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ABSTRACT At present, our team focuses on cultural relics restoration and fragment splicing research. In the
research process of terracotta warrior splicing, we find that the existing calibrated fragment data is relatively
small, which is not enough for related research. Therefore, we need to calibrate and segment different parts
of the intact terracotta warrior data and extract some data we need to use in the future. However, at present,
we are short of human resources. If we want to carry out manual calibration, it will take much time, bringing
trouble to our future work. Therefore, we hope to design a method to automatically calibrate the terracotta
warrior dataset with a small amount of calibrated data. The existing 3D neural network research mainly
focuses on supervised classification, segmentation, and unsupervised reconstruction. We cannot find enough
schemes to refer to, and the existing methods do not perform well on our terracotta warrior dataset. Therefore,
in this article, we propose EGG-Net to solve this problem. EGG-Net is an end-to-end self-supervised model,
and it consists of two modules. The first module is an encoder based on dynamic graph and edge convolution.
We can extract point cloud features with this module. The second module, called segmenter, is based on
multi-layer perceptron, adding labels to points and segmenting the point cloud. After the neural network,
we add point refinement operation to the pipeline. Point refinement can adjust the cluster label estimated
by the neural network with superpoint, which can optimize the loss function and help us train the neural
network. Our EGG-Net can back-propagate with the refinement operation. We evaluated EGG-Net on the
terracotta warrior data and ShapeNet Part by measuring the accuracy and the latency. The experiment result

shows that our EGG-Net outperforms the state-of-the-art methods.

INDEX TERMS Point cloud, self-supervised learning, convolution neural network, terracotta warrior.

I. LIST OF ABBREVIATIONS

Abbreviations  Full Form.

CNN Convolutional Neural Network
KNN K Nearest Neighbors.

STN Spatial Transformer Networks.
MLP Multi-layer perceptron.

ReLU Rectified Linear Unit.

SRG Seed Region Growing.
DG-CNN Dynamic Graph Convolutional

Neural Network.
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Il. INTRODUCTION

Nowadays, our team focuses on cultural relics restoration and
fragment splicing research. In the terracotta warrior fragment
study, the main problem is the lack of calibrated fragment
data, and it is not easy to conduct further research without
enough calibrated data. However, we are currently short of
human resources. If we want to calibrate the terracotta warrior
dataset manually, it will take much time, which will bring
trouble to our future work. Therefore, we hope to design
a method to achieve automatic calibration on the terracotta
warrior dataset with a small amount of calibrated data.

In order to improve the efficiency of part labeling on ter-
racotta warrior models, we propose a self-supervised method
called EGG-Net for the terracotta warrior dataset, which is
based on a convolutional neural network. Our end-to-end
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model can automatically segment an intact terracotta warrior
into different parts: hands, heads, feet, and others, with only
a tiny amount of segmentation results. Our EGG-Net can
significantly improve efficiency and accuracy compared with
the traditional manual and state-of-the-art methods.

Our terracotta warrior dataset is saved in the form of OBJ,
a format created by wavefront technologies. OBJ is an open
data format, which other 3D graphics application providers
widely use. OBJ is a simple data format, which only repre-
sents 3D geometry, such as the position of each vertex, the UV
position of each texture coordinate vertex, vertex normals,
faces, and texture vertices. By default, vertices are stored in
counter-clockwise order, so there is no need to declare face
normals explicitly. OBJ coordinates have no units, but OBJ
files can contain scale information in the form that humans
can read.

As to which data format we choose to research, we com-
pare different data formats. Recently, many pieces of research
have focused on how to voxelize the point cloud to make them
evenly distributed in regular 3D space and then implement
3D-CNN on them. However, voxelization brings high space
and time complexity. Besides, there may be quantization
errors in the process of voxelization, which would result in
low accuracy. Compared with other data formats, the point
cloud is a data structure suitable for the 3D scene calculation
of terracotta warrior data. At last, we choose to segment ter-
racotta warrior data in the form of point clouds (see samples
in Fig. 1).

FIGURE 1. Simplified terracotta warrior point clouds.

We think adding an annotation to different parts of ter-
racotta warrior data contains two steps. The first step is to
conduct segmentation on the 3D models. The second step is
to add labels to different parts. So we can regard this problem
as a segmentation problem. Our terracotta warriors data is in
the form of {x, € R }ﬁl\':l, where R? is the feature space, x,
means the features of one point, such as XYZ coordinates and
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normal vector. N is the number of points in one terracotta
warrior 3D object.

Our goal is to design a function f : R’ — L, where L
means the segmentation mapping labels and {c, € L}fyzl,
S0 ¢, is label of each point after the segmentation. Different
from our previous work SRG-Net, only few {c,} is fixed and
the mapping function f is trainable and the other {c,} changes
according to f.

In order to solve the self-supervised segmentation problem,
we can split the problem into two parts. Firstly, we want to
design an algorithm to predict optimal L we need to design a
network to extract the features and use the features to segment
the point cloud. Secondly, we need to design an appropriate
loss calculating model to evaluate the predicted segmentation
results and train the network.

In designing neural network, we find that auto-encoder can
help extract the global features of the point cloud from the
neural network. In addition, we also find that the dynamic
graph can learn the local features well. Therefore, Inspired
by these two methods, our design of EGG-Net can learn
the features of terracotta warrior data better. In Section 1V,
we will describe the design of the network in detail.

In designing loss, we propose a method to evaluate the
segmentation results. We think that a good point cloud seg-
mentation should work like human beings. Firstly, the points
with similar semantic features are more likely to be classi-
fied as the same kind of points. In 2D images, points with
similar color and texture are generally considered spatially
continuous; In 3D space, we think those points with similar
normal vectors, color, and texture will be considered space
continuous. In addition, the European distance between the
points with the same label should not be very long. To sum
up, we think that an excellent segmentation result of {Cy } has
the following two characteristics:

o Points with similar spatial features are desired to be
given the same label.

« The Euclidean distance between spatially continuous
points should not be quite long.

Inspired by [1], we combine the segmentation result
predicted by EGG-Net with the superpoint in the refining
process, in which the superpoint meets the above two require-
ments. Then we calculate the loss by combining it with the
prediction segmentation result predicted by the neural net-
work. Please refer to Section I'V-B for detail.

In Section V, we compare EGG-Net with other methods
and show the superiority of our method in visualization and
quantification.

To sum up, the critical contributions of our work are sum-
marized as follows:

o Inspired by dynamic graph and auto-encoder structure,
we propose our EGG-Net to learn local and global fea-
tures with lower latency and higher accuracy.

« We propose a new loss model suitable for the 3D point
cloud self-supervised segmentation to obtain more accu-
rate results.
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o Our end-to-end model can not only achieve good results
on terracotta warrior data. We also evaluate our model on
the ShapeNet Part dataset and achieve quite good results.

IIl. RELATED WORK

Segmentation is typical in the 2D image and 3D point cloud
processing. In image processing, segmentation completes a
task assigning labels to all pixels in an image and clustering
them with their features. Similarly, point cloud segmentation
assigns labels to all points in the point cloud. The expected
result is that points with similar characteristics are given the
same label.

In image segmentation, K-means is a classical segmenta-
tion method in 2D and 3D. It divides N observations into
K clusters with the nearest mean, popular in data mining. The
graph-based method is another popular method, such as prim
and Kruskal [2], which realizes simple greedy decisions in
segmentation. The methods above focus on global rather than
local differential features, so they can not obtain satisfactory
results in complex contexts. Among self-supervised deep
learning methods, there are many learning features using the
generative methods, such as [3]-[5]. They follow the model
of neuroscience, where each neuron represents a specific
semantic meaning. Meanwhile, CNN is widely used in super-
vised and unsupervised image segmentation. For example,
in [1], Kanezaki combines the superpixel [6] method and
CNN and employs superpixel for backpropagation to tune
the unsupervised segmentation results. Besides, [7] uses a
spatial continuity loss as an alternative to settle the limitation
of the former work [6], whose method is also quite valuable
for 3D point cloud feature learning. In addition, in the field
of segmentation and clustering, [8] and [9] are worthy of
attention.

In the field of 3D point cloud segmentation, the state-
of-the-art 2D image method is not suitable for directly
using point cloud. The 3D point cloud segmentation method
needs to understand each point’s global features and geo-
metric details. We can classify 3D point cloud segmentation
problems into semantic segmentation, instance segmentation,
and object segmentation. Semantic segmentation focuses on
scene-level segmentation instances. Instance segmentation
emphasizes object-level segmentation, and object segmenta-
tion focuses on partial-level segmentation.

As to semantic segmentation, semantic segmentation aims
at separating a point cloud into several parts with the semantic
meaning of each point. There are four main semantic segmen-
tation paradigms: projection-based methods, discretization-
based methods, point-based methods, and hybrid methods.
Projection-based methods always project a 3D point cloud to
2D images, such as multi-view [10], [11], spherical [12], [13].
Discretization-based methods usually project a point cloud
into a discrete representation, such as volumetric [14] and
sparse permutohedral lattices [15], [16]. Instead of learning
a single feature on 3D scans, several methods are trying to
learn different parts from 3D scans, such as [15]-[17].
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The point-based network can directly learn features on a
point cloud and separate them into several parts. Point clouds
are irregular, unordered, and unstructured. PointNet [18] can
directly learn features from the point cloud and retain the
point cloud permutation invariance with a symmetric function
like maximum function and summation function. PointNet
can learn point-wise features with the combination of sev-
eral MLP layers and a max-pooling layer. PointNet is a
pioneer that directly learns on the point cloud. A series of
point-based networks has been proposed based on PointNet.
However, PointNet can only learn features on each point
instead of the local structure. So PointNet++ is presented
to get local structure from the neighborhood with a hierarchy
network [19]. PointSIFT [20] is proposed to encode orienta-
tion and reach scale awareness. Instead of using K-means to
cluster and KNN to generate neighborhoods like the group-
ing method PointNet++4-, PointWeb [21] is proposed to get
the relations between all the points constructed in a local
fully-connected web. As to convolution-based method. RS-
CNN takes a local point cloud subset as its input and maps
the low-level relation to the high-level relation to learn the
feature better. PointConv [22] uses the existing algorithm,
using a Monte Carlo estimation to define the convolution.
PointCNN [23] uses x — conv transformation to convert the
point cloud into a latent and canonical order. As to point
convolution methods, Parametric Continuous Convolutional
Neural Network(PCCN) [17] is proposed based on paramet-
ric continuous convolution layers, whose kernel function is
parameterized by MLPs and spans the continuous vector
space. Graph-based methods can better learn the features
like shapes and geometric structures in point clouds. Graph
Attention Convolution(GAC) [24] can learn several relevant
features from local neighborhoods by dynamically assign-
ing attention weights to points in different neighborhoods
and feature channels. Dynamic Graph CNN(DG-CNN) [25]
constructs several dynamic graphs in the neighborhood and
concatenates the local and global features to extract better
features and update each graph after each layer of the network
dynamically. FoldingNet uses the auto-encoder structure to
encode the point cloud N x 3 to 1 x 512 and decode it to
M x 3 with the aid of chamfer loss to construct the auto-
encoder network.

Part segmentation is more complex than semantic and
instance segmentation because there are significant geometric
differences between points with the same label, and the num-
ber of parts with the same semantic meaning may differ. Wang
and Lu [26] propose VoxSegNet to achieve promising part
segmentation results on 3D voxelized data, which presents a
Spatial Dense Extraction(SDE) module to extract multi-scale
features from volumetric data. Synchronized Spectral CNN
(SyncSpecCNN) [27] is proposed to achieve fine-grained
part segmentation on irregularity and non-isomorphic shape
graphs with convolution. Reference [28] is proposed to
segment unorganized noisy point clouds automatically by
extracting clusters of points on the Gaussian sphere. Refer-
ence [29] uses three shape indexes: the smoothness indicator,
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shape index, and flatness index based on a fuzzy param-
eterization. [30] presents a segmentation method for con-
ventional engineering objects based on local estimation of
various geometric features. Branched AutoEncoder network
(BAE-NET) [31] is proposed to perform unsupervised and
weakly-supervised 3D shape co-segmentation. Each branch
of the network can learn features from a specific part shape
for a particular part shape with representation based on the
auto-encoder structure.

In conclusion, our work is mainly inspired by the five
papers in the table 1.

TABLE 1. Significant referred papers for our work.

Significant Referred Papers

1. FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
2. Dynamic Graph CNN for Learning on Point Clouds

3. Unsupervised Segmentation for Terracotta Warrior with Seed-
Region-Growing CNN (SRG-Net)

4. Unsupervised Image Segmentation by Backpropagation

5. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation

IV. PROPOSED METHOD

In this paper, our input data for the terracotta warrior is in
the form of 3D point clouds (see samples in Fig. 1). Point
cloud data is represented in the form of 3D points {P;|i =
1,2,3...n}, where each point is a vector R" containing
coordinates x, y, z and other features like normal, color. Our
method contains three steps:

1) If the point cloud only has three-dimensional coordi-
nates x, y, z data, we need to estimate the normal vector
value with xyz.

2) We use our pointwise CNN called EGG-Net to perform
self-supervised segmentation of point clouds.

3) We design a refinement process to calculate loss and
use it for back-propagation.

There are many effective normal vector estimation meth-
ods, such as [32] using integral images for efficient boundary
and covariance estimation, [33]-[36] Use neural network
to estimate. In our method, we tend to use the simplest
method [37] because this method has lower time complexity
and good accuracy.

A. EGG-Net

Inspired by dynamic graph and auto-encoder, we propose
our EGG-Net. Unlike the classical graph CNN, our graph
layer is dynamic and auto-updated at every layer of the
network. Compared with the methods that only focus on the
relationship between points, we also propose an auto-encoder
structure to re-express the features of the whole point cloud,
aiming at learning the whole structure of the point cloud and
learning from a small number of samples. The structure of
our network is shown in Figure 2. It consists of two parts.
The first part is an encoder that generates features from the
dynamic graph and the whole point cloud, and the second
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part is a decoder segmentation network. We can also call it
segmenter.

Next, we will explain the symbols used in the paper.
We denote the point cloud as S. We use lower-case letters
to represent vectors, such as x, and the upper-case letter to
represent matrix, such as A. We call a matrix m x n if it has m
rows and n columns. In addition, the terracotta warrior point
cloud data is N points with 6 features x, y, z, Ny, Ny, N,(Xyz
coordinates and normal values). We also denote each point as
x,80X = {x1,x2,x3,...,%x,} C RO.

1) ENCODER ARCHITECTURE

The EGG-Net encoder follows a similar design of [38],
the structure of EGG-Net is shown in Fig. 2. Compared
with [38], our encoder concatenate several multi-layer
perceptrons(MLP) and several dynamic graph-based max-
pooling layers. The dynamic graphs are constructed by
applying KNN on point clouds. Different from our previous
work [39], we removed the STN(spatial transformer net-
works) [40] module because we found this module improved
the latency greatly but do not have a great impact on the
accuracy of the experiment 2.

For the input point cloud, we compute three dynamic
graphs and get graph features, respectively. In graph feature
extracting process, we adopt the edge convolution in [4]
to compute the graph feature of each layer, which uses an
asymmetric edge function in Eq. (1):

fij = h(xi, xi — x}) )]

where it combines the coordinates of neighborhood center
x; with the subtraction of neighborhood point and the center
point coordinates x; — x; to get local and global information
of neighborhood. Then we define our operation in Eq. (2):

&ij = O(u - (x; — xj) + w - x;) )

where © and w are parameters and ® is a ReLU function.
Eq. (2) is implemented as a shared MLP with leaky ReLU.
Then we define our max-pooling operation in Eq. (3):

= @
where N (i) means neighborhood of point i.

The graph feature extraction layer computes the bottle-
neck. The structure is shown in Fig. 2. First, we compute the
covariance 3 x 3 matrix for every point and vectorize it to 1 x
9. Then the n x 3 matrix of point coordinates is concatenated
with the n x 9 covariance matrix into a n x 12 matrix. Then
we put the matrix into a 3-layer perceptron. Then we feed
the output of the perceptron to two subsequent graph layers.
In each layer, max-pooling is added to the neighbor of each
node. At last, we apply a 3-layer perceptron to the former
output and get the final output. The whole process of the
graph feature extraction layer is summarized in Eq. (4):

Y = Lyx(X) K 4
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FIGURE 2. Network structure. The upper module in encoder represents the edge convolution, and the
following module represents the graph convolution. The tensors of the upper and lower modules will be
concatenated, and be input into the segmenter to get the final segmentation result.

In Eq. (4), X is the input matrix to the graph layer and K is a
feature mapping matrix. /,,,,x(X) can be represented in Eq. 5:

(Inax (X))ij = ®(klg]%) Xkj) &)

where ® is a ReLU function and N (i) is the neighborhood of
point i. The max-pooling operation in Eq. (5) can get local
feature based on the graph structure. So the graph feature
extraction layer can not only get local neighborhood features,
but also global features. The advantages of combining the
edge covolution and the graph convolution are shown as
follows:

1) Edge conv can embed the relationship between points
into high-dimensional feature space, which makes it
easy for the following multi-layer perceptron to extract
features.

2) Graph conv can imbed features from multi-graph con-
structed by KNN to extract the local and global features
of point cloud.

3) Edge conv focuses on imbedding the features between
points, and graph conv focuses on imbedding the fea-
tures of the neighborhood of points.

To summarize, edge conv can embed the relationship
between points into high-dimensional feature space, making
it easy for the following multi-layer perceptron to extract
features. Graph conv can imbed features from multi-graph
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KNN Graph

Max Pooling

FIGURE 3. Edge convolution. The figure contains a KNN graph
convolution mapping the point cloud to N x k x f, and then put into
max-pooling to get the point cloud edge feature.

constructed by KNN to extract the local and global features
of point cloud. Edge conv focuses on embedding the features
between points, and graph conv focus on embedding the
features of the neighborhood of points. We have compared
different parts in the ablation study3 to show other factors
impact on EGG-Net performance and accuracy results.

2) SEGMENTER ARCHITECTURE

Segmenter gets dynamic graph features and bottleneck as
input and assign labels to each point to segment the whole
point cloud. The structure of segmenter is shown in Fig. 2.
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First, bottleneck is replicated N times in Eq. (6):

B =BUBU...UB 6)
— ———
N

where N is the number of points in point cloud and B is
the bottleneck. The output of replication is concatenated with
dynamic features in Eq. (7):

C=BUD UDyUD;s @)

where D1, Dy, D3 represent dynamic graph features.
At last, we feed the output of concatenation to a multi-
layer-perceptron to segment the point cloud in Eq. (8).

D=0W.C+Q) ®)

where W and 2 represent parameters in the linear function,
and ® represents a ReLU function.

B. POINT REFINEMENT

In order to optimize the results of estimated by neural network
and carry out back-propagation calculation, we designed
point refinement to achieve better segmentation results.

In this section, we will describe how we train our network
for self-supervised point segmentation. We can divide this
problem into two sub-problems:

1) Estimate the cluster label using existing network

parameters

2) Use the cluster label estimated by the neural network

to train the neural network

As to the first sub-problem, we can use the auto-encoder
network in our Section IV-A1l and Section IV-A2 to imple-
ment the forward process, and the second sub-problem is a
backward process based on gradient descent. Next, we will
describe the second sub-problem in detail.

We need to calculate the loss of network predicted labels
and refine predicted labels in self-supervised segmentation.
In the field of point cloud segmentation, we think that the
points assigned the same label are spatially continuous (the
clusters of image pixels should be spatially continuous in 2D
images). Here, to better cluster the point cloud, we add addi-
tional restrictions on the points in the neighborhood. First,
we use the region growing method to extract K’ superpoints
from the input point cloud. In this article, since our neural
network can learn local and global features, we do not need
to set K’ very large in EGG-Net. In order to reduce the time
complexity, we choose K’ = K to calculate the superpoint.
The value of K is generally set to the number of segments
of the few-shot samples. Then we set all the points in one
superpoint with the same label. According to the cluster label
estimated by the neural network, we select the most frequent
cluster label ¢4y, Where |cpaxlnes, = Icnlnes, for all ¢, €
1, ..., qg. The cluster labels are replaced by ¢y for n € Sk,
which are called refined predicted labels.

As to the seed-region-growing method used in superpoint
calculating, we will describe in detail below:

Unlike 2D images, not all point cloud data has features
such as color and normal. For example, our terracotta warrior
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3D object does not have any color feature. Normal vectors can
be calculated and predicted by point coordinates in IV. It is
worth noting that there are many similarities and differences
between the color feature in 2D and the normal feature in 3D.
For the color feature in a 2D image, if pixels are semantically
continuous, the color in the neighborhood generally does not
change. For 3D point cloud normal features, compared with
the color features in 2D images, the normal value of points in
the neighborhood of the point cloud often differs. However,
even though each point cloud neighborhood has different
normal values, they usually do not change much unless they
are not semantically continuous. We use seed-region-growing
to cluster the point cloud to get the superpoints.

First, we implement KNN to the point cloud to get the
nearest neighbors of each point. Then we initialize a random
point as the start seed and add to the available points to start
the algorithm. Then we choose the first seed from the avail-
able list to judge the points in its neighborhood. If the normal
value and Euclidean distance are within the threshold we set,
we think the two points are semantically continuous, and we
can group two points into one cluster. The outline about the
seed region growing method is given in Algorithm 1.

Algorithm 1: Seed Region Growing

Input: P = {p, €R3} // x, y, z coordinates
N = {n, € R3} // normal value
E ={e, € R"} // euclidean distance
Q) // nearest neighbour function
Output: L = {l, € R'} // segmentation label
of each point
Initialize: S := @
empty
A :=rand{1,2...|P|} // select random
point to available point list as seed
fort=1tTdo
while A # @ do
a < first item in A
neighbours < Q(a) for neighbours = & do
neighbour <— rand(neighbours)
if E(a, neighbour) < e;h A
N(a, neighbour) < e;h N neighbour ¢ S
then
append neighbour to S
L remove neighbour from neighbours

// set seed list to

else
| remove neighbour from neighbours

¥a2datoS

After obtaining the network predicted labels and refined
predicted labels, we calculate their loss, and then we iterate
this process T times to obtain the final prediction of cluster
labels r,,.

Unlike general supervised learning, when the target labels
are fixed, we need to perform batch normalization on each
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dimension to get reasonable labels r,,. In parameter adjust-
ment, we found that setting the learning rate to 0.1 and
momentum to 0.9 can get the best results. For the comparison
of different parameters, please check our Section V.

V. EXPERIMENTS

We do experiments on the terracotta warrior dataset and
ShapeNet dataset. We implement the pipeline using PyTorch
and Python3.7. All the results are based on experiments
under RTX 2080 Ti and i9-9900K. The performances of
each method in the experiment are evaluated by the accu-
racy (mloU) and the latency.

A. EXPERIMENTS ON TERRACOTTA WARRIOR

We used Artec Eva [41] to collect 500 intact terracotta warrior
models, and we took 400 of the 500 models as the training set
and 100 as the validation set. Each model consists of about
2 million points, including xyz coordinates, vertical nor-
mals, triangle meshes, and RGB data. Before the experiment
started, we eliminated the triangle meshes and RGB data of
the original models and remained xyz coordinates and vertical
normals. Moreover, we uniformly sample the above point
clouds to 10,000 points thus as the experimental inputting.
In reality, the terracotta warriors are generally unearthed in
the form of limb fragments.

According to the description in [42], we divided the terra-
cotta warrior 3D model into six parts: head, body, left hand,
right hand, left leg, and right leg. In order to implement
self-supervised learning better, we calibrated 5 ~ 10 terra-
cotta warriors 3D models. Unlike the supervised problem,
our self-supervised method solved two sub-problems: the
existing network parameters to estimate the cluster label and
the predicted cluster labels for the training network. The
previous sub-problem was solved with section IV-A. The
latter sub-problem was solved by section I'V-B.

In order to show that EGG-Net could achieve better results
in detail than other self-supervised methods, we used Point-
net, Pointnet2, DG-CNN, and Pointhop++ to replace the
neural network encoder in EGG-Net, and maintained the
same structure as EGG-Net. In order to show that EGG-Net
can achieve more correct results than unsupervised methods,
we also compared EGG-Net with our previous unsupervised
segmentation method SRG-Net, and the comparison meth-
ods of SRG-Net (SRG-DGCNN, SRG-PointNet2, and SRG-
PointNet). We selected SGD as the optimizer and set Ir to
0.005. We set the momentum parameter to 0.1 and set the
number of iterations 7' to 500.

The visualization results are shown in Figure 2. We can find
that EGG-Net can get more correct results than unsupervised
methods (like SRG-Net, SRG-DGCNN, SRG-Pointnet2).
In contrast, the unsupervised methods can not get correct
results. Compared with self-supervised methods (PointNet-
EGG, PointNet2-EGG, DG-EGG, and PointHop2-EGG),
we can find that these methods can correctly segment the
point cloud. However, in detail, EGG-Net has more accurate
segmentation results. For example, EGG-Net can get a more
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accurate result in the segmentation of the hands of the terra-
cotta warrior 4.

The quantization results are shown in Table 2. Because the
STN module is removed, compared with SRG-Net, EGG-Net
reduces the latency by 27.3%, while accuracy improves about
8.2%. Compared with methods of the similar architecture
(DG-EGG, PointNet2-EGG, PointHop2-EGG), our method
also has quite good performance. Compared with DG-EGG,
our solution reduces the latency by 40% and improves the
accuracy by 9.8%. The accuracy of our method is also much
better than PointNet2-EGG (17.1%) and Pointhop2-EGG
(12.7%), and the latency is about 65.8% and 63.1% of each
method.

TABLE 2. Comparison of different methods on terracotta warrior dataset.

Method Accuracy(%) Latency(ms)
DG-EGG 81.34 31.19
Pointhop2-EGG 79.01 25.26
Pointnet-EGG 75.44 13.36
Pointnet2-EGG 76.17 26.39
SRG-DGCNN 78.32 37.26
SRG-PointHop2 77.94 30.62
SRG-Pointnet 72.03 13.35
SRG-Pointnet2 70.55 24.10
EGG-Net 89.68 16.63

In summary, we can draw the following conclusions with
the experiment results:

1) Compared with unsupervised methods (such as
SRG-Net, SRG-DGCNN, SRG-PointNet, and SRG-
PointHop2), our network can obtain more accurate
results with less latency.

2) Compared with self-supervised methods with similar
structures (such as PointNet-EGG, PointNet2-EGG,
DG-EGG, and PointHop2-EGG), our EGG-Net can
obtain more refined results.

3) In general, EGG-Net has obvious advantages in accu-
racy and latency on our terracotta warrior dataset.

B. EXPERIMENTS ON ShapeNet
In this section, we conducted experiments on the ShapeNet
Part to evaluate the robustness of the EGG-Net method.

ShapeNet part is a consistent, large-scale 3D object dataset
annotated with fine-grained, instance level, and hierarchical
3D part information. This dataset consists of 573585 part
instances, including 26671 3D models of 24 object categories.
The dataset acts as a catalyst for many tasks, such as shape
analysis, dynamic 3D scene modeling, simulation, affordance
analysis, etc. ShapeNet established three benchmark tasks for
evaluating 3D part recognition: fine-grained semantic seg-
mentation, hierarchical semantic segmentation, and instance
segmentation. Among these tasks, ShapeNet Part is always
used, for instance segmentation.

The quantitative results of our experiments are shown in
Table 4. As shown in Table 4, EGG-Net outperformed all
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FIGURE 4. Per-category. Accuracy(%) of different methods on ShapeNet
part. Each point represents mean 10U of different methods.

previous models. EGG-Net improved the overall accuracy
of DGCNN-EGG by 8.2% and was even larger compared
with PointNet2-EGG and PointNet-EGG. Significantly, our
method outperformed DG-EGG on all categories, increasing
5% accuracy on the knife. Overall, our method achieved
better accuracy on ShapeNet compared with other methods.

Some visualization results are shown in Fig. 5. As is
shown in Fig. 5, EGG-Net achieves good results on bag,
knife, motorbike, and achieves quite good results on airplane,
earphone and laptop.

FIGURE 5. EGG-Net segmentation results on ShapeNet part.

C. ABLATION STUDY
In order to show the influence of different modules and
epochs in our method, we conducted an ablation study on our
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FIGURE 6. Results of different iterations in EGG-Net.

TABLE 3. Ablation study.

Method mloU(%) OA(%)
without Graph Conv 65.32 68.11
without Edge Conv 73.24 74.83
without Refinement 71.74 75.67
EGG-Net 89.68 90.55

terracotta warrior dataset, which is described in Section IV-A
and evaluated by overall accuracy and mloU.

1) THE INFLUENCES OF DIFFERENT MODULES

As shown in Table 3, the results of the pipeline without the
graph convolution (row 1) show that the network is not work-
ing well in learning the topological features of the local neigh-
borhood of the point cloud. The results of EGG-Net without
edge convolution (row 2) demonstrate that our method with-
out edge convolution will cause the network not to understand
the relationship between points well. The third is a pipeline
without refinement (row 3), and we calculated loss between
labels of this epoch and the previous epoch. The results
of the third method reveal that the pipeline cannot set tags
reasonably based on point cloud content because the number
of unique cluster labels should be adaptive to context. The
results show that the refinement operation increases 15.6%
on the accuracy of EGG-Net.

2) THE INFLUENCES OF DIFFERENT EPOCHS

To visualize the influence of different epochs, we set the
number of epochs to 1000. The segmentation results of dif-
ferent iterations in one terracotta warrior model are shown in
Fig. 6. We can find that when the number of iterations reaches
500, the visualization results do not change significantly,
indicating that it is reasonable for us to set the number of
iterations to 500.
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TABLE 4. Results of different methods on terracotta warrior.

Method 005413 005420

005422

005423 005427 005455

Ground Truth

Pointhop2-
EGG

Pointnet2-EGG

Pointnet-EGG

DG-EGG

EGG-Net

i
:

Y
g

V1. DISCUSSION AND SIGNIFICANCE

OF PROPOSED WORK

At present, our team focuses on the repair, fragment splicing,
and other related work of terracotta warriors. In research,
we found that we need enough data on part structures of
terracotta warriors. However, the amount of existing data
of part structures of terracotta warriors is tiny, which is not
enough for further research and analysis. Therefore, we need
to segment the existing data of intact terracotta warriors and
extract part structure data used in the future. At present, the
most commonly used method is to invite experts in archaeol-
ogy to segment part data manually. However, relying only on
handwork will consume much time and hinder future work.
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Therefore, we hope to design a method that automatically
extracts part structure data based on a small amount of cal-
ibrated data. The existing neural network research on the
3D point cloud mainly focuses on supervised classification,
segmentation, and unsupervised reconstruction. There are
few solutions for unsupervised and self-supervised segmen-
tation. In order to solve the above problems, we propose
a self-supervised method to segment the terracotta warrior
point cloud automatically. The main contributions of our
work are as follows:

1) Inspired by graph neural network and auto-encoder

structure, we propose EGG-Net to learn local and
global features with less latency and more accuracy.
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2) We propose a novel loss model for self-supervised
segmentation of 3D point cloud methods.

3) Our end-to-end model can not only achieve good
results on terracotta warrior data. We also evaluated
our model on ShapeNet Part dataset and achieved quite
good results.

VII. CONCLUSION

This paper provides an end-to-end model called EGG-Net
for self-supervised learning segmentation on terracotta point
clouds. Our idea comes from the process of researching
the terracotta warrior dataset. The existing calibrated data is
insufficient for related research; however, we are currently
short of human resources. It will cost much time to perform
manual calibration, which would hinder future terracotta war-
rior restoration work. Therefore, we hope there will be a
method that can achieve automatic calibration on many ter-
racotta warrior 3D models with a small amount of calibrated
data.

We designed EGG-Net, an end-to-end self-supervised
model according to the existing problems. Our model con-
tains three sub-modules. The first module is an encoder struc-
ture based on dynamic graphs and edge convolutions. We can
extract features of our 3D point cloud with this structure.
The second module is a segmenter based on a multi-layer
perceptron. Finally, we designed a point refinement process.
We calculate the superpoint with the seed region growing
method and adjust the cluster labels calculated by the neural
network to carry out back-propagation with this structure.

Finally, we evaluated our method on the terracotta warrior
dataset and compare it with the latest and classical methods.
The quantitative and visual results show that our EGG-Net
has higher accuracy and lower latency. In addition, we also
carried out experiments on ShapeNet Part and achieved good
results, which shows that our method is robust on the public
dataset. We also conducted an ablation study for different
modules to show the rationality of the EGG-Net network
structure by using different encoders and different refinement
methods. Finally, we researched the number of iterations,
which shows the rationality of our chosen parameters.

Our work still has some limitations. For example, deploy-
ing our model and using it is not so convenient. We will try our
best to solve this problem in the future. We hope our work can
be helpful to the research of terracotta warriors in archaeology
and other point cloud work of other researchers.
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