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ABSTRACT With the wide application of multi-layer and multi-pass welding in industry, the traditional
manual welding method is difficult to meet the needs of manufacture. Welding Robot has the advantages of
stable productivity, ensuring welding quality even in special environment, so the welding robots are used at
a growing trend in manufacturing fields to complete different welding tasks. In this paper, an intelligence
learning method for welding robot is designed, aiming at the prediction of welding process parameters
and bead geometry parameters in the welding process, deep and machine learning algorithms are used for
realization. It provides an instruction for the design of process parameters to realize the intellectualization
and automation of welding robot. The experimental results show that automatic parameters learning based
on machine learning are effective and different learning methods should be selected for different process
parameter prediction tasks in order to achieve the best prediction effect.

INDEX TERMS Robot welding, ensemble learning, intellectualization, welding process parameters.

I. INTRODUCTION
In the field of industrial manufacturing, due to the draw-
backs of inefficient welding and poor quality stability, manual
arc welding is not suitable for the needs of intelligence.
For example, in the task of welding at high buildings, the
welding performance of high-strength steel is relatively poor,
the welding amount of thick plates is large and weld beads
are long, and the welding environment is hard and diffi-
cult. Besides, the technical skills of welding workers are at
different levels. To a certain extent, these factors affect the
stable quality of steel structure of high-rise buildings. Thus,
the reliability and safety of engineering quality cannot be
guaranteed [1]–[3]. As the basis of intelligent and automatic
welding, robot welding has the advantages of improving
production efficiency, ensuring welding quality and adapting
to intelligent requirements. It has gradually replaced manual
welding, met the needs of large-scale production and weld-
ing automation, and has been widely used in the field of
manufacturing.

However, the welding process is complicatedwith different
factors andmany parameters. Different welding tasks demand
different requirements and different dynamic working envi-
ronment. Thus, it is a challenge to realize the intelligent
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adaptation of welding robot to different tasks, ensuring sta-
ble welding quality. In the process of intelligent welding,
an important task is to learn and predict the technical param-
eters of the welding process, for the purpose of accuracy
control and need of reusing. Therefore, the comprehensive
controlling of process parameters in the welding process
plays a vital role in improving the automation welding and
ensuring stable welding quality. It is also a part of the com-
prehensive life cycle assessment of industrial supply chain.

Recently, the key technology to solve the problem of
robot welding process control and monitoring is to combine
machine learning algorithm or expert systemwith robot weld-
ing process planning. For instance, Kim et al. [4] proposed
a new method to predict the technological parameters of
machine arc welding, which is composed of neural network
and multiple regression. A welding parameter prediction
method based on Gaussian process regression and Bayesian
optimization algorithm was presented by Dong et al. [5].
Liu and Zhang [2] proposed a classifier based on adap-
tive neuro fuzzy inference system, which can be used to
evaluate the skill of welder and transfer the intelligence
of welder into welding robot. Butdee and Thanomsin [6]
proposed an oil pipeline machine response model based on
fuzzy logic modeling to predict depth penetration. All param-
eters are defined in fuzzy input and output. Create fuzzy
rules for reasoning. The fuzzy output provides a solution for
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effective decision-making to select optimal parameters, and
is directly connected with the welding robot. Cao et al. [7]
proposed a neural network integration method composed of
radial basis function neural network, BP neural network and
generalized regression neural network, and established the
correlation among laser pool, keyhole and weld characteris-
tics. Zhou et al. [8] designed a physics based machine learn-
ing method based on ensemble learning model to identify
the correlation between the deposition stage and its corre-
sponding thermal field. Asif et al. [9] proposed a real-time
welding quality monitoring method combined with decision-
making strategy to improve welding production efficiency
and automation. Aiming at the problem of complex weld-
ing physics and time-consuming welding parameterization,
Caotu et al. [10] proposed to introduce knowledge-based
welding parameterization decision support into robot work
unit, combinedwith advanced collision free off-line program-
ming and advanced sensing technology, developed a flexible
welding robot system. Rivas et al. [11] proposed a framework
which combines a methodology for selecting indicators and
a multi-objective optimization to improving sustainability
pillars, and used this framework to the optimization of a
submerged arc welding process.

Deep neural networks have shown impressive power of
feature representation in many fields. Compared to shal-
low architectures, deep neural networks can extract the
latent feature representation and better capture the semantic
information of data. Recently, deep neural networks were
introduced inwelding tasks. Cruz et al. [12]introduced a com-
puter vision system by using combined digital image process-
ing and deep learning techniques for welding inspection of
liquefied petroleum gas pressure vessels. Bacioiu et al. [13]
trained models on an inert gas welding dataset, leveraging the
machine learning research, establishing a correlation between
the weld pool and surrounding area and the weld quality.

The key of intelligent welding is in using intelligent tech-
niques andmachine intelligence to realize automatic welding.
If the welding process is an end-to-end system with various
inputs and outputs, we can model the process of parameter
learning mathematically and use the model as a tool for
predicting and optimizing process parameters.

Aiming at the problem of intelligent selection of pro-
cess parameters in the welding process, this paper explored
a variety of learning methods including machine learning,
ensemble learning to predict the process parameters in the
multi-layer and multi-pass welding process. By comparing
the prediction results of various learning algorithms, the
appropriate model is selected to realize the intelligence and
automation of robot welding, which provides an important
instruction for the intelligent control design of welding robot.

The remainder of this article is structured as follows: in
Section II, related machine leaning-based works about weld-
ing are introduced. Section III is Research methodology,
in which we describe BP neural network, CatBoost, XGBoost
and CNN in details. Experiments and results are shown in

Section IV and Section V concludes our work and provides
future application from it.

II. RELATED WORKS
This section mainly describes the application of machine
learning algorithm in welding process.

As a learning method of combination optimization, ensem-
ble learning solves a single prediction problem by assembling
multiple models to obtain a better combination model. It also
allows researchers to design combination schemes for spe-
cific machine learning problems to improve the generaliza-
tion ability of learning.

Xu et al. [14] proposed a weld defect recognition algorithm
based on selective ensemble learning to solve the problem of
low recognition rate of weld defects in radiographic inspec-
tion, which effectively improved the diversity of component
learners and the generalization ability of ensemble learners.
Rubio-Solis and Panoutsos [15] constructed an Ensemble
Data-Driven Fuzzy Network (EDDFN) for laser welding
quality prediction by using the ensemble model and the rele-
vant information provided by the monitoring system.

In the field of welding, there are many ensemble learn-
ing algorithms that can be used, and XGBoost [16] is
one of the most outstanding algorithm, which was first
proposed by Chen and Guestrin in 2016. In their paper,
they proposed a novel sparsity-aware and weighted quan-
tile sketch for approximating tree learning algorithm for
sparse data, and described a scalable end-to-end tree boost-
ing system XGBoost. Zhang et al. [17] established a model
using extreme gradient boosting (XGBoost)machine learning
algorithm to predict the temperature distribution of molten
pool during direct energy deposition (DED). Based on the
XGBoost algorithm, Chen et al. [18] Proposed two data-
driven models to identify the penetration state and pre-
dict the rib reinforcement. The weld bead width and weld
bead reinforcement were measured by line structured light
method, and the weld bead penetration was measured by
macro metallographic microscope. Jiaqi and Zheng [19] used
machine learning algorithm XGBoost to realize nonlinear
correction and cold junction compensation of thermocouple
on upper computer, constructed dynamic compensator by
particle swarm optimization algorithm to reduce dynamic
error, and finally realized on-line monitoring of welding tem-
perature in the form of upper computer software.

Another kind of machine learning neural network is also
common in welding field. Chang et al. [20] proposed a
BP neural network optimized by Mind Evolutionary Algo-
rithm (MEA) to predict the influence of penetration mor-
phology on weld quality. Zhang et al. [21] used principal
component analysis (PCA) to analyze the features of weld
pool shadow to reduce its redundancy, and used genetic algo-
rithm (GABP) to improve BP neural network to establish the
relationship model between weld appearance and weld pool
shadow features. It provides an effective method for real-time
prediction of weld morphology and evaluation of welding
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quality. Geng et al. [22] proposed a BP neural network for
welding optimization based on genetic algorithm for quality
inspection. But one of their common shortcomings is that
they do not consider choosing different machine learning
algorithms for different parameters. In [23], an image clas-
sification algorithm based on convolutional neural network
integration was successfully applied to detect the misalign-
ment of metal plates connected by submerged arc welding
process.

III. RESEARCH METHODOLOGY
The process parameters of robot welding process include
welding process parameters and bead geometry parame-
ters. In this paper, different machine learning algorithms
are selected to compare the prediction of these parameters.
Therefore, this section focuses on the machine learning mod-
els used in the experiment of robot welding process: BP
neural network, CatBoost, XGBoost and CNN.

A. BP NEURAL NETWORK
BP neural network is a multi-layer feedforward neural net-
work trained by error reverse propagation algorithm. The
error analysis is carried out according to the training results
and the expected results, then the weights and thresholds are
modified, and the model which can output and predict the
results is consistent step by step is obtained. The outstanding
advantage of BP neural network is its strong nonlinear map-
ping ability and flexible network structure. The number of
intermediate layers and the number of neurons in each layer
can be set arbitrarily according to the specific situation, and
their performance varies with the structure. The global error
E is shown in Eq.(1):
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where n is the number of input layer nodes and m is the
number of output layer nodes. xj represents the input of the jth
neuron. sj is the net input value of the jth neuron, bj is the
threshold value, wij is the corresponding weight, f (·) is the
activation function, tpj is the expected output, ypj is the output
of the pth sample input to the network, and Ep is the error of
the pth sample. P is the number of learning samples.

The weights in the BP neural network are obtained by iter-
ation update, which follows the Gradient Descending rules:

w(t + 1) = w(t)− η1w(t) (5)

At iteration step t , the gradients of weights connecting the
hidden layer and output layer 1who(t) are updated by Eq.(6)
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and the gradients of weights connecting the input layer and
hidden layer 1wih(t) are updated by Eq.(7)
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p
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]
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In this study, BP neural network is used for welding
parameters learning, and its schematic diagram is shown in
Figure 1. There are two different BP neural networks used
to predict welding parameters in the robot welding process.
Figure 1(a) shows that the welding process parameters are
predictedwhen the welding process parameters are given, and
Figure 1(b) shows that the welding process parameters are
predicted when the welding process parameters are given.

B. CATBOOST (FOR ’CATEGORICAL BOOSTING’)
CatBoost is an implementation of gradient boosting, which
uses binary decision tree as base predictors. The gradient
boosting decision tree are symmetric trees, which has fewer
parameters, and supports categorical variables with has high
accuracy. CatBoost is composed of category and boosting,
which can process categorical features efficiently and reason-
ably. In addition, CatBoost also solves the problems of gra-
dient bias and prediction shift, so as to reduce the occurrence
of over fitting and improves the accuracy and generalization
ability of the algorithm. The advantages of CatBoost are
summarized as: it can obtain high model quality without
adjusting parameters and it adopts a new gradient promotion
mechanism to build the model to reduce over fitting.

When catboost algorithm processes the categorical fea-
tures in GBDT features, it uses the improved greedy target
based statistics to reduce the influence of noise and low-
frequency categorical data on data distribution. The formula
is as follows:

x̂ ik =

∑p−1
j=1

[
xσj,k = xσp,k

]
Yσj + a · p∑p−1

j=1

[
xσj,k = xσp,k

]
+ a

(8)

where p is the added prior term, a is usually the weight
coefficient greater than 0, x ik is the classification feature of
the kth training sample, Yk ∈ R is a target.

C. XGBOOST (FOR‘‘EXTREME GRADIENT BOOSTING’’)
XGBoost is an efficient and widely used machine learning
algorithm, which is implemented by an improved gradient
boosted framework. XGBoost creates a decision tree by
adding weak bias-low variance base model (shallow decision
tree) in turn. Each tree is constructed to adapt to the residual
of previous tree. Every tree in XGBoost can be regarded as a
weak base learner, all of these trees are combined to improve
the performance of the model. The flowchart of XGBoost
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FIGURE 1. Structure diagram of BP neural network model.

FIGURE 2. Flowchart of XGBoost.

is shown in Figure 2. The objective function of XGBoost in
step t is approximately

Obj(t)'
n∑
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(
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)
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1
2
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(
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are first and second order gradient statistic on the loss func-

tion.�(ft) = γT+ 1
2λ

T∑
j=1
ω2
j is the regularization termwhich

can reduce overfitting problem, γ and λ are regularization
parameters, T is the number of leaves in XGBoost.
XGBoost uses greedy algorithm to traverse all feature par-

tition points of all features. Specifically, The objective func-
tion value after splitting is better than the objective function
of single child leaf node. Also, a threshold is added to prevent
the tree from growing too deep. Only when the gain is greater
than the threshold can it be split to form a tree. Each time,
based on the previous prediction, take the best to further split
to build a tree. The significant advantage of XGBoost is that it

can automatically use CPU multithreading for parallel com-
puting, which improve the algorithm to increase the accuracy.

D. CONVOLUTIONAL NEURAL NETWORK
CNN was proposed by Yann Lecun in 1998, it is essentially a
multi-layer perceptron. CNN reduces the number of weights
of neural networks and makes the network easy to optimize.
Also, it reduces the complexity of the model by sharing the
common weights, which turns out reduces the risk of over-
fitting. The structure of convolution neural network includes
convolution layer, down sampling layer and full link layer.
The flowchart of CNN is shown in Figure 3. Each layer has
multiple feature maps, each feature map extracts an input
feature through a convolution filter, and each feature map has
multiple neurons.

The input of convolutional neural network is

V = conv2(W ,X , ‘‘valid ′′)+ b (10)

where conv2 is the convolution operation function, and the
third parameter valid indicates the convolution operation
type. W is the convolution kernel matrix, X is the input
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FIGURE 3. Flowchart of CNN.

matrix, and b is the offset.The output is

Y = φ(V ) (11)

where, φ(X )is the activation function.
The above input-output formula is for each convolution

layer. Each convolution layer has a different weight matrixW ,
andW ,X and y are inmatrix form. For the last fully connected
layer, it is rounded to layer L, the output is yL in vector form,
and the expected output is d , there is a total error formula

E =
1
2
||d − yL ||22 (12)

IV. EXPERIMENTS
A. THE DATA
The data used in this experiment are obtained in the actual
welding process. The welding process is shown in Figure 4.
Figure 4(a) is the picture of the workpiece before welding,
Figure 4(b) is the picture of the workpiece during weld-
ing, and Figure 4(c) is the picture of the workpiece after weld-
ing. Table 1 shows the welding data, including current (I),
voltage (U), welding speed (V1), wire feeding speed (V2),
weld width (b), weld depth (H) and surplus height (a). The
first four are welding process parameters, and the last three
are bead geometry parameters.

B. EXPERIMENTAL SETTING
The experimental data are processed by machine learning
algorithms: BP neural network, CatBoost, XGBoost and
CNN. During the experiment, No.1-28 was used as training
data, No.29-41 as test data to predict welding process param-
eters. Firstly, the BP neural network with two hidden layers
is used to train the data. There are 32 nodes in the first layer
and 16 nodes in the second layer. The bead geometry param-
eters are predicted through the welding process parameters.
Secondly, in the welding process parameters predicted by the
bead geometry parameters, the hidden layer node is 32∗16.
The parameters in CatBoost and XGBoost models are set by
default.

C. RESULTS AND DISCUSSION
There are many parameters that affect weld formation. For
different types of welding (spot welding, argon arc welding,

TABLE 1. Experimental welding data.

CO2 welding), various process parameters (welding current,
arc voltage, welding speed et al.) have different aspect of
influence. The welding current mainly acts on the welding
wire deposition speed and the weld penetration depth. When
the welding current increases, the welding wire deposition
speed and the weld penetration depth increase accordingly.
Conversely, when the welding current becomes smaller, the
deposition speed of the welding wire and the penetration
depth of the weld become smaller. When setting the welding
current in the welding process, it is necessary to select the
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FIGURE 4. Welding process of workpiece.

TABLE 2. Prediction of bead geometry parameters by BP neural network.

TABLE 3. Prediction of bead geometry parameters by CatBoost.

corresponding matching welding current range according to
the parameters of the selected welding wire and the size of its
diameter. Only within an appropriate current range can the
stability and quality of the welding be ensured.

In order to verify the effectiveness of prediction of dif-
ferent models, the experimental results of the four methods
are compared with the theoretical results. Table 2 shows the
prediction results of bead geometry parameters by BP neural
network. Table 3,Table 4 and Table 5 show the results by
CatBoost, XGBoost and CNN. In order to more intuitively

TABLE 4. Prediction of bead geometry parameters by XGBoost.

TABLE 5. Prediction of bead geometry parameters by CNN.

compare the quality of each model in predicting the bead
geometry parameters, the bar charts are shown in Figure 5.
The vertical axis of each graph represents the percentage of
prediction error. The automatic welding is one of applica-
tive implementation, so the prediction range are wider than
other problems of prediction, so the experimental errors seem
higher than other problems.We just compare the behaviors of
four learning methods. For the prediction of three bead geom-
etry parameters, CNN performs best, followed by CatBoost
and then XGBoost.
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FIGURE 5. Prediction of the bead geometry parameters by different models.

According to the experimental results, different models
should be selected to make an optimal prediction. However,
in general, ensemble learning algorithms perform better in
predicting welding process parameters, and CNN performs
better in predicting bead geometry parameters.

Another group of experiments was carried out to predict
the welding process parameters by using bead geometric
parameters, we still use four learning methods, BP neural
network, CatBoost, XGBoost and CNN, respectively, and the
experimental results are shown in Table6, Table 7, Table 8 and
Table 9. For intuitive comparison, Figure 6 displays the effec-
tiveness comparison among four models. Figure 6(a) shows
the comparison between the predicted current (I) and the
actual results of the fourmethods. It can be seen that XGBoost
performed best, and then followed by CatBoost. It can be seen
from Figure 6(b) that BP has the best prediction effectiveness
of parameter of voltage (U), followed by model XGBoost.

TABLE 6. Prediction of welding process parameters by BP neural network.

Figure 6(c) shows the comparison of welding speed (V1)
between the actual results of the four methods, and we
can find that XGBoost has the best prediction effectiveness,
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FIGURE 6. Prediction of the four welding process parameters.

TABLE 7. Prediction of welding process parameters by CatBoost.

TABLE 8. Prediction of welding process parameters by XGBoost.

BP performed the second. It can be seen from Figure 6(d)
that CNN has the best prediction effectiveness of parameter
of wire feeding speed (V2), followed by model BP.

TABLE 9. Prediction of welding process parameters by CNN.

V. CONCLUSION
The intelligent welding model can improve the intelligence
and efficiency of robot welding process planning. This is
helpful to solve the problem that welding workers are difficult
to operate in special welding environment. In this paper,
a variety of learning methods are explored to predict the
process parameters in the multi-layer and multi pass weld-
ing process. With the support of the machine learning and
ensemble methods, the welding process parameters and the
bead geometry parameters can be predicted mutually. The
experimental results show that different learning algorithms
have advantage on different kind of tasks of prediction.
In the applicative welding process, appropriate model can be
selected to realize the intelligence and automation of robot
welding.
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