (I2 − θB) ε(t) (2.2)

where

y(t) =
[
y(t ,1) y(t ,2)

]′
,

ε(t) =
[
ε(t, 1) ε(t, 2)

]′
,

And

I2 − θB =
[
1− θ11B −θ12B
−θ21B 1− θ22B

]
Thus, one may write the observation y(t) of the VMA2(1)
process as

y(t, 1) = −θ11ε(t − 1, 1)−θ12ε(t−1, 2)+ε(t, 1)

y(t, 2) = −θ21ε(t−1, 1)−θ22ε(t−1, 2)+ε(t, 2) (2.3)

The model (2.2) can be written compactly for n observations
as

y(t) = ε(t)− θε(t − 1), t = 1, 2, · · · , n (2.4)

where ε(t − 1) =
[
ε(t − 1, 1)
ε(t − 1, 2)

]
Here we consider y(t,1) and y(t,2) as dependent variables,

while ε(t-1,1) and ε(t-1,2) are considered as input or indepen-
dent variables.

In general, one can write the VMAk(q) process as

y(t) = ε(t)− θ1ε (t − 1)− θ2ε(t − 2)− · · · − θqε(t − q),

t = 1, 2, · · · , n (2.5)
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The model (2.5) can be written in more compact expression
as

Y = X0 + U (2.6)

where Y is a matrix of order n×k with ijth element equals
y(i,j), i = 1, 2, . . . , n; j = 1, 2, . . . , k. That is

Y = Yn×k =
[
y(1) y(2) . . . y(n)

]′
The matrix X of order n×kq is defined by

X =


−ε′(0) −ε′(−1) . . . −ε′(1− q)
−ε′(1) −ε′(0) . . . −ε′(2− q)
...

...
...

...

−ε′(n− 1) −ε′(n− 2) · · · −ε′(n− q)


Furthermore, 0 is the kq×k matrix of coefficients defined by

0 =


θ ′1
θ ′2
. . .

. . .

θ ′q


where

θi =


θi.11 θi.12 . . . θi.1k
θi.21 θi.22 . . . θi.2k
...

...
...

θi.k1 θi.k2 θi.kk

, i = 1, 2, . . . , q

III. AN APPROXIMATE LIKELIHOOD FUNCTION OF
MULTIVARIATE MOVING AVERAGE PROCESSES
The class of models (2.6) represents the general class of vec-
tor moving average models of order q, denoted by VMAK(q).
It is very useful in modeling time series data arise in many
areas of application such as economics, medicine, ecology
and chemistry. The likelihood function of the parameters 0
and T is

L (0,T |Sn) ∝ |T |
n
2 exp(−

1
2
tr{

n∑
t=1

ε(t) ε(t)′}) (3.1)

where 0 ∈ Rkq×k , T > 0, and

ε′(t) = y′(t)− X ′(t − 1)0, t = 1, 2, . . . , n (3.2)

where

X ′(t − 1) = [−ε′(t − 1) − ε′(t − 2) · · · − ε′(t − q)]

The expression (3.2) is a recurrence relation for the residuals
and the mth component of the residual ε(t) can be written as

ε(t,m) = y(t,m)−
q∑
i=1

k∑
j=1

θi.mjε(t − i, j),

t = 1, 2, . . . , n; m = 1, 2, . . . , k (3.3)

The recurrence relation (3.3) causes the main problem in
developing the exact analysis of multivariate VMAK(q) pro-
cesses. However, this recurrence may be used to evaluate the

residuals recursively if θi and the initial values of the residuals
are known. The proposed Bayesian approximation is based on
replacing the exact residuals by their least squares estimates
and assuming that the initial residuals equal their means,
namely zero. Thus, we estimate the residuals recursively by

ε̂(t,m) = y(t,m)+
q∑
i=1

k∑
j=1

θ̂i.mjε̂(t − i, j),

t = 1, 2, · · · , n; m = 1, 2, · · · , k (3.4)

where θ̂i.mj are the nonlinear least squares estimates of param-
eters θi.mj. Using the estimates of the residuals, it is possible
to write the likelihood function approximately as

L∗ (0,T |Sn ) ∝ |T |
n
2 exp(−

1
2
tr{

n∑
t=1

[y(t)− 0′X̂ (t − 1)]

× [y(t)− 0′X̂ (t − 1)]′T }) (3.5)

where X̂ (t−1) is the same as X (t−1) but using the estimated
residuals instead of the exact ones. A convenient choice of the
joint prior density of the parameters 0 and T is the following
matrix normal-Wishart distribution

ξ (0,T) = ξ1 (0 |T ) ξ2 (T ) (3.6)

where

ξ1 (0 |T ) ∝ |T |
kq
2 exp

(
−
1
2
tr [0 − D]′W [0 − D]T

)
and

ξ2 (T ) ∝ |T |
a−(k+1)

2 exp
(
−
1
2
tr9T

)
The hyper-parameters a is a scalar, D ∈ Rkq×k ,W is a kq×kq
positive definite matrix and 9 is a k × k positive definite
matrix. If there is little information about the parameters,
a priori, it is possible to use Jeffreys’ vague prior

ξ (0,T ) ∝ |T |
−(k+1)

2 , 0 ∈ Rkq×kT > 0 (3.7)

IV. THE POSTERIOR ANALYSIS OF THE MULTIVARIATE
MOVING AVERAGE PROCESSES
In developing the proposed Bayesian estimation technique for
MAK(q) models, we will assume that the order q is known.
The posterior density of the model parameters 0 and T is
the Bayesian tool to estimate the unknown parameters. The
posterior density ξ (0,T |Sn) is the conditional density of the
parameters given the time series data
Theorem 1: If the approximate likelihood function (3.5)

is combined with the joint prior density (3.6), the marginal
posterior distribution of 0 is a matrix t with parameters:

(A−1B, A−1, C-BA−1B, υ) where

A = W +
n∑
t=1

X̂ (t − 1)X̂ ′(t − 1),

B = WD+
n∑
t=1

X̂ (t − 1)y′(t),
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C = D′WD+9 +
n∑
t=1

y(t)y′(t)

and υ = n+ a− k + 1
In addition, the marginal posterior distribution of T is a

Wishart with parameters (n +a, C-BA−1B).
Corollary 2: If the approximate conditional likelihood

function (3.5) is combined with the Jeffreys’ vague prior
(3.7), the marginal posterior distribution of 0 is a matrix t
with parameters:

(A−1B, A−1, C-B’A−1B, υ). However, the quantities A, B,
C and υ will bemodified by lettingW→0 (kq×kq), a→−kq
and 9 → 0 (k×k).

Theorem (1) solves the estimation problem of vector mov-
ing average processes. In order to see this let γi be the
ith column of the coefficients matrix 0 and write 0 =
[γ ′1γ

′

2 · · · γ
′

kq]; i.e. we write 0 as a row vector of dimension
k2q. Partition A−1B similar to 0, then the posterior expecta-
tion and variance of the parameters matrix 0 are

E(0|Sn) = A−1B

COV (0|Sn) = [(ν − 2)A]−1 ⊗ [C − B′A−1B]

where ⊗ denotes the usual Kronecker direct product. The
variance covariance matrix is of dimension k2q. The elements
of the principle diagonal represent the variances of the ele-
ments of the coefficients matrix 0 as partitioned above. The
matrix t approximation can be analytically used tomake exact
statistical inference for a parameter point 00 for the complete
set 0 using F distribution if k= 2, see [38] (p. 451). For
k ≥ 3 approximate statistical inferences can be done using
χ2 distribution, see [38] (p. 452).

With regard to a point estimate of 0, one may use the
posterior expectation A−1B. In addition, the matrix t approx-
imation can be used to construct an exact H.P.D. region for a
specific row or a specific column using the usual multivariate
t distribution. Furthermore, an exact HPD interval for any
element of the matrix 0 can be constructed using univari-
ate student t distribution. Finally, we can make approximate
statistical inferences about parameters belonging to a certain
block sub matrix of0 using χ2 distribution, see Box and Tiao
(1973, page 453). To estimate the precisionmatrix T, onemay
use the posterior precision(n+ a)(C − B′A−1B)−1.

Moreover, to estimate the covariance matrix V = T−1, one
may use the inverse of the posterior precision, i.e. (C−B

′A−1B)
(n+a) .

V. RESULTS
One of the main objectives of this study is to investigate the
effectiveness of the proposed Bayesian estimation method-
ology. In order to achieve this objective, three simulation
studies have been conducted. The proposed methodology is
employed to estimate the parameters of MA2(1) processes
with various parameters values. All computations were per-
formed on a PC using SCA package.

The simulation process has the following general design:
first, a time series is generated from a given bivariate moving
average model of order one with certain parameters. Second,

the generated data are used to evaluate the posterior densities
of the coefficients and the covariance matrix of the model.
Third, performance criteria are calculated for the posterior
density. Fourth, 500 replications of the above three steps are
done. Finally, the output is summarized in tables.

Generally, the simulation process begins by generating
500 data sets of bivariate normal variates, each of size 500,
to represent the noise ε(t), which is assumed to follow
N2(0,V). These data sets are then used recursively to generate
500 realizations, each of size 500, from a certain bivariate
moving average process of order one with certain parameters.
The initial values of the errors ε(t) = [ε(t, 1)ε(t, 2)] are
considered to equal their unconditional mean, namely zero.
The first 200 pairs of observations are deleted in order to
remove the initialization effect and hence we get 500 bivariate
time series each of length 300. From the 300 observations,
a bivariate time series of the desired length is used to esti-
mate the posterior densities of the coefficients’ matrix θ and
the covariance matrix of the noise term using the proposed
Bayesian methodology. In our simulation studies, the time
series lengths are taken to be 30, 50, 100, 150, 200, and 300.
Each simulation study corresponds to specific coefficients
and for all of them the variance-covariancematrix of the noise
is fixed at

V (ε) =
[
2 1
1 1

]
(5.1)

The values of the coefficients are selected to represent differ-
ent positions in the invertibility domain of theMA2(1) model.
It might be important here to emphasis that the Jefferys’ non-
informative prior is used to conduct all the simulation studies.

Our main concern is to study the numerical efficiency of
the proposed Bayesian estimation methodology by calculat-
ing three goodness criteria, namely P∗, MAD and MAPE.
The measure P∗ checks the goodness of interval estimates
calculated from a specified posterior density of the model’s
coefficients. Defining 95% highest posterior density (HPD)
region as the shortest interval having probability 0.95 cen-
tered at the mean of the posterior density, the percentage
P∗lm of time series for which the HPD region of the posterior
density contains the true value of the coefficient is defined as

P∗lm = (n∗lm/500) ∗ 100, l,m = 1, 2 (5.2)

were n∗lm is the number of time series where the HPD region
includes the true value of θ lm. P∗lm is evaluated such that the
higher the value P∗lm, the better the performance of the pos-
terior density in estimation. It should be noted that according
to P∗lm a certain coefficient may be ruled as belonging to the
HPD region or not. However, P∗ does not account for the
distance of this coefficient from the center of the region or its
boundaries. TheMAD stands for the mean absolute deviation
of the true coefficient from the mean of its marginal posterior
density and is defined by

MADlm =
500∑
j=1

|θlm − E(θj.lm)|/500, l,m = 1, 2 (5.3)
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TABLE 1. Results for θ11, true value is 0.9.

TABLE 2. Results for θ12, true value is −0.2.

TABLE 3. Results for θ21, true value is 1.1.

TABLE 4. Results for θ22, true value is −0.9.

where θ lm and E(θ j.lm) are the lmth component of the coeffi-
cients matrix and the mean of its marginal posterior density
of the jth simulated series, respectively. The MAPE stands
for the mean absolute percentage deviation of the true coef-
ficient from the mean of its marginal posterior density and is
defined as

MAPElm =

 500∑
j=1

|
θlm − E(θj.lm)

θlm
|/500

, l,m = 1, 2

(5.4)

where θ lm and E(θ j.lm) are defined as above.
The numerical efficiency of the proposed estimation pro-

cedure will be examined with respect to the time series length
(n) as well as the parameters of the selected model.

In order to study the numerical efficiency of the estimation
process of the covariance matrix (5.1), the MAD and the
MAPE will be computed for the elements of the covariance
matrix using the forms

MADlm =
500∑
j=1

|Vlm − E(Vj.lm)|/500, l,m = 1, 2

(5.5)

MAPElm =

 500∑
j=1

|
Vlm − E(Vj.lm)

Vlm
|/500

, l,m = 1, 2

(5.6)

where Vlm is the lmth component of the covariance
matrix and E(Vj.lm) is the lmth component of the
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TABLE 5. Results for V11, true value is 2.

TABLE 6. Results for V12, true value is 1.

TABLE 7. Results for V21, true value is 1.

TABLE 8. Results for V22, true value is 1.

estimated covariance matrix of the jth time series defined
above.

Simulation I, as an illustration, begins with the genera-
tion of 500 data sets of bivariate normal variats, each with
500 observations to represent ε(t,1) and ε(t,2) respectively.
These data sets are then used to generate pairs of 500 realiza-
tions, each of size 300, from MA2(1) process with

2 =

[
0.9 −0.2
1.1 −0.9

]
Assuming the starting values of the errors are zeros and
Jefferys’ prior is employed, the second step is to carry out
all computations required to estimate the posterior density of

the coefficients matrix 2 of each of the 500 realizations and
compute the P∗, MAD andMAPE values. Such computations
are done for a specific time series length using the first
n observations of each generated set. This second step is
repeated for each chosen time series length. The results of
Simulation I are summarized in tables (1) up to (8). Table (1)
is devoted to the results of the coefficient θ11. It consists of
six rows corresponding to the selected time series lengths
and ten columns corresponding to the computed measures.
Tables (2) up to (4) display the results of θ12, θ21 and θ22
respectively and are designed similarly. Moreover, the results
of the estimation of the covariance matrix are displayed sim-
ilarly in tables (5) up to (8).
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TABLE 9. Results for θ11, true value is 0.5.

TABLE 10. Results for θ12, true value is −0.4.

TABLE 11. Results for θ21, true values is −0.3.

TABLE 12. Results for θ22, true value is 0.2.

TABLE 13. Results for V11, true value is 2.
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TABLE 14. Results for V12, true value is 1.

TABLE 15. Results for V21, true value is 1.

TABLE 16. Results for V22, true value is 1.

TABLE 17. Results for θ11, true value is 0.2.

TABLE 18. Results for θ12, true value is 0.3.
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TABLE 19. Results for θ21, true value is −0.6.

TABLE 20. Results for θ22, true value is 1.1.

TABLE 21. Results for V11, true value is 2.

TABLE 22. Results for V12, true value is 1.

Simulations II and III are designed in a similar manner but
using different coefficients. They are

2 =

[
0.5 −0.4
−0.3 0.2

]
and

2 =

[
0.2 0.3
−0.6 1.1

]
respectively. Their results are reported in tables (9) up to (24)
respectively.

A. RESULTS OF SIMULATION I
The results of this simulation study are shown in tables (1) up
to (8). The first four tables present the results of the estimation

of the elements of the coefficients matrix. Whereas, the last
four tables present the results of the estimation of the ele-
ments of the covariance matrix.

Regarding table (1) one may notice the following com-
ments concerning the coefficient θ11: First, the values of the
percentage P∗ fluctuate around 95% (its theoretical value).
This means that the marginal posterior distribution of θ11
provide a good interval estimation. Second, the values of both
the MAD and the MAPE are small at all time series lengths
and tend to decrease as the time series length increases. This
indicates that the posterior means of θ11 get closer to it as
the time series length increases. Moreover, both the mean
and the median of the posterior means tend to concentrate
around the true value of the coefficient and get closer to
it as the time series length increases. Finally, the standard
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TABLE 23. Results for V21, true value is 1.

TABLE 24. Results for V22, true value is 1.

deviation of the posterior means tend to decrease as the time
series length increases.

The conclusions obtained from tables (2) to (4) are similar.
The following four tables display the results of the estima-

tion of the covariance matrix. The conclusions obtained from
tables (5) to (8) are similar to those obtained from table (1).

Regarding tables (5) to (8), one may notice the following
comments concerning the elements of the covariance matrix:
First, the values of both the MAD and the MAPE for all
elements are small for all time series lengths and tend to
decrease as the time series length increases. This indicates
that the posterior mean of the covariance matrix gets closer to
the true one as time series length increases. Second, themeans
and the medians of the posterior means tend to concentrate
around the true values of the elements and get closer to
them as the time series length increases. Finally, the standard
deviations of the posterior means tend to decrease as the time
series length increases.

B. RESULTS OF SIMULATION II
The results of this simulation study are shown in tables (9) up
to (16). The tables are designed the same way as the tables
in the previous subsection and the conclusions obtained are
similar.

C. RESULTS OF SIMULATION III
The results of this simulation study are shown in tables (17)
up to (24). The tables are designed the same way as the tables
in the previous subsection and the conclusions obtained are
similar.

VI. CONCLUSION
The results of the three simulation studies displayed in the
previous three sections show that the suggested estimation
technique succeeded in estimating the parameters of the
bivariate moving average process of order 1.
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