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ABSTRACT In this paper, I respond to a critique of one of my papers previously published in this journal,
entitled ‘‘Bell’s Theorem Versus Local Realism in a Quaternionic Model of Physical Space.’’ That paper
presents a local-realistic model of quantum correlations based on a quaternionic 3-sphere, taken as a physical
space in which we are confined to perform all our experiments. The critique, on the other hand, considers two
entirely different models within a flat Euclidean space, neither related to my quaternionic 3-sphere model.
It then criticizes its own flat space models and claims that it has thereby criticized the model presented in my
paper. Along the way, without providing evidence or proof, it claims that the results in my paper are based
on mistakes. I demonstrate that there are no mistakes of any kind in my paper. On the contrary, I bring out a
number of elementary mathematical and conceptual mistakes from the critique and the critiques it relies on.

INDEX TERMS Bell’s theorem, determinism, EPR argument, Friedmann-Robertson-Walker spacetime,
geometric algebra, local causality, local realism, quantum mechanics, rotation groups, topology of 3-sphere.

I. INTRODUCTION
This reply paper should be read as a continuation of my
previous reply paper [1], which is a reply published in this
journal to a previous critique of one of my papers by the
same author [2]. I have also responded to earlier critiques
by the same author elsewhere [3]–[5]. It is unfortunate that
the critique in [6] has repeated many arguments that I have
already addressed in [1], [3]–[5], as well as in Appendix B
of [7] and Appendix B of [8]. Sections I, II, and III of my
previous reply [1] provide the background for understanding
the current reply to the critique in [6]. In what follows, I have
tried to avoid repetitions of my refutations of the issues raised
in [6] that are already addressed by me in [1]. Needless to
say, prior reading of my original paper [7] and its pedagogical
exposition [8] is recommended for understanding this reply.

The central result I have presented in [7] and [8], as well
as in my earlier papers [9]–[11], is this special theorem:
Theorem 1:Quantummechanical correlations predicted by

the entangled singlet state can be understood as classical,
local, realistic, and deterministic correlations among the pairs
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of limiting scalar points of a quaternionic 3-sphere, or S3,
taken as a model of the three-dimensional physical space.

I have proved this theorem in [7]–[11] in several different
ways. In fact, its proof can be presented on a single page [12].
Its more complete proof can be found in Section III of [1].

Now S3 turns out to be sufficient for understanding the
singlet correlations local-realistically, but not sufficient for
understanding more general correlations. What is required is
an algebraic representation space of S3, which turns out to be
an octonion-like 7-sphere, leading to this general theorem:
Theorem 2:Quantummechanical correlations predicted by

any arbitrary quantum state can be understood as classical,
local, realistic, and deterministic correlations among the pairs
of limiting scalar points of an octonion-like 7-sphere, as an
algebraic representation space of the quaternionic 3-sphere.

I have proved this general theorem in [11]. For a summary,
see also [13]. According to these two theorems, the geomet-
rical and topological properties of the quaternionic 3-sphere,
or S3, are the raison d’être of the origins and strengths of
all quantum correlations, not quantum entanglement per se.
The latter is merely a placeholder for quantum correlations,
similar to how phlogiston was for combustion until Lavoisier
proved it to be a rapid oxidation, and action-at-a-distance was
for Newton’s gravity until Einstein recognized it to be an
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effect of the curvature of spacetime. Tsirel’son’s bounds
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2 6 E(a,b)+ E(a,b′)+ E(a′,b)− E(a′,b′) 6 2

√
2

(1)

turn out to be consequences of the above hypothesis [7],
[11]. Although in my view the strong correlations observed
in Nature is evidence enough in favor of this hypothesis,
in [10] I have proposed an experiment set in a macroscopic
domain, devoid of any quantum features, that may be able to
falsify it.

In this paper, I demonstrate, point by point, that none
of the claims made in the critique [6], or in the critiques
mentioned therein, undermine the above theorems. Contrary
to its claims, the critique has not found any kind ofmistakes in
my papers, or in the numerical simulations of the quaternionic
3-sphere model cited therein. On the contrary, in what follows
I point out a number ofmathematical and conceptual mistakes
in the critique [6] and the critiques [2], [14], [15] it relies on.

The common defect in the critiques [2], [6], and [14] is that
they consider and criticize models that are entirely different
from the one presented in [7] and [8], and then claim that they
have thereby criticized the model presented in my papers.
This has been an effective strategy for the critiques in [2],
[6], and [14] despite its manifest logical fallacy. For example,
it can be easily verified by searching the PDF file of the
critique [6] that in its text the word ‘‘quaternion’’ appears only
once, and that only in a dismissive sentence: ‘‘But Christian’s
speculations about a quaternionic space seem completely
irrelevant.’’ And the word ‘‘3-sphere’’ also appears only once,
and that only within a sentence quoted from my simulation
code [16]. The critique thus entirely avoids engaging with
the details of the quaternionic 3-sphere model, overlook-
ing many of its vital features and their broader physical
significance.

The minimum prerequisite for understanding the model
of quantum correlations presented in [7] and [8] (as well as
in [9]–[11]) is at least some appreciation that it is based on a
quaternionic 3-sphere, or S3, hypothesized to be the physical
space in which we are inescapably confined to perform our
Bell-test experiments. The origins and strengths of quantum
correlations are then inevitable consequences of the Clifford
algebra and geometry of this physical space, as we will see in
the next Section for the singlet state. By contrast, the flatland
or IR3 perspective and the use of vector algebra adhered to in
the critiques [2], [6] leads one to the traditional interpretation
of Bell’s theorem, as I have demonstrated in Section X of [7].

II. RÉSUMÉ OF THE QUATERNIONIC 3-SPHERE MODEL
Within the quaternionic 3-sphere model presented in [7], [8],
the important question to be answered is this: What will be
the value of the joint result A B(a,b, λ) = ±1 when the
individual results A (a, λ) = ±1 and B(b, λ) = ±1 are
observed by Alice and Bob separately but simultaneously,
in ‘‘coincidence counts’’, within a space-like hypersurface S3

within spacetime? Here a and b are the detector directions,

chosen by Alice and Bob, and λ is a common cause, so that

A B(a,b, λ) = A (a, λ)B(b, λ), (2)

which is the factorizability condition for the results required
by local causality. To answer the above question, recall that
there are three different sets of experiments involved in any
Bell-test experiment [1]. In the first two sets of experiments
Alice and Bob make spin measurements at their respective
stations obtaining the results ±1, with 50/50 chance, so that
both 〈A 〉 = 0 and 〈B〉 = 0. These are two independent
sets of experiments in which Alice performs her experiments
regardless of Bob’s existence, and vice versa. Their results,
A = ±1, 〈A 〉 = 0 and B = ±1, 〈B〉 = 0, are what the
measurement functions (66) and (67) defined in [7] predict.
They describe the detection processes of Alice and Bob as
limiting scalar points of two separate quaternions within S3:

S3 3 A (a, λ) = lim
s1→ a

{−D(a)L(s1, λ)} (3)

= lim
s1→ a

{
+q(ηas1 , r1)

}
(4)

= +λ lim
s1→ a

{
cos(ηas1 )+ (I · r1) sin(ηas1 )

}
(5)

implying that, as the angle ηas1 → 0,

A (a, λ)→±1 with 〈A (a, λ)〉 = 0, (6)

and

S3 3 B(b, λ) = lim
s2→b

{+L(s2, λ)D(b)} (7)

= lim
s2→b

{
−q(ηs2b, r2)

}
(8)

= −λ lim
s2→b

{
cos(ηs2b)+ (I · r2) sin(ηs2b)

}
(9)

implying that, as the angle ηs2b→ 0,

B(b, λ) −→ ∓1 with 〈B(b, λ)〉 = 0, (10)

where L(s1, λ) and L(s2, λ) are spin bivectors and D(a)
and D(b) are detector bivectors of Alice and Bob, whose
orientations are defined relative to those of the spin bivectors,

L(n, λ) = λD(n) ⇐⇒ D(n) = λL(n, λ) , (11)

ηas1 and ηs2b are angles between the detectors and spins, and

r1 =
a× s1
||a× s1||

and r2 =
s2 × b
||s2 × b||

. (12)

On the other hand, the above equations (6) and (10) (or,
equivalently, equations (66) and (67) of [7]) do not tell us
anything about the third set of experiments carried out by
Alice and Bob in which they jointly and simultaneously make
measurements within the quaternionic 3-sphere, taken as the
physical space. This is because the geometrical properties
of the quaternionic 3-sphere are highly nontrivial and they
must be respected to respect the hypothesis of the model.
Unlike the IR3 model of the physical space, S3 is a com-
pact space that remains closed under multiplications of the

14430 VOLUME 10, 2022



J. Christian: Reply to ‘‘Comment on ‘Bell’s Theorem Versus Local Realism in Quaternionic Model of Physical Space’’’

FIGURE 1. The results A and B are scalar points of a quaternionic
3-sphere, or S3. Since S3 remains closed under multiplication, the
product A B is also a point of S3, with its binary value ±1 dictated by the
geometry of S3. After [1].

quaternions that constitute it. It is defined as a set of all unit
quaternions,

S3 :=
{
q(ψ, r) := exp

[
J(r)

ψ

2

] ∣∣∣∣ ||q(ψ, r) ||2 = 1
}
,

(13)

where J(r) is a bivector (or pure quaternion) rotating about
r ∈ IR3 with the rotation angle ψ in the range 0 ≤ ψ < 4π .
Here the conventions of Geometric Algebra are used [17].

The correct values of the joint result A B(a,b, λ) can thus
be inferred only by respecting the geometrical properties of
S3. They can be preserved only by following the correct rules
of quaternionic multiplication. But since the above concepts
and the next steps they lead to are not well understood in
the critiques [2], [6], [14], let me explain them here step by
step.

The crucial question is: What will be the value of the
joint result A B(a,b, λ) within S3? Can it simply be the
product of the values seen in (6) and (10)? No, that cannot
be a meaningful value within S3. The values seen in (6) and
(10) are scalar numbers, not quaternions. Scalar numbers
do not respect the multiplication rules of quaternions. But,
by definition, S3 in (12), taken as the physical space, is the
set of all unit quaternions. Therefore the value of the joint
resultA B(a,b, λ) must be a limiting scalar point of a quater-
nion within S3 as depicted in Fig. 1, just as the individual
results A (a, λ) and B(b, λ) are the limiting scalar points
of two quaternions, as specified in the equations (4) and (8)
above.

The next question is: Which quaternion within S3 would
give the correct value of the joint resultA B(a,b, λ) = ±1 as
its limiting scalar point while the resultsA (a, λ) andB(b, λ)
are observed by Alice and Bob simultaneously in coincidence
counts? The answer to this question can be found from the
condition (2) and the definitions (4) and (8) of the individual

FIGURE 2. A spin-less neutral pion decays into an electron-positron pair.
Measurements of spin components on each separated fermion are
performed by Alice and Bob at remote stations 1 and 2, providing binary
outcomes along freely chosen directions a and b. The conservation of
spin momentum dictates that the net spin of the pair remains zero during
the free evolution. After [7].

results A (a, λ) and B(b, λ) within S3, giving

S3 3 A B(a, b, λ) = A (a, λ)B(b, λ) (14)

=

[
lim

s1→ a

{
+q(ηas1 , r1)

}]
×

[
lim

s2→b

{
−q(ηs2b, r2)

}]
. (15)

The question now is: How must we evaluate the last product
without compromising the properties of S3 that requires us
to respect the quaternionic rules of multiplication when the
results A (a, λ) and B(b, λ) are observed simultaneously? If
the conservation of zero spin angular momentum is satisfied,
as it has to be, which requires us to set s1 = s2 (cf. Fig. 2),
then the correct answer to the above question is: By using the
‘‘product of limits equal to the limits of product’’ rule, giving

S3 3 A (a, λ)B(b, λ) =
[
lim

s1→ a

{
+q(ηas1 , r1)

}]
×

[
lim

s2→b

{
−q(ηs2b, r2)

}]
(16)

= lim
s1→ a
s2→b

{
−q(ηas1 , r1)q(ηs2b, r2)

}
(17)

= lim
s1→ a
s2→b

{−q(ηuv, r0)} , (18)

where q(ηuv, r0) = q(ηas1 , r1)q(ηs2b, r2) is necessarily
another unit quaternion within S3 because the latter remains
closed under multiplication, with half of its rotation angle

ηuv = cos−1
{
(a · s1)(s2 · b)

− (a · s2)(s1 · b)+ (a · b)(s1 · s2)
}

(19)

and the axis of its rotation

r0 =
(a · s1)(s2×b)+(s2 · b)(a×s1)−(a×s1)×(s2×b)

sin ( ηuv)
.

(20)

Note, however, that the above results do not depend on
using the ‘‘product of limits equal to the limits of product’’
rule, as long as the conservation of angular momentum is
respected.
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Now the conservation of spin angular momentum requires
s1 = s2 (cf. Fig. 2). And from (19) we note that for s1 = s2
the half angle ηuv reduces to ηab, reducing q(ηuv, r0) to

q(ηab, r0) = cos(ηab)+ (I · r0) sin(ηab). (21)

On the other hand, regardless of whether s1 = s2 or s1 6= s2,

lim
s1→ a
s2→b

r0(s1, s2) = E0 (22)

during the detection process of the joint result A B(a, b, λ).
The value A B of the product A (a, λ)B(b, λ) thus tends to

A (a, λ)B(b, λ) = A B(a,b, λ)

= lim
s1→ a
s2→b

{−q(ηab, r0)}

→

{
−1 if s1 6= s2
−a · b if s1 = s2.

(23)

Given the equality s1 = s2 required by the conservation of
zero spin angular momentum (cf. Fig. 2), this tendency (23)
for the value A B holds for each run of the experiment.
As a result, the correlation between the results A (a, λ) and
B(b, λ) observed by Alice and Bob within S3 works out
as follows. Since λ is a fair coin, we can assume uniform
averaging over λ with probability density p(λ) = 1

n , where
n is the total number of experimental trials. This allows
us to reduce the expectation function E(a, b) to a discrete
version:

EL.R.(a, b) =
∫

A (a, λ)B(b, λ) p(λ) dλ (24)

≈ lim
n� 1

[
1
n

n∑
k = 1

A (a, λk ) B(b, λk )

]
(25)

= lim
n� 1

1
n

n∑
k = 1

lim
s1→ a
s2→b

{−q(ηab, r0)}

 (26)

= − cos( ηab). (27)

This corroborates the hypothesis put forward in [7]–[11] that
the observed singlet correlations are correlations among the
limiting scalar points A (a, λ) = ±1 and B(b, λ) = ±1 of
a quaternionic 3-sphere. I have derived the correlation (27)
in [7]–[11] in several different ways, proving the Theorem 1
stated above in the Introduction. See also its derivation in
equations (34) to (41e) of Section III in my previous reply [1].

It is evident from the above derivation that the quaternionic
3-sphere model is not a model of after-the-events procedure
followed by experimenters within IR3 as implicitly assumed
in the critique, but a theoreticalmodel that predicts the values
of the simultaneous events A , B, and A B occurring within
S3, dictated by its geometrical and topological properties.
Thus the critique [6] confuses epistemology with ontology,
committing what philosophers call ‘‘a category error.’’

III. POINT BY POINT RESPONSE TO THE CRITIQUE
With the above summary of the 3-sphere model, let us now
proceed to address the issues raised in the critique [6].
While there are many incorrect and unproven claims through-
out the critique, I focus in this Section on those that are
significant.

A. CONCERNING THE STATUS OF BELL’S THEOREM
In its Introduction, the critique in [6] begins with a serious
misconception that ‘‘Bell’s Theorem’’ is a proven theorem in
the mathematical sense and therefore any critique of it must
be flawed. But while even proven mathematical theorems
may not be immune to refutations by counterexamples as
so lucidly explained by Lakatos [18], Bell’s theorem is not
a theorem in the mathematical sense to begin with, as I
have pointed out in Answer 1 of Appendix B in [7]. It is a
physical argument, based on a number of implicit and explicit
physical assumptions, which can be and have been questioned
before, not only by me [7]–[11] but also by many others (cf.
footnote 1 in [7]). If it were a proven theorem in the mathe-
matical sense, then it would not require physical experiments
for its validity and any loophole (or ‘‘gap’’) would render it
invalid.

Moreover, as I have discussed in detail in Section II of [1],
the mathematical part of Bell’s theorem is nothing more than
a reworking of an inequality in probability theory proven by
Boole one hundred and eleven years before the publication
in 1964 of Bell’s physical argument based on it [19]–[21]. The
critique in [6] seems to be aware of the historical precedence
of Boole’s mathematical inequality, but fails to appreciate the
distinction between a purely mathematical inequality and the
radical metaphysical claims regarding the nature of physical
reality made by Bell based on that mathematical inequal-
ity. This is unfortunate, because it is quite well known that
Boole’s inequality can be derived without assuming locality,
as, for example, I have derived in Section 4.2 of [11], or with-
out assuming realism, as, for example, Eberhard has derived
in [22], or without assuming either locality or realism, as, for
example, Boole has derived in [19], [20]. By now it is well
known that, when viewed as a mathematical theorem about
a probability distribution and its marginals, the theorem part
of Bell’s argument (i.e., Boole’s inequality) can be derived
without any reference to local realism at all.

Bell’s argument, on the other hand, starts off by assuming
local realism. It then proceeds to re-derive Boole’s inequality
without referring to Boole. Since this inequality is not con-
sistent with quantum mechanical probabilities, Bell argues
that quantum mechanics is inconsistent with local realism.
But given the different derivations of Boole’s inequality in
Section 4.2 of [11], [22], and [19], [20] mentioned in the pre-
vious paragraph, we are equally justified in concluding that
quantum mechanics is inconsistent with non-local realism,
or local non-realism, or non-local non-realism, respectively.
Indeed, one can start off by explicitly assuming non-locality
and non-realism and still derive Boole’s inequality, requiring
only the additivity of expectation values [23] and that results
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of incompatible experiments along mutually exclusive mea-
surement directions can occur in nature simultaneously [11].

In the light of the above results, the orthodox interpretation
of Bell’s argument adhered to in the critique [6] is obsolete.

B. CONCERNING MY CRITIQUE OF BELL’S THEOREM
It turns out, however, that even the orthodox interpretation
of Bell’s argument harbors a serious physical mistake [23].
In Section II of the critique [6], the standard derivation of
the Bell-CHSH inequality is reviewed. This derivation is well
known for at least fifty years. The critique thus adds nothing
new to the existing literature. Towards the end of that section
the critique then quotes the following from my paper [7]:

As innocuous as the step [that replaces the four
separate averages to a single average] in the proof
[of Bell-CHSH] may seem mathematically, it is,
in fact, an illegitimate step physically, becausewhat
is being averaged on its right-hand are unobserv-
able and unphysical quantities. Indeed, the pairs of
measurement directions (a, b), (a, b′), (a′, b), and
(a′, b′) are mutually exclusive measurement direc-
tions, corresponding to incompatible experiments
which cannot be performed simultaneously.

The ‘‘step’’ here concerns the assumption of the additivity of
expectation values. Namely, the replacement of the sum of
four separate averages with the single average of their sum:〈
Ak1 (a)Bk1 (b)

〉
+

〈
Ak2 (a)Bk2 (b

′)
〉

+

〈
Ak3 (a

′)Bk3 (b)
〉
−

〈
Ak4 (a

′)Bk4 (b
′)
〉

(28)

−→

〈
Ak (a)

{
Bk (b)+Bk (b′)

}
+Ak (a′)

{
Bk (b)−Bk (b′)

}〉
. (29)

In Section II of critique [6], it is the following specious step,
. . . let us take a look at the following expression
Z := X1Y1−X1Y2−X2Y1−X2Y2. One can rewrite
it as X1(Y1 − Y2)− X2(Y1 + Y2). . . . ,

that hides the assumption of the additivity of expectation val-
ues. Without this assumption Bell-CHSH inequalities cannot
be derived [23]. I have discussed this briefly in Section II
of [1], and extensively in [23]. While mathematically cor-
rect, this assumption is physically meaningless. It amounts
to assuming the bound of 2 on the CHSH correlator instead
of deriving it [23]. Contrary to the claim made in [6], it is
an assumption over and above the assumptions of locality
and realism. In fact, as noted, it is a profound physical
mistake.

It is the same mistake that von Neumann’s former theorem
against general hidden variable theories harbored, as I have
explained in [23]. For observables that are not simultaneously
measurable, such as the observables involved in the fermionic
spin measurements in Bell-test experiments, the replacement
of the sum of expectation values with the expectation value of
the sum, although respected within quantummechanics, does
not hold within hidden variable theories. This was pointed

out by Einstein and Grete Hermann in the 1930s within the
context of von Neumann’s theorem, and again some thirty
years later by Bell and others, as I have explained in [23].

The problem is that, while the sum of expectation values
is mathematically the same as the expectation value of the
sum, as in the assumption that allows us to mathematically
replace (28) with (29) above, and while this assumption is
valid in quantummechanics because any linear sum of opera-
tors represents another operator in Hilbert space, it is not valid
for any hidden variable theory based on dispersion-free states,
because the eigenvalue of a sum of operators is not the sum of
individual eigenvalues (which is what Ak (a), Ak (a′), Bk (b),
and Bk (b′) in fact are) when the constituent operators are
non-commuting, as in the case of Bell-test experiments. This
makes the replacement of (28) with (29) physically invalid.
But without this replacement the absolute upper bound of 2
on the CHSH correlator cannot be derived.

Once this extraordinary oversight is removed from Bell’s
argument and local realism is implemented correctly [23],
the bounds on the CHSH correlator work out to be ±2

√
2

instead of ±2, thereby mitigating the radical conclusions
of Bell’s theorem [23]. Consequently, what is ruled out
by the Bell-test experiments is not local realism as widely
believed, but the assumption of the additivity of expectation
values.

Considering the above mistake, the claim in the Introduc-
tion of the critique [6] that ‘‘Bell’s theorem has not been
disproved. . . ’’ is rather ironic. For Bell’s theorem has never
been proven in the first place. It has only been assumed.

C. CONCERNING THE BELL INEQUALITY VIOLATIONS
Much is made in the critique of the so-called new generation
of loophole-free Bell-test experiments and how they exhibit
violations of the Bell-CHSH inequality. By CHSH inequality
the critique essentially means the inequality discovered by
Boole one hundred and eleven years before Bell’s famous
paper of 1964 [19], [20]. It is a mathematical inequality
involving four binary numbers: Ak (a) = ±1, Ak (a′) = ±1,
Bk (b) = ±1, and Bk (b′) = ±1. As such, the absolute
value of the expression (29) is mathematically bounded by 2.
It is impossible to violate the bound of 2 on (29) with binary
scalar numbers ±1 that represent the results observed in
the Bell-test experiments. And yet, experimenters are rou-
tinely reporting violations of the absolute bound of 2 on (29)
set by application of elementary arithmetic. How is that
possible?

It is certainly possible to exceed the bound of 2 on (29)
if we can switch to four separate experiments corresponding
to expression (28), the absolute value of which is bounded
by 4, not 2. After all, four separate experiments corresponding
to expression (28) is all we can hope to achieve in practice.
So that is what the experimenters do. In other words, there
is extraordinary bait-and-switch happening (albeit unwit-
tingly) in every experiment that claims to have violated the
absolute bound of 2 on expression (29), rationalized with
statistics.
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D. CONCERNING A DENIAL OF BELL’S ASSUMPTION
In their Introductions, the critiques [2] and [6] claim that

Bell does not take account of the geometry of space
because his argument, on the side of local realism,
does not depend on it in any way whatsoever.

This claim, however, is not correct. I have already explained
why it is not correct in Answer 2 of Appendix B of [7] and in
Subsection IV B of [1]. And yet, the claim has been repeated
in [6] again. But nowhere in his writings has Bell stated that
his theorem holds independently of the geometry of physical
space. On the contrary, in Section 8 of Chapter 7 of his
book [24], while exploring possible strategies that can negate
his theorem, he writes: ‘‘The space time structure has been
taken as given here. How then about gravitation?’’ Thus Bell
seems to have anticipated the use of a solution of Einstein’s
field equations of general relativity to overcome his theorem.

Moreover, the derivations of the Bell-CHSH inequalities
explicitly require different detector settings corresponding
to different directions in the physical space, which are then
represented – both theoretically and in configuring Bell-test
experiments – by ordinary vectors in IR3. It is unfortunate
that this implicit assumption is usually not made explicit in
the literature on Bell’s theorem. But why must we assume
such vectors to be within IR3? If, instead, they are embedded
within quaternions constituting S3 that model the physical
space, then the correlations between measurement events
are inevitably sinusoidal, as I have proved many times
in [7]–[11], in many different ways. Thus to claim that
Bell’s argument ‘‘does not take account of the geometry of
space’’ is to reveal a weakness of Bell’s argument, not its
strength.

The respective topologies of the three-dimensional spaces

IR3 and S3 are dramatically different, even though the latter
differs from the former by a single point added to it at
infinity:

S3 = IR3
∪ {∞} . (30)

While IR3 is an open space stretching out from the origin to
infinity, S3 is both a closed and compact manifold. Unlike
IR3, the space S3 has many special properties. For example,
although locally it is a product space, S3 ≈ S2× S1, globally
the fiber bundle of S3 has no cross-section at all. Moreover,
it is both a connected and simply connected manifold without
boundary, so that any loop or circular path in it can be shrunk
continuously to a point without leaving the manifold [25].

Now measurement results, such as the clicks of the detec-
tors, are events in spacetime. In the EPR-Bohm or Bell-test
experiments one is interested in spacelike separated coinci-
dent events in spacetime. In other words, one is interested
in the spacelike separated equal-time points on a space-
like hypersurface in spacetime, such as those in IR3 or S3.
And as I have explained in [1], [7], [8], both IR3 and S3

are admissible spatial parts of a well known solution of
Einstein’s field equations of general relativity. There is thus
no escape from the geometries of IR3 and S3. But since the

topological properties of IR3 and S3 are so dramatically dif-
ferent, the correlations between their respective points would
also be dramatically different. And yet, the critique claims
that Bell’s argument is insensitive to this difference. If so,
then that is clearly yet another of several defects in Bell’s
argument.

E. CONCERNING EQUATIONS (66) AND (67) IN [7]
Another incorrect claim in the critique [6] concerns what the
measurement functions (66) and (67) defined in [7] predict:

Christian’s explicit definition of measurement
functions results in measurement outcomes which
are equal and opposite with probability one, what-
ever the measurement settings. [Appendix of [6].]

In its Section IV, the critique again claims that, for whatever
detector settings a and b are chosen by Alice and Bob, the
measurement functions (66) and (67) defined in [7] predict
that the observed results A (a, λ) and B(b, λ) will satisfy

A = −B = ±1 = λ, (31)

with λ = ±1 being a fair coin. But no such equation exists
in [7], or in any of my other publications [8]–[11]. In fact,
as I explained in Section II above, within the quaternionic
3-sphere model the above equation is quite meaningless.
Moreover, it is very easy to verify that the measurement
functions (66) and (67) defined in [7] do not predict perfect
anti-correlation A B = −1 for a 6= b without violating
the conservation of zero spin angular momentum. I have
demonstrated this in considerable detail towards the end of
Section VIII in the original paper [7]. Thus the claim made
in the critique is manifestly wrong. The above equation (31)
is simply made up in the critique [6]. As I have explained
in Subsection IV E of [1] and Section III of [8], the perfect
anti-correlationA B = −1 between the measurement results
can hold within S3 only for the special case when a = b.
In general, for a 6= b, the productA B of the observed results
A and B would necessarily fluctuate between −1 and +1,

A B ∈ {−1, +1}, (32)

because of the sign changes in quaternions that constitute S3:

q(ηab + κπ, r) = (−1)κ q(ηab, r)forκ = 0, 1, 2, 3, . . .

(33)

In other words, all four possible combinations of the results,
++, +−, −+, and −−, would be seen by Alice and Bob.
The violation of the conservation of spin angular momen-

tum in the critique’s claim is not difficult to detect. For
a 6= b, Eq. (31) can hold only for s1 6= s2, where s1 and
s2 are unit vectors about which the spin bivectors L(s1, λ)
and L(s2, λ) are spinning after emerging from the source (cf.
Fig. 2). This can be verified from the measurement functions
(66) and (67) defined in [7]. Thus, the critique’s made up
equation holds in general for all choices of a and b only if
the conservation of zero spin angular momentum is violated,
or, equivalently, the Möbius-like twists in the Hopf bundle of

14434 VOLUME 10, 2022



J. Christian: Reply to ‘‘Comment on ‘Bell’s Theorem Versus Local Realism in Quaternionic Model of Physical Space’’’

S3 are ignored. That is to say, for a 6= b, Eq. (31) holds only
if the 3-sphere model is abandoned and one relapses back to
the flat geometry of IR3, as the critiques in [2] and [6] tend to
do reflexively.

I have already explained the above flaws in the critique at
great length in Subsection IV E of my previous reply [1],
as well as in [5], in Appendix C of [3], in Answers 9
and 14 in Appendix B of [7], and in Answers 6 and 7 in
Appendix B of [8]. And yet, this frequently refuted claim is
repeated in [6].

F. CONCERNING THE CLAIM OF DIFFERENT MODELS
In its Abstract, the critique [6] claims that my paper [7]
‘‘. . . contains several conflicting models.’’ And again in its
Sections III and IV it refers to the 3-sphere model presented
in [7] as my ‘‘first model’’ and ‘‘second model’’, implying
that I have proposed two different models. But throughout my
work published in [7]–[11], and especially in my paper [7],
I have proposed only one model for the singlet correlations,
and that model is the quaternionic 3-sphere model summa-
rized in Section III of [1]. This suggests that the critique [6] is
based on quite a mistaken understanding of what is presented
in [7].

In reality, what is presented in Sections IV and VII of [7]
are not different models but two different representations of
one and the same quaternionic 3-sphere model. And there
is no ‘‘conflict’’ of any kind between these two representa-
tions. They complement each other perfectly, and prove that,
no matter which representation of the quaternionic 3-sphere
is used to perform calculations, the correlations predicted
by the quantum mechanical singlet state can be understood
as local, realistic, and deterministic correlations among the
limiting scalar points A = ±1 and B = ±1 of the 3-sphere,
provided it is taken to model the three-dimensional physical
space in which we are confined to perform our Bell-test
experiments.

It is also important to note that no argument or proof is
provided in [6] (or anywhere else) in support of its incorrect
claim. The critique alleges ‘‘conflicting models’’, but does
not provide any evidence or demonstration of the alleged
conflict.

It is well known that mathematically a 3-sphere can be
represented in several different ways. In Sections IV and V of
my paper [7] it is represented without using the full arsenal of
Geometric Algebra in a manner that brings out an unforeseen
link between the quaternionic 3-sphere model and Pearle’s
local hidden variable model for the singlet correlations [26].
On the other hand, in Sections VII, VIII, and IX of [7] the
3-sphere is represented using the elegant and powerful lan-
guage of Geometric Algebra. It is the strength of my analysis
that two entirely different representations of the 3-sphere are
shown to reproduce the same singlet correlations predicted
by quantum mechanics. What is more, pedagogically each
representation illuminates the quaternionic 3-sphere model
in a different way. The critique [6], however, claims the two
representations of the model to be two different models. That

FIGURE 3. The configuration space SO(3) of all possible rotations in
physical space is obtained by identifying the antipodal points of S3 — i.e.,
by identifying every quaternion +q in S3 with its antipodal quaternion −q
in S3. After [10].

is analogous to claiming that Heisenberg and Schrödinger
representations of quantum theory are two different theories.

G. CONCERNING PEARLE’S CALCULATION WITHIN S3

In its Abstract, critique [6] claims that ‘‘Most of [my] paper
is devoted to a model based on the detection loophole due to
Pearle (1970).’’ But only a few formulae from Pearle’s paper
are used in only two out of twelve sections and two appen-
dices of my paper [7], and neither of the two sections are
exclusively concerned with his detection loophole analysis.
This suggests that the critique’s reading of [7] is mistaken.

In fact, far from being ‘‘devoted’’ to Pearle’s detection
loophole model [26], the discussion in Section V of [7] is
about what has been missed in Pearle’s analysis in [26], and
how the singlet correlation can be recovered once that defect
in [26] is rectified. The state space for the singlet spin system
used by Pearle is a well known representation of the rotation
group SO(3), viewed as a unit ball within IR3, with each
point of it representing a rotation about a vector r of length
0 6 r 6 1 from the origin, and the product πr representing
a rotation by angle ψ = πr . By contrast, the state space used
in the quaternionic 3-sphere model of the singlet correlations
presented in [7] uses a representation of the double covering
group of SO(3). Namely, the group SU(2), which is home-
omorphic to S3, and can be constructed by identifying the
boundaries of two SO(3) balls, providing the double covering
of the group SO(3). The state space SU(2) ∼= S3 is thus
topologically nontrivial, and sensitive to the spinorial sign
changes in the quaternions that constitute S3. By contrast,
Pearle’s sate space SO(3) is insensitive to such sign changes.
Thus, what is overlooked in Pearle’s analysis is the spinorial
sign changes in the quaternions described in Eq. (33) above.

To appreciate this better, recall that, in general, the group
SU(2) ∼= S3 represents rotations of objects relative to other
objects. Such rotations are sensitive to spinorial sign changes
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and thus fermionic [10]. On the other hand, local observa-
tions of rotations that do not refer to external objects are not
sensitive to sign changes in the quaternions that constitute the
group SU(2) ∼= S3. In other words, the quaternions−q(ψ, r)
and+q(ψ, r) in S3 represent one and the same rotation in the
physical space IR3. There are thus twice as many elements
in the set S3 of all unit quaternions than there are points
in the configuration space SO(3) of all possible rotations in
the physical space. This is because every pair of quaternions
constituting the antipodal points of S3 represent one and
the same rotation in IR3 (cf. Fig. 3). This can be verified
by recalling how a quaternion and its antipode can rotate a
bivector J(r) about r to a bivector J(r′) about r′:

J(r′) = (+q) J(r) (+q)† = (−q) J(r) (−q)†. (34)

Thus S3, or more precisely the group SU(2) homeomorphic
to S3, represents a universal double covering of the rotation
group SO(3) so that the quaternions−q(ψ, r) and+q(ψ, r)
represent one and the same rotation in the physical space IR3.
SO(3) is thus a group of observable rotations in physical
space and can be constructed by identifying each quaternion
−q(ψ, r) in S3 with its antipodal quaternion +q(ψ, r) in
S3 ↪→ IR4. The space that results is the real projective space

IRP3 ∼= SO(3) ≈
(
SU(2) ∼= S3

)
/{−1, +1}, (35)

which is simply the set of all lines through the origin of IR4.
There are thus two preimages in S3, namely +q and −q

for each rotation within SO(3). In other words, the projective
space IRP3 is the quotient of S3 by the map q 7→ −q, which
can be expressed as ϕ : S3→ IRP3. This quotient map ren-
ders the topologies of the spaces S3 and IRP3 quite distinct
from one another. For instance, the space S3 turns out to be
simply-connected, whereas the space IRP3 is connected but
not simply-connected. Consequently, the geodesic distances
D(a, b) between two quaternions q(ψa, a) and q(ψb, b) rep-
resenting two different rotations within IR3 can bemeasurably
different in the manifolds SU(2) ∼= S3 and SO(3) ∼= IRP3,
providing a signature of spinorial sign changes between
q(ψa, a) and q(ψb, b). This signature is shown in Fig. 4, and
discussed in considerable detail in [10].

The failure of Pearle’s theoretical model in [26] to take
into account the spinorial sign changes captured in (33) is
rectified in my paper [7] with amicable consequences. If we
include the spinorial sign changes in Pearle’s analysis, then
the relation between the rotation angle πr in Pearle’s state
space SO(3) ∼= IRP3 and the rotation angle 2ηzso in the state
space SU(2) ∼= S3 I have used in [7]–[11] works out to be

cos
(π
2
r
)
=


−1+

2√
1+ 3

( ηzso
κπ

) = f (ηzso ), (36)

−1+
2√

4− 3
( ηzso
κπ

) = f (π − ηzso ). (37)

There is then a one-to-one correspondence between the initial
spin states emitted by the source and the final spin states

FIGURE 4. Comparison of the geodesic distances D(a, b) on SU(2) ∼= S3

and SO(3) ∼= IRP3 as functions of a half of the rotation angle. The dashed
lines depict the geodesic distances on SO(3) ∼= IRP3, which was taken to
be the state space of the singlet system by Pearle in [26], whereas the
solid curve depicts their horizontal lift to the covering group SU(2) ∼= S3,
which is taken to model the three-dimensional physical space in the
quaternionic 3-sphere model of the singlet correlations I have proposed
in [7]–[11]. After [10].

detected by the remote detectors of Alice and Bob. Thus,
every initial state that is emitted by the source is detected by
the detectors, and vice versa. Consequently, unlike Pearle’s
model, the model presented in [7] is not about data rejection
or detection loophole. In the latter model, the fraction g(ηab)
of events in which both particles are detected is exactly one:

g(ηab) =
P+−12 (ηab)
1
2 cos

2
( ηab

2

) = P++12 (ηab)
1
2 sin

2 ( ηab
2

) = 1 ∀ηab ∈ [0, π].

(38)

This is made very clear in [7], in the following passage:
Clearly, a measurement event cannot occur if there
does not exist a state which can bring about
that event. Since the initial state of the system
is specified by the pair (eo, so) and not just by
the vector eo, there are no states of the sys-
tem for which | cos( ηneo )| < f (ηzso ) for any vec-
tor n. Thus a measurement event cannot occur
for | cos( ηneo )| < f (ηzso ), no matter what n is.
As a result, there is a one-to-one correspondence
between the initial state (eo, so) selected from the
set (31) and the measurement events A and B
specified by the Eqs. (34) and (35). This means,
in particular, that the ‘‘fraction’’ g(ηab) in our
model is equal to 1 for all ηab, dictating the van-
ishing of the probabilities

P0012(ηab) = 1+ g(ηab)− 2 g(0) = 0, (49)

which follows from Pearle’s Eq. (9). Moreover,
from his Eq. (8) we also have

P+012 (ηab) =
1
2

[
g(0)− g(ηab)

]
,

giving

P+012 (ηab) = P−012 (ηab) = P0+12 (ηab)

= P0−12 (ηab) = 0. (50)
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Together with the probabilities for individual
detections,

P+1 (a) = P−1 (a) = P+2 (b)

= P−2 (b) =
1
2
g(0) =

1
2
, (51)

the correlation between A and B then works out
to be

E(a,b) = lim
n�1

[
1
n

n∑
i=1

A (a; eio, s
i
o) B(b; eio, s

i
o)

]

=
P++12 + P

−−

12 − P
+−

12 − P
−+

12

P++12 + P
−−

12 + P
+−

12 + P
−+

12
= − cos (ηab) . (52)

Since all of the probabilities predicted by our local
model in S3 match exactly with the correspond-
ing predictions of quantum mechanics, the viola-
tions of not only the CHSH inequality, but also
Clauser-Horne inequality follow.

The critique [6], on the other hand, does not mention any of
the foregone reasoning and analysis. That is unfortunate, for
it is very clear from this analysis that the usual interpretation
of Pearle’s model as a detection loophole model is mistaken.

H. CONCERNING A COMPUTER CODE INCLUDED IN [7]
By now it should be evident that the critique in [6] has not
understood the 3-sphere model I have presented in [7]. It is
therefore not surprising that it has also misunderstood one
of the six numerical simulations of the singlet correlations
discussed in my paper. By relapsing back to the flat geometry
of IR3, the critique claims that the code of the simulation cited
as [40] in [7] is a simulation of Pearle’s ‘‘data rejection’’
model. But in the previous subsection we established that
interpreting the theoretical model proposed by Pearle in [26]
as a data rejection or detection loophole model is a mistake.

To begin with, I have discussed, not one, but six differ-
ent numerical simulations of the singlet correlations in my
paper, cited as references [40], [41], [45]–[47], and [48]. The
critique, however, discusses only one of them, namely, the
one cited as reference [40] in [7]. More importantly, as I
discussed in Subsection III-F above, it is quite well known
that, mathematically, a 3-sphere can be represented in several
different ways. In Sections IV, V, and VI of my paper [7] the
3-sphere is represented without using Geometric Algebra in
such a way that it almost aligns with Pearle’s hidden variable
model for the singlet correlations [26]. This makes it possible
to parallel the detection loophole type simulation analysis
but without failing to detect any initial states emerging form
the source in the EPR-Bohm type experiment. On the other
hand, in Sections VII, VIII, and IX of [7] the same 3-sphere
is represented using the powerful and elegant language of
Geometric Algebra, which facilitates the use of a GAViewer
program for simulating the resulting singlet correlations. It is
the strength of my analysis in [7] that two entirely different

representations of the 3-sphere are shown to reproduce the
same singlet correlations predicted by quantum mechanics.
Now for the Geometric Algebra based simulations [45]

to [48] cited in [7] the issue of data rejection does not arise,
and the critique in [6] does not claim that it does. On the other
hand, the simulations cited in [7] as [40] and [41] simulates
the singlet correlations using the first of the two representa-
tions of the 3-sphere mentioned in the previous paragraph.
For them, the critique in [6] claims that the simulation cited
as [40] in [7] depends on ‘‘the post-selection of data’’ and
thus uses ‘‘data rejection.’’ But this claim is not correct, as can
be easily verified by examining the simulation in the context
of the 3-sphere model discussed in the Sections IV, V, and VI
of [7]. There is no post-selection of data in this simulation.
There is only pre-selection of only those initial states that
can exist within the 3-sphere. Those are the only initial
states that are meaningful in the model, and none of them
are rejected. Consequently, as noted in the Subsection III-G
above, there is one-to-one correspondence between the initial
states of the system and those states that are detected by Alice
and Bob.

This fact is more evident in the simulation cited as [41]
in [7], but the critique in [6] has overlooked the analysis
in [41]. In that simulation it is demonstrated how, by set-
ting the distribution function f = 0, the geometry of S3

reduces to that of the flat geometry of IR3, and that, in turn,
reduces the sinusoidal correlations to the saw-tooth shaped
correlations.

There is another simulation that is worth mentioning here,
even though I have neglected citing it in [7]; namely, Ref. [27]
below. The analysis in this simulation is aimed at countering
the incorrect claims of ‘‘post-selection of data’’, ‘‘use of data
rejection’’, or ‘‘exploiting the detection loophole’’ leveled
in the critique [6] against the simulation cited as [40] in [7].
From the detailed numerical analysis presented in the simu-
lation [27] cited below it is abundantly clear that any claim of
data rejection is nothing more than wishful thinking.

I. CONCERNING LASENBY’s CRITIQUE OF MY WORK
Next, let me briefly comment on the critique [6]’s appeal to
Lasenby’s critique [15] in support of its ownmistaken claims:

. . .Lasenby [15] shows that a central and purely
algebraic result in Christian [11] (published in
Royal Society Open Science) is wrong. . . .Lasenby
identifies exactly the same GA errors as I did in my
papers [2], [14] . . .

Lasenby does make such claims in [15]. Unfortunately, while
his critique in [15] is more cogently presented compared to
those in [2], [6], and [14], it too succumbs to some of the
same conceptual and mathematical mistakes I have brought
out from [2], [6], [14] in [1], [3]–[5], Appendix B of [7], and
Appendix B of [8]. This is not surprising because they are
uncritically borrowed from [2] and [14], as acknowledged
in [15]. In particular, the claims made in [15] are not correct.
I have demonstrated them to be incorrect in [28] and [29].
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J. CONCERNING THE ALLEGED SURVEY OF MY WORK
In its Introduction, critique [6] claims to have surveyed my
work on Bell’s theorem in the critique [14] (see also [30]):

The present author surveyed Christian’s work
on Bell’s theorem from 2007 to 2019 in [14],
. . . Soon after that, I published a ‘‘Comment’’ [2]
to Christian’s (2020) companion IEEE Access
paper [8].

Unfortunately, the alleged survey of my work in [14] is
anything but a survey of my work. It contains a large num-
ber of incorrect assertions, made up history, and armchair
sociology and psychology, that even a minimal fact checking
would reveal to be unfit for any scientific discourse. It also
contains numerous mathematical and conceptual mistakes,
some of which I have brought out in [1], [3]–[5]. Themistakes
in [14] begin with its very title, which reads: ‘‘Does geometric
algebra provide a loophole to Bell’s theorem?’’ But my work
in [7]–[11] on quantum correlations has nothing to do with
any loopholes. Thus, the title reveals a lack of understanding
of what my work is all about. The other mistakes in [14], [30]
are too numerous to bring out here, but some of them have
been published in the reviewer reports [31]. Also, the entire
presentation in [14] is marred by the use of matrices and vec-
tor ‘‘algebra’’ (which, of course, does not form an algebra),
thus missing the very point of my use of Geometric Algebra
in [7]–[11]. This is quite a serious conceptual mistake in [14].

IV. CONCLUSION
The common defect in the critiques [2], [6], and [14] is that,
instead of engaging with the original quaternionic 3-sphere
model presented in my papers [1], [7]–[11] using Geometric
Algebra, they insist on criticizing entirely unrelated flat space
models based on matrices and vector ‘‘algebra.’’ This logical
fallacy by itself renders the critiques invalid. Nevertheless,
in this paper I have addressed every claim made in the cri-
tique [6] and the critiques it relies on, and demonstrated,
point by point, that none of the claims made in the critiques
are correct. I have demonstrated that the claims made in the
critique [6] are neither proven nor justified. In particular,
I have demonstrated that, contrary to its claims, critique [6]
has not found any mistakes in my paper [7], or in my other
related papers, either in the analytical model for the singlet
correlations or in its event-by-event numerical simulations.
Moreover, I have brought out a large number of mistakes and
incorrect statements from the critique [6] and the critiques it
relies on. Some of these mistakes are surprisingly elementary.

In its Conclusion, the critique [6] claims that my ‘‘paper [7]
makes no contribution to the ongoing debates concern-
ing Bell’s theorem.’’ However, contributing to the ongoing
debates concerning Bell’s theorem has never been my goal.
In my view, Bell’s theorem is a deeply flawed argument,
and therefore it is irrelevant for the future of physics. With
the problem of reconciling general relativity with quantum
mechanics on the back of my mind [32], my goal has always
been understanding the origins and strengths of quantum

correlations local-realistically, in terms of the geometry and
topology of spacetime, as envisaged by Einstein [33]. In my
view, I have taken the first steps in that direction in [7]–[11].
Nothing the critique [6] and the critiques it relies on have
claimed undermines this work. In [7]–[11] I have shown that
the raison d’être of the observed strong correlations is not
quantum entanglement per se (which is merely a placeholder
for the strong correlations), but the geometry and topology of
the physical space in which we are confined to perform our
experiments. I have demonstrated in [7]–[11] that the origins
and strengths of strong correlations can be easily understood
local-realistically if wemodel the physical space as S3 instead
of IR3. There is no need to succumb to nonlocality, superde-
terminism, retrocausality, or conspiracy.
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