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ABSTRACT N-linked glycosylation is one of the most common protein post-translation modifica-
tions (PTMs) in humans where the Asparagine (N) amino acid of the protein is attached to the glycan.
It is involved in most biological processes and associated with various human diseases as diabetes, cancer,
coronavirus, influenza, and Alzheimer’s. Accordingly, identifying N-linked glycosylation sites will be
beneficial to understanding the system and mechanism of glycosylation. Due to the experimental challenges
of glycosylation site identification, machine learning becomes very important to predict the glycosylation
sites. This paper proposes a novel N-linked glycosylation predictor based on bagging positive-unlabeled (PU)
learning and stacking ensemble machine learning (PUStackNGly). In the proposed PUStackNGly, compre-
hensive sequence and structural-based features are extracted using different feature extraction descriptors.
Then, ensemble-based feature selection is employed to select the most significant and stable features. The
ensemble bagging PU learning selects the reliable negative samples from the unlabeled samples using four
supervised learning methods (support vector machines, random forest, logistic regression, and XGBoost).
Then, stacking ensemble learning is applied using four base classifiers: logistic regression, artificial neural
networks, random forest, and support vector machine. The experiments results show that PUStackNGly has
a promising predicting performance compared to supervised learning methods. Furthermore, the proposed
PUStackNgly outperforms the existing N-linked glycosylation prediction tools on an independent dataset
with 95.11% accuracy, 100% recall 80.7% precision, 89.32% F1 score, 96.93% AUC, and 0.87 MCC.

INDEX TERMS Glycosylation, glycosylation sites prediction, machine learning, positive-unlabeled learn-
ing, stacking ensemble learning.

I. INTRODUCTION
Glycosylation of protein is one of the most common and
important post-translation modifications processes (PTM) in
most living organisms. It is estimated that more than fifty
percent of human proteins are glycosylated [1]. It affects of
various biological processes such as immune response, pro-
tein folding, signaling, and antigen recognition. Additionally,
it is publicized that glycosylation is related to of various
human diseases as diabetes, cancer, coronavirus, influenza,
and Alzheimer’s [2]–[5]. Glycosylation is categorized into
four different types based on the identity of the atom of the
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protein’s amino acid which binds the glycan chain such as
N-linked, O-linked, C-linked, or S-linked. The most public
type of glycosylation is N-linked glycosylation. In N-linked
glycosylation, the glycan (GlcNAc) is attached to a Nitro-
gen atom of Asparagine (Asn or N) amino acid of the pro-
tein. In particular, N-linked glycosylation usually happens
in N-X-S/T (S: serine, T: threonine) sequons, and in some
uncommon cases N-X-C (C: cysteine), where X is any protein
amino acid except proline [1], [6], [7].

Glycosylation sites identification is fundamental for under-
standing the system and mechanism of glycosylation. The
experimental methods (such as mass spectrometry) for
detecting the glycosylation sites are difficult, expensive,
and time-consuming [6], [8]. Therefore, the technical and
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computational tools using machine learning are playing an
increasingly essential role in glycosylation site prediction.

The last two decades have seen a growing trend in devel-
oping several intelligent and computational models to pre-
dict N-linked glycosylation sites using machine learning
and statistical techniques. For example, NetNGlyc [9] tool
utilizes neural networks for N-linked glycosylation pre-
diction. EnsembleGly [10] uses ensemble support vector
machines (SVM) to predict N-linked, O-linked, and C-linked
glycosylation sites. EnsembleGly utilizes binary profile,
physicochemical properties, and PSI-Blast profile feature
extraction to encode their unbalanced datasets. Hamby and
Hirst propose GPP [11] tool to predict N-linked and O-linked
glycosylation sites using random forest classifier and based
on structural features and pairwise sequence patterns of pro-
tein peptide. GlycoPP [12] uses SVM to predict N-linked and
O-linked glycosylation sites in prokaryotic based on Binary
encoding, amino acid composition (AAC), position-specific
scoring matrix (PSSM), secondary structure (SS), and acces-
sible surface area (ASA) features.

NGlycPred [13] utilizes pattern and structural-based fea-
tures; and uses a random forest classifier to predict N-linked
glycosylation sites. GlycoEP ‘‘in silico’’ [7] tool employs
SVM machine learning technique to predict N-linked,
O-linked andC-linked glycosylation sites on large Eukaryotic
dataset based on Binary encoding, AAC, PSSM, SS, and
ASA features. GlycoMine [8] tool uses random forest (RF)
classifier for N-linked and O-linked glycosylation site predic-
tion based on heterogeneous functional and sequence-based
features and using information gain and information gain (IG)
and minimum redundancy maximum relevance (mRMR)
methods for feature selection. GlycoMinestruct [14] com-
bines sequence and structural features for predicting N-linked
and O-linked glycosylation sites using the random forest
for classification and linear SVM for feature selection.
Akmal et al. [15] presented a comprehensive technique for
prediction N-linked glycosylation sites using artificial neural
networks based on position relative and statistical moments.

SPRINT-Gly [2] uses deep neural networks and SVM
machine learning methods to identify N-linked and O-linked
glycosylation sites on large datasets extracted from six
human and mouse databases based on various sequence,
profile and structural-based features. N-GlyDE [1] is a two-
stage prediction tool for N-linked glycosylation site pre-
diction which uses a similarity voting algorithm and SVM
method based on Gapped dipeptide, SS, and ASA features.
GlycoMine_PU [6] uses positive unlabeled (PU) learning
technique to predict N-linked, O-linked, and C-linked gly-
cosylation sites and mRMR for feature selection based on
many sequence, profile and structural-based features. The
authors in GlycoMine_PU found that their model outper-
forms RF, SVM, and one-class learner. N-GlycoGo [16] uses
XGBoost, an ensemble machine learning model, for N-linked
glycosylation site prediction. T-test and mRMR were used
for feature selection based on eleven feature encoding
approaches.

However, the success in developing useful approaches for
N-linked glycosylation site prediction, many shortcomings
still exist [17] as follows: 1) most of the existing studies use a
small number of extracted features, which are not completed
or comprehensive. Usually, utilizing more comprehensive
features can produce better prediction performance results.
2) In the feature selection step, the existing studies do not
consider the robustness and stability of employed feature
selection methods. 3) the existing studies consider the unla-
beled samples as negative sites. However, they could belong
to whether the positive or negative samples.

Therefore, a novel N-linked glycosylation predictor is
proposed based on bagging positive-unlabeled learning
and stacking ensemble machine learning (PUStackNGly).
It addresses the previous shortcomings and problems to
improve the prediction performance for the N-linked glyco-
sylation site. The proposed PUStackNGly is based on PU
learning and stacking ensemble machine learning techniques.
The major aims and contributions of PUStackNGly are sum-
marized as follows: 1) integrating comprehensive sequence,
profile, and structured-based features where forty-five fea-
ture extraction methods are employed to encode the protein
peptides (samples). 2) applying stable and robust ensemble-
based feature selection technique to select significant fea-
tures for prediction purposes. 3) Using ensemble bagging
PU learning to select reliable negative samples among the
unlabeled samples. Four supervised learning methods (SVM,
Logistic Regression (LR), RF, XGBoost) are used in this step.
4) based on ensemble-based learning, the stacking ensemble
learning is presented to construct the prediction model. In this
step, six classifiers are involved including LR, RF, ANN,
XGB, SVM, and KNN. The final selected ensemble stacking
model is constructed by four base classifiers including LR,
RF, ANN, SVM because of their high performance on the
development dataset. The proposed model is evaluated using
accuracy, precision, F1 score, AUC, and MCC performance
measures. PUStackNGly achieved significant improvement
on the independent test over the existing tools with 95.11%
accuracy, 100% recall, 80.7% precision, 89.32% F1 score,
96.93% AUC, and 0.87 MCC.

The remaining of the paper is organized as follows:
Section II describes the material and methods in detail start-
ing from dataset extraction to the prediction model and eval-
uation. The experimental performance results and discussion
are presented in Section III. Section IV presents the conclu-
sions and future works.

II. MATERIALS AND METHODS
The general framework of PUStackNGly is shown in Fig. 1.
PUStackNGly consists of six main steps: data extrac-
tion and preprocessing, feature extraction, feature selec-
tion, PU Learning, stacking ensemble learning, and model
evaluation. In the first step, data is collected from the
UniProt database and preprocessing is done. Secondly, com-
prehensive numerical features are extracted for each sam-
ple. Then, informative and stable features are selected
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FIGURE 1. The general framework of PUStackNGly.

using an ensemble-based feature selection strategy based on
Redundancy Maximal Relevance (mRMR), Analysis of Vari-
ance (ANOVA) F-score, and Information Gain (IG) feature
selection methods. In the fourth step, ensemble bagging PU
learning selects reliable negative samples based on SVM,
LR, RF, and XGBoost machine learning classifiers. Then, the
stacking ensemble-based learning model is constructed for
N-linked glycosylation site prediction which integrates LR,
RF, ANN, SVM base classifiers. Finally, the proposed model
is evaluated using accuracy, precision, F1 score, AUC, and
MCC performance measures.

A. DATA EXTRACTION AND PREPROCESSING
In this paper, UniProt [18] (https://www.uniprot.org/) ver.
202102 is used as a data source. The UniProt database is
a comprehensive accessible database for functional infor-
mation of proteins and their sequences. To gain the human
experimentally verified N-linked glycoproteins, multiple cri-
teria are used in the advanced search. For instance, to get
the experimentally verified N-linked glycoproteins, the term
‘‘n-linked’’ is added in the ‘‘PTM/Processing >Glycosylation
[FT]’’ field and ‘‘any experimental assertion’’ in the ‘‘Evi-
dence’’ field. In addition, the searched glycoproteins must be
‘‘reviewed’’ and ‘‘Homo sapiens’’. As a result, 1086 human
glycoprotein sequences are obtained initially. After that,
the CD-HIT [19] tool was used to remove glycoproteins
with similarities over 30%. Accordingly, glycoproteins are
reduced to 819 after removing redundancy.

Each asparagine (N) amino acid in the glycoprotein
sequence is considered an N-linked glycosylation site. These
sites are either positive or negative. The experimentally
verified sites are considered as positive sites with taking
into consideration that the sites with evidence ‘‘Probable’’,
‘‘Potential’’, ‘‘By similarity’’ or ‘‘Sequence analysis’’ were
excluded. Regarding the negative sites, most of the previous
studies [1], [2], [7], [8], [10]–[12], [16] considered sites that
are not experimentally verified (unlabeled sites) as negative
sites. However, these sites may be positive. Accordingly,
positive-unlabeled learning is used in this work to select
reliable negative sites from unlabeled sites.

Each N-linked glycosylation site is represented by a frag-
ment sequence, called a peptide, using a sliding window
strategy. Different peptide sizes have been experimented and
the optimal size was 25. So, a peptide Q with a window size
of 25 is generated for each candidate N-linked glycosylation
site. The candidate site is positioned at the center and sur-
rounded by 12 residues from the left and 12 residues from
the right for each Q which is represented as:

Q = a1a2 . . . a13 . . . a24a25 (1)

where ai is the ith residue in the peptide sequence Q
and a13 represent the N-linked glycosylation site. CD-HIT
is also used to remove redundancy from positive and
unlabeled peptides separately with 30% identity to avoid
prediction overfitting. The number of glycoproteins and
peptides before and after removing redundancy is shown in
Table 1.
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TABLE 1. Number of glycoproteins and peptides before and after
removing redundancy.

The dataset is divided into three sets including training,
development, and independent sets. The independent set is
used for final evaluation and comparison with the existing
tools. The training set is used for feature selection, PU learn-
ing, and constructing the final ensemble model. In contrast,
the development set is utilized for experimental and optimiz-
ing the prediction model. More details about data separation
are described in subsection III-A.

B. FEATURE EXTRACTION
Each peptide (sample) is a sub-part of protein sequence which
is represented by 20-character amino acid {A, C, D, E, F, G,
H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. To build an effec-
tive prediction model, this sequence should be transformed
into a numerical representation. The numerical representa-
tion echoes the key feature information that is hidden in the
peptide sequence. In this work, comprehensive features are
extracted to encode each peptide. The IFeature Python pack-
age [20] was used to extract these features. They have been
categorized into eight groups: sequence-based features are the
first six groups, profile-based features are the seventh group,
and structure-based features are the last group. Each group
contains a set of descriptor or feature extraction methods.

The first group is sequence-based features and is related
to the amino acid composition which includes: 1) amino
acid composition (AAC) [21], 2) Enhanced amino acid
composition (EAAC) [20], 3) Composition of k-spaced
amino acid pairs (CKSAAP) [22], 4) Dipeptide deviation
from the expected mean (DDE) [23], 5) Grouped amino
acid composition (GAAC), 6) Enhanced grouped amino
acid composition (GEAAC), 7) Composition of k-spaced
amino acid group pairs (CKSAAGP), 8) Grouped dipeptide
composition (GDPC), 9) Grouped tripeptide composition
(GTPC) [20], 10) Pseudo-amino acid composition (PAAC),
11) Amphiphilic PAAC (APAAC) [24], and 12) Pseudo
K-tuple reduced amino acids composition (PseKRAAC type1
to type16) [25].

The second group ‘‘Binary profile’’ includes a 20 binary-
valued vector (0/1-based scheme) for each amino acid
in a peptide [2], [12]. The third group ‘‘blosum62 pro-
file’’ encodes each amino acid in a peptide by its corre-
sponding representation in the Blosum62 matrix [26]. The
fourth group ‘‘Autocorrelation’’ calculates the correlation
between two amino acids index in a peptide according
to their related physicochemical properties in the AAin-
dex database [27] and it includes 1) Moran, 2) Geary, and
3) Normalized Moreau-Broto (NMBroto) [20], [28]. The

fifth group ‘‘Composition-Transition-Distribution (C/T/D)’’
represents the distribution of amino acids inside the pep-
tides based on the physicochemical property and it includes:
1) Composition (CTDC), 2) Transition (CTDT), and 3) Dis-
tribution (CTDD) [29]. The sixth group ‘‘conjoint triad’’ clus-
ters the amino acids of a peptide sequence into groups based
on their side chains volumes and dipoles and it includes:
1) Conjoint triad (CTriad) and 2) k-Spaced Conjoint Triad
(KSCTriad) [20], [24].

The seventh group ‘‘Position-specific scoring matrix
(PSSM) profile’’ is evolutionary information calculated by
the PSI_BLAST public tool to align each peptide against
a global database (human SWISSPROT database in our
work) [30]. The eighth group contains three structure-based
features. The first two descriptors are Secondary structure
elements content (SSEC) and Secondary structure elements
binary (SSEB) which require PSIPRED software [31] to
predict Secondary Structure for each peptide [1], [2], [8].
The third descriptor of the last group is accessible surface
area (ASA) which identifies each peptide’s nature and basic
structure [1], [12]. SPINE-X [32] software is used to calculate
ASA for each peptide. Consequently, the total number of
features extracted from all descriptor groups is 7311 features.
The groups and their descriptors with feature counts are
mentioned in Table 2.

C. FEATURE SELECTION
The heterogeneous and large number of extracted features
may contain irrelevant and noisy features. Therefore, feature
selection should be applied to select significant and relevant
features for the prediction model [8], [33]. In addition, the
stability and robustness of feature selection methods should
be considered to avoid classification overfitting and to get
high prediction accuracy. One of the best methods to improve
the stability and robustness of feature selection is the ensem-
ble feature selection technique [33]–[35]. In ensemble feature
selection, multiple feature selection techniques are combined
to provide robust selected features and consequently best
prediction results. The PUStackNGly combines three filter-
ing feature selection techniques: Redundancy Maximal Rele-
vance (mRMR), Analysis of Variance (ANOVA) F-score, and
Information Gain (IG).

The mRMR feature selection method ranks the features
based on their correlation to the target class and minimum
redundancy between features [36]. Features that have the
best trade-off between minimum redundancy and maximum
relevance to target class are counted as significant features.
mRMR assesses the redundancy and relevance of two fea-
tures, x and z based on mutual information I (x, z), which is
represented as:

I (x, z) =
∫ ∫

p(x, z) log
p(x, z)
p(x)p(z)

dxdz (2)

where p(x) and p(z) are the probability density functions of x
and z, respectively and p(x, z) is the joint probability density
function of x and z.
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The Analysis of Variance (ANOVA) feature selection
method is a type of f-statistic hypothesis test. It measures
either the differences between means of two or more samples
data exist or calculates the ratio between variances of two or
more groups [37]. The ANOVA f-score compares the ratio of
between-group variability to within-group variability, which
is represented as:

F =

∑G
i=1 ni(Mi −M )2/(G− 1)∑G

i=1
∑ni

j=1(Sij −Mi)2/(N − G)
(3)

where G is the number of groups, ni denotes the number
of samples in the ith group, Mi is the samples mean in the
ith group, M denotes the whole mean of the data, Sij is the
observation j in the ith group, and N is the whole number of
samples.

The Information Gain (IG) is a statistical feature selection
method based on entropy information theory. It measures
the feature weights according to the relationships between
features and target classes [8], [38]. The entropy of sample
data is calculated as:

Entropy = −
n∑
i=1

p(ci) log p(ci) (4)

where n is the number of data classes, and p(ci) denotes the
probability of the ith class.
The following steps explain the combination of the three

feature selection methods to select the top optimal features
using ensemble-feature selection:
1) Subset S1: the top 500 features of all the extracted

features using mRMR.
2) Subset S2: the top 500 features from all the extracted

features using ANOVA f_score.
3) Subset S3: the top 500 features from all the extracted

features using IG.
4) Set S: the final optimal selected features by calculating

the intersection between S1, S2, and S3 feature subsets.
The final number of selected features is 102 features. Table 2
shows the feature extraction groups and their descriptors with
the number of features before and after the ensemble feature
selection.

D. POSITIVE-UNLABELED (PU) LEARNING
PU learning is a semi-supervised machine learning, where
some samples are labeled as positive and the remaining as
unlabeled. The hypothesis is that each unlabeled sample may
belong to either a positive or negative sample [39]. One
of the PU learning methods is bagging PU learning. The
goal of bagging PU learning is to find the score of each
sample in the unlabeled samples where the samples with the
lowest scores are considered negative samples. Accordingly,
the learning model is trained on reliable negative and pos-
itive samples [39], [40]. The used dataset consists of posi-
tive (glycosylated) samples and vast unlabeled samples. So,
the bagging PU learning is applied to construct the dataset
from positive and reliable negative samples. This dataset is

employed for training the PUStackNgly model. The proposed
model adapts to ensemble bagging PU learning by combining
multiple bagging supervised learning algorithms: SVM, LR,
RF, XGBoost classifiers.

The ensemble bagging PU learning steps are shown in
Algorithm 1. The positive and unlabeled samples are rep-
resented as P and U respectively. Firstly, balanced training
data is created via merging P with random samples Us from
the U with size L (the same number of samples in P) using
bootstrap sampling with replacement. The subset Us that is
selected in the balanced training data is considered as nega-
tive samples during the training process. For each classifier c,
the predictor fc(x, t) is built and trained. For each sample x in
the U , an initial score Sc(x) and a counter n(x) are assigned
to 0. Then, the probability prediction is applied using the
training model on the samples in U that are not included in
the training process. The resulted probability prediction for
a sample x is added to the Sc(x) and one is added to n(x).
This process is repeated T times. It is assumed that T = 500.
After that, the Sc(x) for each sample x in U is calculated as
Sc(x)/n(x). The ensemble voting by averaging the Sc(x) where
c in (SVM, LR, RF, XGBoost) is computed to provide the last
score Sx for each sample in U . Finally, the training dataset
is constructed from the positive samples P and the negative
samples that are picked fromU that have the lowest S(x) with
the same number of P. This dataset will be the input for the
PUStackNGly, N-linked glycosylation site predictor.

Algorithm 1 Ensemble Bagging PU Learning
1: INPUT: Positive samples, P

Unlabeled samples, U
L = the size of P
T = the number of bootstraps or iterations
c ∈ {SVM, LR, RF, XGBoost}

2: OUTPUT: score S(x) ∀ x ∈ U
Initialize Sc(x) = 0, n(x) = 0 ∀ x ∈ U

3: for dot = 1 to T
4: draw a subsample Us from U with size L.
5: train predictor fc(x,t) to discriminate P against Us
6: ∀ x ∈ (U \Us) update:

Sc(x) = Sc(x)+ fc(x,t),
n(x) = n(x)+1

7: end for
8: ∀ x ∈ U update:

Sc(x) =
Sc(x)
n(x) ,

S(x) =
∑4

c=1 Sc(x)
4

9: Return S(x)

E. STACKING ENSEMBLE LEARNING
Recently, there has been an increasing interest in ensem-
ble machine learning which shows predictive capability in
many applications [41]–[45]. In ensemble learning, multi-
ple base predictors are constructed where their results are
integrated with a specific strategy to fetch the final results.
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TABLE 2. The feature extraction descriptors with number of features before and after feature selection.

It usually reveals better prediction stability and capability
than a single predictor model [41], [42]. Stacking ensemble
learning gets the results from multiple models and combines
them into a new model. Stacking ensemble learning con-
sists of two levels of predictors. In the first level or level-0
called base model, multiple base models are implemented
individually. In the second level or level-1 called meta-
model, one meta-model is implemented on the probability
results of the first level predictors to decrease the generaliza-
tion error and provide the final prediction result [41], [42].
Figure 2 shows the framework of the stacking ensemble
learning.

To find the best classifiers for level-0 and level-1 of the
stacking ensemble learning, six supervised learning algo-
rithms were adapted:

1) Support Vector Machine (SVM):
SVM is a state-of-the-art classifier originally devel-
oped by Vapnik and Cortes [46]. SVM has been widely
used in computational biology and bioinformatics [2].
It classifies by finding the optimal separator hyper-
plane between two classes. Parameter configuration for
SVM, such as kernel, C, and gamma, is important to
adjust and optimize SVM. Finding the optimal param-
eter for SVM is clarified in subsection III-B.

FIGURE 2. Framework of stacking ensemble learning.

2) Logistic Regression (LR):
LR is a popular classification method in clinical
research because the dependent outcome is discrete
e.g., positive/negative. LR classifies by measuring
the probability of a discrete binary class such as
glycosylated/non-glycosylated in our study [47].

3) Artificial Neural Networks (ANN):
ANN is a classification method that is widely used in
many applications. Similar to the human brain, ANN
learns from experience. It consists of fully connected
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layers where each layer has multiple units or neurons.
The general ANN architecture usually contains three
basic layers: input, hidden, and output layer. ANN pre-
diction model receives the labeled input data through
the input layer which is connected to the next layer
by weighted links. During the training process, ANN
regulates the link weights to improve prediction per-
formance [48].

4) Random Forest (RF):
RF [49] is an ensemble supervised learning method
which is simple and suitable for high-dimension data.
It is constructed from a multitude of decision trees
where each decision tree contains multiple nodes
and paths. Each node has rules to choose the direc-
tion between two or more paths. The final result of
RF is obtained by integrating the results of decision
trees [11].

5) XGBoost (XGB):
XGB [50] is an ensemble learning classification
method that uses a tree boosting framework. Both Gra-
dient Boosting Machine (GBM) and XGB are ensem-
ble tree algorithms that implement boosting learners
using the gradient descent technique. However, XGB
improves the performance and avoids overfitting by
systems optimization and parameter tuning which is
clarified in subsection III-B.

6) K-nearest neighbors (KNN):
KNN [51] is a nonparametric simple supervised learn-
ing method that is used for classification and regres-
sion. In KNN, K is the number of nearest samples
closest to the target point in the feature space. KNN
classifies new samples by measuring the similarity
between the new cases and the labeled cases. Then,
it puts them in a class that is more similar to the
available classes [52].

F. EVALUATION
The proposed PUStackGly is evaluated and assisted using
accuracy (AC), recall, precision, F1 score, and Matthews
correlation coefficient (MCC) performance measures which
are defined as follows:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(5)

Recall =
TP

TP+ FN
(6)

Precision =
TP

TP+ FP
(7)

F1 =
2× recall × precision
recall × precision

(8)

MCC =
TP× TN − FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(9)

where TP (True Positive) is the number of N-linked glyco-
sylation sites that are predicted correctly. FP (False Posi-
tive) is the number of N-linked glycosylation sites that are

predicted incorrectly. TN (True Negative) is the number
of N-linked non-glycosylation sites that are predicted cor-
rectly. FN (False Negative) is the number of N-linked non-
glycosylation sites that are predicted incorrectly. In addition,
AUC, the area under the receiver operating characteristic
curve (ROC), measures the predictor ability for separating
data of the two classes by plotting the TP rate against the FP
rate.

III. RESULTS AND DISCUSSION
In this section, we present and discuss the achieved
experimental results. The data extraction, preprocessing,
and samples construction are implemented using R 4.0.3
while the remaining stages of PUStackNGly are imple-
mented in Python 3.8.5. The source code and data of
PUStackNGly are available online at (https://github.com/
Alhasanalkuhlani/PUStackNGly).

A. DATA PREPARATION
The dataset of 825 experimentally verified glycoproteins was
used. These glycoproteins contain 1989 N-linked glycosyla-
tion samples and 13737 N-linked non-glycosylation samples
after redundancy removal. This dataset is divided into three
sets including independent, training, and development sets.
The first set is an independent set that contains six glyco-
proteins with 46 positive N-linked glycosylation sites and
179 nonpositive N-linked glycosylation sites. The indepen-
dent set is used for evaluating the PUStackNGly predictor
and comparing it with the existing N-linked glycosylation
site tools. The second dataset is a 1:1 balanced dataset used
for training and constructing the PUStackNGly predictor,
which contains 1651 positive samples and 1651 randomly
selected reliable negative samples resulting from the PU
learning stage. The third dataset is the development set which
includes 292 positive samples and 2034 nonpositive sam-
ples. The development dataset is not involved in the feature
selection and PU learning stage. It is used for evaluating
and optimizing learning models that are integrated into the
PUStackNGly. In each evaluation process using the devel-
opment set, the implementation was repeated fifty times on
a balanced dataset 1:1 that is randomly constructed from
the development dataset and the average performance results
were always calculated.

B. PARAMETER SETTING
In the PU and stacking learning models, six supervised learn-
ing methods were used including SVM, ANN, LR, RF, KNN,
andXGB. To find the optimal parameters for these classifiers,
classifiers’ parameters are tuned depending on their perfor-
mance results on the development dataset. Table 3 shows
the tuned parameters for the six classifiers and the optimal
value for each parameter. SVM, ANN, LR, RF, and KNN
are implemented using the Scikit-learn Python library [53],
while XGB is implemented using the XGBoost Python
library [50].
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TABLE 3. Tuned parameter setting for stacking ensemble classifiers and
the optimal value for each parameter.

TABLE 4. Performance results of the six classifiers on the development
dataset.

C. CONSTRUCTING PUStackNGly
To select the classifiers for level-0 and level-1 of the stacking
ensemble learning, the performance of six machine learning
models, SVM, ANN, LR, RF, KNN, and XGB, are evaluated
on the development dataset. The evaluation process of these
models is repeated fifty times on the balanced data selected
from the development dataset and the averaged results are
recorded. The six classifiers are optimized with the optimal
parameters that are shown in Table 3. The performance results
for these classifiers are shown in Table 4.

Table 4 shows that SVM achieves the highest performance
results in the term of accuracy, precision, F1, AUC and MCC
between the six classifiers. Therefore, SVM is selected as the
meta or level-1 classifier for PUStackNGly.

Regarding the base or level-0 classifiers, the six classifiers
in Table 4 show similar performance. Thus, we tried random
ten combinations for stacking ensemble models constructed
as four, five, or six classifiers representing the base level-0
classifiers, and SVM representing the meta level-1 classifier.
The combinations of the base classifiers for the ten models
are as follow:

• Stacking1: ANN, RF, SVM, and KNN
• Stacking2: LR, RF, SVM, and KNN
• Stacking3: LR, ANN, RF, and SVM
• Stacking4: LR, ANN, XBG, and SVM
• Stacking5: LR, RF, XBG, and SVM
• Stacking6: LR, ANN, RF, and XBG
• Stacking7: LR, ANN, RF, and KNN

TABLE 5. Comparison between ten stacking models with different
combinations for base classifiers on the development dataset.

TABLE 6. Cross-validation performance results of PUStackNgly compared
to LR, ANN, RF, SVM, XGM, and KNN classifiers on the training dataset.

• Stacking8: LR, RF, SVM, ANN and KNN
• Stacking9: LR, SVM, ANN, KNN and XBG
• Stacking10: LR, RF, SVM, ANN, KNN and XBG
Performance result comparison between the ten stack-

ing models is evaluated on the development dataset, which
is shown in Table 5. Although the results show that all
models achieve high-performance results, the third model
(Stacking3) outperforms the other stacking models. More-
over, Stacking3 outperforms all the six classifiers when eval-
uated individually on the development dataset, as shown in
Table 4 and Table 5 in the term of accuracy, recall, preci-
sion, F1, AUC, and MCC. Thus, the Stacking3 model, which
includes LR,ANN, RF, and SVMas base classifiers and SVM
as a meta-model, is selected as the final stacking model for
PUStackNGly.

D. EVALUATION USING TRAINING AND DEVELOPMENT
DATASET
Firstly, PUStackNgly is compared with the LR, ANN, RF,
SVM, XGM, and KNN classifiers on the training dataset with
repeated ten-fold cross-validation. Table 6 shows the per-
formance results using accuracy, recall, precision, F1 score,
AUC performance metrics. In Fig. 3, the boxplot clarifies the
performance accuracy results for cross-validation. The table
and figure demonstrate that the performance is high with all
classifiers due to the ensemble-based feature selection tech-
nique and ensemble bagging PU learning.Moreover, the table
and figure show that PUStackNGly improves the prediction
results in the term of accuracy, precision, F1 and AUC.

Secondly, as clarified in subsection III-C, Table 4 showed
the comparison performance results of six supervised classi-
fiers: LR, ANN, RF, SVM, XGM, and KNN on the devel-
opment dataset. The SVM performed better than the other
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FIGURE 3. Boxplot for cross-validation accuracy results of the stacking
ensemble learning compared to LR, ANN, RF, SVM, XGM, and KNN
classifiers.

FIGURE 4. Performance results of PUStackNgly compared to LR, ANN, RF,
SVM, XGM, and KNN classifiers on the development dataset.

classifiers in the term of accuracy, precision, F1, AUC, and
MCC. Also, Tables 5 showed the comparison performance
results of different six stacking models. The Stcking3 was
selected to be the model of PUStackNGly due to its high
performance. Based on Table 4 and 5, Fig. 4 clarifies the
performance results of PUStackNGly compared to the opti-
mized LR, ANN, RF, SVM, XGM, and KNN classifiers on
the development dataset using Accuracy, Recall, Precision,
F1, AUC, MCC metrics. The results demonstrate that the
performance of all the compered models on the development
dataset is as high as the performance results using cross-
validation. However, PUStackNGly outperforms the LR, NN,
RF, and KNN classifiers with accuracy (97.27%), precision
(94.85%), F1 (97.35%), AUC (97.27%), and MCC (0.947).

E. COMPARISON WITH THE EXISTING TOOLS
In order to fairly evaluate the performance of PUStack-
Ngly, the prediction performance of PUStackNgly is com-
pared with the existing tools for N-linked glycosylation site
prediction on the independent dataset. Since 2007, there
have been about nine, sequence-based, N-linked glycosyla-
tion site predictors including EnsembleGly [10], GPP [11],
GlycoPP [12], GlycoEP [7], GlycoMine [8], SPRINT-Gly [2],

N-GlyDE [1], GlycoMine_PU [6], N-GlycoGo [16]. How-
ever, we faced connectivity and prediction issues with three
predictors including EnsembleGly, N-GlyDE, N-GlycoGo.
In contrast, with connectivity challenges in some cases, the
other six predictors are available and usable. Therefore, the
comparison on the independent dataset is donewith the acces-
sible six predictors including:

1) GPP (http://comp.chem.nottingham.ac.uk/glyco/) is a
glycosylation site predictor using random forest
machine learningmethod with a small dataset extracted
from the OGLYCBASE dataset (http://www.cbs.dtu.
dk/databases/OGLYCBASE/O-Unique.seq). GPP was
predicted with 92.8% accuracy and 0.85 MCC on its
training dataset.

2) GlycoPP (http://www.imtech.res.in/raghava/glycopp/)
is a predictor for N- and O-glycosylation site
in prokaryotic using SVM classifier. GlycoPP
implements four N- glycosylation site prediction mod-
els based on the feature extraction methods includ-
ing 1) Binary Profile of Pattern (GlycoPP_BPP),
2) Composition Profile of Patterns (GlycoPP_CPP),
3) PSSM Profile of Patterns (GlycoPP_PPP), and
4) GlycoPP_BPP+ASA. The GlycoPP_BPP+ASA
achieved the best performance with (82.71% accu-
racy, 0.65 MCC) using cross-validation on the train-
ing dataset and (86.84% accuracy, 0.76 MCC) on the
independent set from the four models. The average
performance results of the four models of GlycoPP are
reported for comparison with PUStackNGly.

3) GlycoEP (http://www.imtech.res.in/raghava/glycoep/)
is an in-silico predictor for N-, O- and C-glycosylation
site in Eukaryotic using SVM machine learning
method. Similar to GlycoPP, GlycoEP predict N-linked
glycosylation site by four models on standard dataset
according to feature extraction method including
1) Binary Profile of Pattern (GlycoEP_BPP),
2) Composition Profile of Patterns (GlycoEP_CPP),
3) PSSM Profile of Patterns (GlycoEP_PPP), and
4) GlycoEP_BPP+ASA on the standard dataset con-
taining 2604 N-linked site. GlycoEP achieved on its
independent set 95.67% accuracy and 0.91 MCC. The
average performance results of the four models of Gly-
coEP are reported for comparison with PUStackNGly.

4) GlycoMine (https://glycomine.erc.monash.edu/Lab/Gl
ycoMine/#webserver) is a predictor for N-, O-,
C-linked glycosylation site using RF classifier. Mrmr,
IG, and IFS feature selection were employed for
GlycoMine. It used protein functional features, local
sequence features, structural features, and functional
annotations for feature extraction. GlycoMine achieved
95% accuracy and 0.95 MCC using cross-validation
on its training dataset. In addition, it achieved 95.6%
accuracy and 0.90 MCC on its independent dataset.

5) GlycoMine_PU (https://glycomine.erc.monash.edu/La
b/GlycoMine_PU/) is N-, O-, and C-linked glycosy-
lation site predictor using PU learning method. Six
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TABLE 7. Performance results of PUStackNGly compared with
SPRINT-GLY, GlycoMine_PU, GlycoMine, GlycoEP, GlycoPP, and GPP tools
on the independent dataset on the term of accuracy, recall, precision, F1,
AUC, and MCC.

groups of sequence-based feature extraction meth-
ods were employed to encode samples and mRMR
was implemented to feature selection. GlycoMine_PU
achieved 88.6% accuracy and 92.7% AUC using
cross-validation on its training dataset. In addition,
it achieved 81.5% accuracy and 89.3% AUC on its
independent dataset.

6) SPRINT-Gly (https://sparks-lab.org/server/sprint-gly/)
is an N-, O-linked glycosylation site predictor based
on deep neural networks and SVM machine learning
methods using human and mouse datasets. It utilized
seven sequence and structural-based feature extraction
methods to encode protein-peptide and forward fea-
ture selection to select relevant features. SPRINT-Gly
achieved 93.8% accuracy and 0.81 MCC using cross-
validation on its human training dataset. In addition,
it achieved 97.8% accuracy and 0.939 MCC on its
independent human dataset.

To compare the performance results of our proposed
PUStackNGly with these six tools, the independent dataset
is submitted to these tools as well as to the PUStackNGly.
Table 7 shows the predicted performance results for PUStack-
NGly compared with the six tools in the term of accuracy,
recall, precision, F1, AUC, and MCC performance measures.
In addition, Fig. 5 illustrates the comparison of PUStackNGly
with SPRINT-GLY, GlycoMine_PU, GlycoMine, GlycoEP,
GlycoPP, andGPP tools in the term of accuracy, precision, F1,
and MCC. From Table and figure, PUStackNGly achieved
95.11% accuracy, 80.7% precision, and 0.87 MCC a signifi-
cant improvement when compared to GPP (73.33% accuracy,
40.4% precision, and 0.5371 MCC), GlycoPP (65.78% accu-
racy, 36.28% precision and 0.3945 MCC), GlycoEP (79.56%
accuracy, 50% precision and 0.5874 MCC), GlycoMine
(44.89% accuracy, 17.5% precision and -0.0781 MCC),
GlycoMine_PU (93.78% accuracy, 76.67% precision and
0.8407 MCC), or SPRINT-Gly (94.22% accuracy, 77.97%
precision and 0.8503 MCC). It is also observed that the
true positive rate (recall) is 100% for GPP, GlycoMine_PU,
SPRINT-Gly, and PUStackNGly which means that all posi-
tive samples are predicted correctly by these tools.

Moreover, the AUC roc curve for PUStackNGly,
SPRINT-GLY, GlycoMine_PU, GlycoMine, GlycoEP, Gly-
coPP, and GPP on the independent dataset is generated and
demonstrated in Fig. 6. The AUC value of PUStackNGly
outperforms the other Six predictors and PUStackNGly keeps

FIGURE 5. Performance results of PUStackNgly compared to SPRINT-GLY,
GlycoMine_PU, GlycoMine, GlycoEP, GlycoPP, and GPP predictors on the
independent dataset in the term of accuracy, precision, F1, and MCC.

FIGURE 6. ROC AUC curve for PUStackNGly, SPRINT-GLY, GlycoMine_PU,
GlycoMine, GlycoEP, GlycoPP, and GPP on the independent dataset.

a proper balance between true positive rate and false-positive
rate. Generally, GlycoMine performs the lowest performance
results on the independent dataset is the lowest then GlycoPP,
GPP, and GlycoEP respectively. The GlycoMine_PU and
SPRINT-GLY were released in 2019 and they have better
performance than GlycoMine, GlycoEP, GlycoPP, and GPP.

It is clear that PUStackNGly is better than other existing
tools. One of the key reasons for notable distinction is the
use of PU and ensemble stacking learning. They constructed
and developed using six optimized supervised machine learn-
ing methods. In addition, the comprehensive extracted fea-
tures as well as the ensemble-based feature selection method
play important roles to improve prediction performance.
PUStackNGly will continue to develop and expand in tandem
with the experimentally-verified glycoproteins uploaded to
the UniProt database, which will enhance the quality of the
datasets and also the performance of the proposed model.
With the success of implementing PUStackNGly for N-linked
glycosylation prediction in this work, we look forward to
implementing it with the other glycosylation types and the
other different types of PTMs.
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IV. CONCLUSION
In this paper, we propose a novel model N-linked glyco-
sylation predictor PUStackNgly based on PU learning and
stacking ensemble learning. A benchmark dataset from the
UniProt database is extracted and preprocessed for the model.
Eight groups including forty-five feature extraction meth-
ods are employed to encode each sample. Subsequently,
to remove irrelevant features, feature selection is applied
using a stable ensemble-based method. After that, proposed
ensemble bagging PU learning is implemented to construct
the training dataset, for PUStackNGly, from positive and
reliable negative samples. Four supervised machine learning
methods are used in PU learning including SVM, LR, RF,
XGBoost. The last step PUStackNGly is constructing the
prediction model using stacking ensemble learning. In the
stacking ensemble learning, the LR,ANN,RF, and SVMclas-
sification methods are selected for building the base level-0
model and the SVMclassificationmethod for themeta level-1
model. PUStackNGly was compared with six supervised
classifiers: LR, ANN, RF, XGB, SVM, andKNN on the train-
ing and development dataset. The results show improvement
performance than the other classifiers. Moreover, for fair
evaluation, PUStackNGly is compared with six N-linked gly-
cosylation predictors: GPP, GlycoPP, GlycoEP, GlycoMine,
GlycoMine_PU, and SPRINT-GLY. The performance results
of the comparison showed that PUStackNGly outperforms
the six tools with 95.11% accuracy, 100% recall, 80.7%
precision, 89.32% F1 score, 96.93% AUC, and 0.87 MCC.
With the success of implementing PUStackNGly, we look
forward to implementing it with the other glycosylation types
and the other different types of PTMs.

REFERENCES
[1] T. Pitti, C.-T. Chen, H.-N. Lin, W.-K. Choong, W.-L. Hsu, and T.-Y. Sung,

‘‘N-GlyDE: A two-stage N-linked glycosylation site prediction incorporat-
ing gapped dipeptides and pattern-based encoding,’’ Sci. Rep., vol. 9, no. 1,
pp. 1–11, Dec. 2019.

[2] G. Taherzadeh, A. Dehzangi, M. Golchin, Y. Zhou, and M. P. Campbell,
‘‘SPRINT-Gly: Predicting N - and O-linked glycosylation sites of human
andmouse proteins by using sequence and predicted structural properties,’’
Bioinformatics, vol. 35, no. 20, pp. 4140–4146, Oct. 2019.

[3] M. Hu, Y. Lan, A. Lu, X.Ma, and L. Zhang, ‘‘Glycan-based biomarkers for
diagnosis of cancers and other diseases: Past, present, and future,’’ Prog.
Mol. Biol. Transl. Sci. vol. 162, pp. 1–24, Jan. 2019.

[4] P. Regan, P. L. McClean, T. Smyth, and M. Doherty, ‘‘Early stage glycosy-
lation biomarkers in Alzheimer’s disease,’’ Medicines, vol. 6, no. 3, p. 92,
Sep. 2019.

[5] Y. Watanabe, Z. T. Berndsen, J. Raghwani, G. E. Seabright, J. D. Allen,
O. G. Pybus, J. S. McLellan, I. A. Wilson, T. A. Bowden, A. B. Ward,
and M. Crispin, ‘‘Vulnerabilities in coronavirus glycan shields despite
extensive glycosylation,’’ Nature Commun., vol. 11, no. 1, pp. 1–10,
Dec. 2020.

[6] F. Li, Y. Zhang, A. W. Purcell, G. I. Webb, K.-C. Chou, T. Lithgow, C. Li,
and J. Song, ‘‘Positive-unlabelled learning of glycosylation sites in the
human proteome,’’ BMC Bioinf., vol. 20, no. 1, p. 112, Mar. 2019.

[7] J. S. Chauhan, A. Rao, and G. P. S. Raghava, ‘‘In silico platform for
prediction of N-, O- and C-glycosites in eukaryotic protein sequences,’’
PLoS ONE, vol. 8, no. 6, Jun. 2013, Art. no. e67008.

[8] F. Li, C. Li, M. Wang, G. I. Webb, Y. Zhang, J. C. Whisstock, and J. Song,
‘‘GlycoMine: A machine learning-based approach for predicting N-, C-
and O-linked glycosylation in the human proteome,’’ Bioinformatics,
vol. 31, no. 9, pp. 1411–1419, May 2015.

[9] R. Gupta and S. R. Brunak, ‘‘Prediction of glycosylation across the human
proteome and the correlation to protein function,’’ in Proc. Pacific Symp.
Biocomput., vol. 7, 2002, pp. 310–322.

[10] C. Caragea, J. Sinapov, A. Silvescu, D. Dobbs, and V. Honavar, ‘‘Gly-
cosylation site prediction using ensembles of support vector machine
classifiers,’’ BMC Bioinf., vol. 8, no. 1, p. 438, Dec. 2007.

[11] S. E. Hamby and J. D. Hirst, ‘‘Prediction of glycosylation sites using
random forests,’’ BMC Bioinf., vol. 9, no. 1, p. 500, Dec. 2008.

[12] J. S. Chauhan, A. H. Bhat, G. P. S. Raghava, and A. Rao, ‘‘GlycoPP:
A webserver for prediction of N- and O-glycosites in prokaryotic protein
sequences,’’ PLoS ONE, vol. 7, no. 7, Jul. 2012, Art. no. e40155.

[13] G.-Y. Chuang, J. C. Boyington, M. G. Joyce, J. Zhu, G. J. Nabel,
P. D. Kwong, and I. Georgiev, ‘‘Computational prediction of N-linked
glycosylation incorporating structural properties and patterns,’’ Bioinfor-
matics, vol. 28, no. 17, pp. 2249–2255, Sep. 2012.

[14] F. Li, C. Li, J. Revote, Y. Zhang, G. I. Webb, J. Li, J. Song, and
T. Lithgow, ‘‘GlycoMinestruct : A new bioinformatics tool for highly
accurate mapping of the human N-linked and O-linked glycoproteomes
by incorporating structural features,’’ Sci. Rep., vol. 6, no. 1, pp. 1–16,
Dec. 2016.

[15] M. A. Akmal, N. Rasool, and Y. D. Khan, ‘‘Prediction of N-linked gly-
cosylation sites using position relative features and statistical moments,’’
PLoS ONE, vol. 12, no. 8, Aug. 2017, Art. no. e0181966.

[16] C.-H. Chien, C.-C. Chang, S.-H. Lin, C.-W. Chen, Z.-H. Chang, and
Y.-W. Chu, ‘‘N-GlycoGo: Predicting protein N-glycosylation sites on
imbalanced data sets by using heterogeneous and comprehensive strategy,’’
IEEE Access, vol. 8, pp. 165944–165950, 2020.

[17] A. Alkuhlani, W. Gad, M. Roushdy, and A.-B.-M. Salem, ‘‘Intelligent
techniques analysis for glycosylation site prediction,’’ Current Bioinf.,
vol. 16, no. 6, pp. 774–788, Sep. 2021.

[18] T. UniProt Consortium, ‘‘UniProt: A hub for protein information,’’Nucleic
Acids Res., vol. 43, no. D1, pp. D204–D212, Jan. 2015.

[19] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, ‘‘CD-HIT: Accelerated for
clustering the next-generation sequencing data,’’ Bioinformatics, vol. 28,
no. 23, pp. 3150–3152, Dec. 2012.

[20] Z. Chen, P. Zhao, F. Li, A. Leier, T. T.Marquez-Lago, Y.Wang, G. I. Webb,
A. I. Smith, R. J. Daly, K.-C. Chou, and J. Song, ‘‘iFeature: A Python
package and web server for features extraction and selection from protein
and peptide sequences,’’ Bioinformatics, vol. 34, no. 14, pp. 2499–2502,
Jul. 2018.

[21] H. Nakashima, K. Nishikawa, and T. Ooi, ‘‘The folding type of a protein
is relevant to the amino acid composition,’’ J. Biochem., vol. 99, no. 1,
pp. 153–162, Jan. 1986.

[22] Y.-Z. Chen, Y.-R. Tang, Z.-Y. Sheng, and Z. Zhang, ‘‘Prediction of mucin-
type O-glycosylation sites in mammalian proteins using the composi-
tion of k-spaced amino acid pairs,’’ BMC Bioinf., vol. 9, no. 1, p. 101,
Dec. 2008.

[23] V. Saravanan and N. Gautham, ‘‘Harnessing computational biology for
exact linear B-cell epitope prediction: A novel amino acid composition-
based feature descriptor,’’ OMICS, A J. Integrative Biol., vol. 19, no. 10,
pp. 648–658, Oct. 2015.

[24] J. Shen, J. Zhang, X. Luo, W. Zhu, K. Yu, K. Chen, Y. Li, and H. Jiang,
‘‘Predicting protein–protein interactions based only on sequences infor-
mation,’’ Proc. Nat. Acad. Sci. USA, vol. 104, no. 11, pp. 4337–4341,
2007.

[25] Y. Zuo, Y. Li, Y. Chen, G. Li, Z. Yan, and L. Yang, ‘‘PseKRAAC:
A flexible web server for generating pseudo K-tuple reduced amino acids
composition,’’ Bioinformatics, vol. 33, no. 1, pp. 122–124, Jan. 2017.

[26] S. Henikoff and J. G. Henikoff, ‘‘Amino acid substitution matrices
from protein blocks,’’ Proc. Nat. Acad. Sci. USA, vol. 89, no. 22,
pp. 10915–10919, 1992.

[27] S. Kawashima and M. Kanehisa, ‘‘AAindex: Amino acid index database,’’
Nucleic Acids Res., vol. 28, no. 1, p. 374, 2000.

[28] B. Liu, ‘‘BioSeq-Analysis: A platform for DNA, RNA and protein
sequence analysis based on machine learning approaches,’’ Briefings
Bioinf., vol. 20, no. 4, pp. 1280–1294, 2019.

[29] I. Dubchak, I. Muchnik, C. Mayor, I. Dralyuk, and S.-H. Kim, ‘‘Recogni-
tion of a protein fold in the context of the SCOP classification,’’ Proteins,
Struct., Function, Genet., vol. 35, no. 4, pp. 401–407, Jun. 1999.

[30] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,W.Miller,
and D. J. Lipman, ‘‘Gapped BLAST and PSI-BLAST: A new generation
of protein database search programs,’’ Nucleic Acids Res., vol. 25, no. 17,
pp. 3389–3402, 1997.

12712 VOLUME 10, 2022



A. Alkuhlani et al.: PUStackNGly: PU and Stacking Learning for N-Linked Glycosylation Site Prediction

[31] L. J. McGuffin, K. Bryson, and D. T. Jones, ‘‘The PSIPRED protein
structure prediction server,’’ Bioinformatics, vol. 16, no. 4, pp. 404–405,
Apr. 2000.

[32] E. Faraggi, T. Zhang, Y. Yang, L. Kurgan, and Y. Zhou, ‘‘SPINE X:
Improving protein secondary structure prediction by multistep learning
coupled with prediction of solvent accessible surface area and backbone
torsion angles,’’ J. Comput. Chem., vol. 33, no. 3, pp. 259–267, Jan. 2012.

[33] A. Alkuhlani, M. Nassef, and I. Farag, ‘‘Multistage feature selection
approach for high-dimensional cancer data,’’ Soft Comput., vol. 21, no. 22,
pp. 6895–6906, 2017.

[34] U. M. Khaire and R. Dhanalakshmi, ‘‘Stability of feature selection algo-
rithm: A review,’’ J. King Saud Univ.-Comput. Inf. Sci., Jun. 2019, doi:
10.1016/j.jksuci.2019.06.012.

[35] Y. Saeys, T. Abeel, and Y. Van de Peer, ‘‘Robust feature selection using
ensemble feature selection techniques,’’ in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases. Berlin, Germany: Springer, 2008,
pp. 313–325.

[36] H. Peng, F. Long, and C. Ding, ‘‘Feature selection based on mutual infor-
mation criteria of max-dependency, max-relevance, and min-redundancy,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226–1238,
Aug. 2005.

[37] S. Suresh and V. Naidu, ‘‘Mahalanobis-ANOVA criterion for optimum
feature subset selection in multi-class planetary gear fault diagnosis,’’
J. Vibrat. Control, Jun. 2021, Art. no. 107754632110291, doi:
10.1177/10775463211029153.

[38] G. Zhang, J. Hou, J. Wang, C. Yan, and J. Luo, ‘‘Feature selection for
microarray data classification using hybrid information gain and a mod-
ified binary krill herd algorithm,’’ Interdiscipl. Sci., Comput. Life Sci.,
vol. 12, no. 3, pp. 288–301, Sep. 2020.

[39] Z. Zhang, G. Wang, C. Liu, L. Cheng, and D. Sha, ‘‘Bagging-based
positive-unlabeled learning algorithm with Bayesian hyperparameter opti-
mization for three-dimensional mineral potential mapping,’’ Comput.
Geosci., vol. 154, Sep. 2021, Art. no. 104817.

[40] F. Mordelet and J.-P. Vert, ‘‘A bagging SVM to learn from positive
and unlabeled examples,’’ Pattern Recognit. Lett., vol. 37, pp. 201–209,
Feb. 2014.

[41] S. Gattani, A. Mishra, and M. T. Hoque, ‘‘StackCBPred: A stacking
based prediction of protein-carbohydrate binding sites from sequence,’’
Carbohydrate Res., vol. 486, Dec. 2019, Art. no. 107857.

[42] S. Cui, Y. Yin, D. Wang, Z. Li, and Y. Wang, ‘‘A stacking-based ensemble
learning method for earthquake casualty prediction,’’ Appl. Soft Comput.,
vol. 101, Mar. 2021, Art. no. 107038.

[43] J. Xiao, ‘‘SVM and KNN ensemble learning for traffic incident detection,’’
Phys. A, Stat. Mech. Appl., vol. 517, pp. 29–35, Mar. 2019.

[44] A. Pernía-Espinoza, J. Fernandez-Ceniceros, J. Antonanzas, R. Urraca,
and F. J. Martinez-de-Pison, ‘‘Stacking ensemble with parsimonious base
models to improve generalization capability in the characterization of
steel bolted components,’’ Appl. Soft Comput., vol. 70, pp. 737–750,
Sep. 2018.

[45] Y. Wang, D. Wang, X. Ye, Y. Wang, Y. Yin, and Y. Jin, ‘‘A tree ensemble-
based two-stage model for advanced-stage colorectal cancer survival pre-
diction,’’ Inf. Sci., vol. 474, pp. 106–124, Feb. 2019.

[46] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1997.

[47] J. Tolles and W. J. Meurer, ‘‘Logistic regression: Relating patient charac-
teristics to outcomes,’’ Jama, vol. 316, no. 5, pp. 533–534, 2016.

[48] L. J. Lancashire, C. Lemetre, and G. R. Ball, ‘‘An introduction to artificial
neural networks in bioinformatics-application to complex microarray and
mass spectrometry datasets in cancer studies,’’ Briefings Bioinf., vol. 10,
no. 3, pp. 315–329, Dec. 2008.

[49] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[50] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785–794.

[51] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor nonpara-
metric regression,’’ Amer. Statistician, vol. 46, pp. 175–185, Aug. 1992.

[52] E. El Houby and N. Yassin, ‘‘Methodology for selecting microarray
biomarker genes for cancer classification,’’ Int. J. Intell. Comput. Inf. Sci.,
vol. 15, no. 1, pp. 25–39, Jan. 2015.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, and D. Cournapeau, ‘‘Scikit-learn: Machine learning in
Python,’’ J. Mach. Learn. Res., vol. 12, no. 10, pp. 2825–2830, Jul. 2017.

ALHASAN ALKUHLANI received the B.Sc.
degree in computer science from the Faculty of
Sciences, Sana’a University, Yemen, in 2007, the
M.Sc. degree in computer science from the Faculty
of Computers and Information, Cairo University,
Egypt, in 2017. He is currently pursuing the Ph.D.
degree with the Faculty of Computer and Informa-
tion Sciences, Ain Shams University, Egypt. His
master’s degree was about computational selection
of cancer DNA methylation genes. He is currently

a Teaching Assistant with the Faculty of Computer and Information Technol-
ogy, Sana’a University. His research interests include artificial intelligence,
data mining, and bioinformatics.

WALAA GAD received the B.Sc. and M.Sc.
degrees in computers and information sciences
from Ain Shams University, Cairo, Egypt, in
2000 and 2005 respectively, and the Ph.D. degree
in computers and information sciences from the
Pattern and Machine Intelligence (PAMI) Group,
Faculty of Electrical and Computer Engineering,
University ofWaterloo, Canada, in 2010. Her mas-
ter’s degree was about designing and planning a
network model in the presence of obstacles using

clustering aroundmedoids techniques. The dissertation title is ‘‘Text Cluster-
ing Based on Semantic Measures.’’ The work was done jointly between the
Faculty of Computers and Information Sciences, Ain Shams University, and
the University of Waterloo. She is currently an Associate Professor with the
Faculty of Computers and Information Sciences. She is the author of several
publications. Her current research interests include data science, semantic
web and machine learning, data warehouse, and big data analytics.

MOHAMED ROUSHDY received the B.Sc.,
M.Sc., and Ph.D. degrees from the Faculty of
Science, Ain Shams University, in 1979, 1984,
and 1993, respectively. His experimental doctoral
research work was conducted at Bochum Univer-
sity, Germany, from 1989 to 1991. He is currently
a Professor of computer science and the Dean of
the Faculty of Computers and Information Tech-
nology, Future University in Egypt, Cairo, Egypt.
He received Ain Shams University Appreciation

Award in Technological Sciences, in 2018.

ABDEL-BADEEH M. SALEM has been a Full
Professor of computer science with the Fac-
ulty of computer and information sciences, Ain
Shams University, Cairo, Egypt, since1989. He is
the Founder and the Chairman of the Arti-
ficial Intelligence and Knowledge Engineering
Research Laboratories, Ain Shams University.
He is the Chair of the Working Group on Bio-
Medical Informatics, ISfTeH, Belgium. He has
published around 700 papers. He has been

involved in more than 700 international conferences and workshops as
a keynote and plenary speaker. His research interests include intelligent
computing, artificial intelligence, biomedical informatics, big data analytics,
intelligent education, smart learning systems, information mining, knowl-
edge engineering, and biometrics. He was a member of program commit-
tees, a workshop/invited session organizer, the session chair, and tutorials.
In addition, he was a member of many international societies and a member
of the editorial board of 70 international and national journals. Also, he is
a member of many international scientific societies and associations elected
members of Euro Mediterranean Academy of Arts and Sciences, Greece.
He is a member of Alma Mater Europaea of the European Academy of
Sciences and Arts, Belgrade, and European Academy of Sciences and Arts,
Austria.

VOLUME 10, 2022 12713

http://dx.doi.org/10.1016/j.jksuci.2019.06.012
http://dx.doi.org/10.1177/10775463211029153

