
Received December 22, 2021, accepted January 15, 2022, date of publication January 25, 2022, date of current version February 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146148

A High-Efficiency FPGA-Based
Multimode SHA-2 Accelerator
HOAI LUAN PHAM 1, (Graduate Student Member, IEEE),
THI HONG TRAN 2, (Member, IEEE),
VU TRUNG DUONG LE 1, (Graduate Student Member, IEEE),
AND YASUHIKO NAKASHIMA 1, (Senior Member, IEEE)
1Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
2Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan

Corresponding author: Thi Hong Tran (hong@osaka-cu.ac.jp)

This work was supported by the Japan Science and Technology Agency (JST) under a Strategic Basic Research Programs Precursory
Research for Embryonic Science and Technology (PRESTO) under Grant JPMJPR20M6.

ABSTRACT The secure hash algorithm 2 (SHA-2) family, including the SHA-224/256/384/512 hash func-
tions, is widely adopted inmanymodern domains, ranging from Internet of Things devices to cryptocurrency.
SHA-2 functions are often implemented on hardware to optimize performance and power. In addition to the
high-performance and low-cost requirements, the hardware for SHA-2 must be highly flexible for many
applications. This paper proposes an SHA-2 hardware architecture named the multimode SHA-2 accelerator
(MSA), which has high performance and flexibility at the system-on-chip level. To achieve high performance
and flexibility, our accelerator applies three optimal techniques. First, a multimode processing element
architecture is proposed to enable the accelerator to compute various SHA-2 functions for many applications.
Second, a three-stage arithmetic logic unit pipeline architecture is proposed to reduce the critical paths
and hardware resources. Finally, nonce generator and nonce validator architectures are proposed to reduce
memory access andmaximize the performance of the proposedMSA for blockchainmining applications. The
MSA accuracy is tested on a real hardware platform (theXilinxAlveoU280 FPGA). The experimental results
on the field programmable gate array (FPGA) prove that the proposed MSA achieves significantly better
performance, hardware efficiency, and flexibility than previous works. The evaluation results for energy
efficiency show that the proposed MSA achieves up to 38.05 Mhps/W, which is 543.6 and 29 times better
than the state-of-the-art Intel i9-10940X CPU and RTX 3090 GPU, respectively.

INDEX TERMS SHA-2, blockchain mining, FPGA, multimode, Bitcoin, accelerator.

I. INTRODUCTION
The Secure Hash Algorithm (SHA) published by the National
Institute of Standard and Technology (NIST) [1] has three
families of cryptographic hash functions, including SHA-1,
SHA-2, and SHA-3. Currently, SHA-1 is deprecated due to
its found vulnerabilities [2]. SHA-2 was firstly introduced
in 2001 as an inevitable alternative to SHA-1. SHA-3 is the
newest generation published by NIST in 2015 [3]. However,
SHA-3 has not yet reached widespread diffusion because
of two main reasons. First, there was no significant vul-
nerability to SHA-2 has been found yet. Second, the hard-
ware architecture of SHA-3 is completely different from that

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

of SHA-2, while most of the systems nowadays have been
secured by SHA-2. Replacing SHA-2 by SHA-3 will require
a huge investment in new hardware infrastructure to support
SHA-3. For these reasons, SHA-2 and SHA-3 become two
independent research themes that are conducted in parallel.
Systems relied on old infrastructures intend to use SHA-2,
while the completely new system may consider applying
SHA-3. Therefore, SHA-2 is still one of the most reli-
able hash functions for long-term collision resistance and
is widely used today. In particular, SHA-224, SHA-256,
SHA-384, and SHA-512 are the most famous hash func-
tions of the SHA-2 family and are widely used in many
generic security applications, such as hash-based message
authentication codes [4]–[6], error detection and correc-
tion (EDAC) [7], digital signature algorithms (DSAs) [8],

11830 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-4272-0132
https://orcid.org/0000-0002-2744-0079
https://orcid.org/0000-0002-0438-3809
https://orcid.org/0000-0002-9457-5061
https://orcid.org/0000-0002-8718-111X


H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

pseudorandom number generators (PRNGs) [9], RFID [10]
and trusted computing [11]. Beyond generic applications,
SHA-2, especially SHA-256, is chosen as the underlying
hash function in blockchain, the modern technology behind
well-known cryptocurrencies such as Bitcoin [12].

A. GENERIC APPLICATIONS
In network security, client devices may be sufficiently power-
ful to execute a limited number of hash computations, while
servers often perform many hash computation tasks with var-
ious SHA-2 functions to serve authentication requests from
clients. Thus, the server side needs SHA-2 hardware that has
high performance and flexibility to perform a large num-
ber of hash computations with various hash functions [13].
In addition, with the development of modern technology such
as the Internet of Things (IoT), data security for millions
of devices increases the processing requirements for central
servers. To reduce the processing pressure on servers, edge
computing has recently been used to share hash computing
requirements from IoT devices. Thus, edge computing also
needs SHA-2 hardware with high performance and flexibility
to execute a large number of hash computations. For the above
reasons, developing a high-performance and flexible SHA-2
hardware accelerator has become a current research trend.

B. BLOCKCHAIN APPLICATIONS
SHA-2 functions play a crucial role in blockchain, an emerg-
ing technology used in many famous cryptocurrencies, such
as Bitcoin, Litecoin, and Ethereum [14]. Among the hash
functions of the SHA-2 family, SHA-256 is commonly used
in many blockchains [15]. For example, SHA-256 is used to
build Merkle trees that help the blockchain network maintain
the integrity of transactions [16]. The most prominent use of
SHA-256, particularly double SHA-256, is the hash computa-
tion in the mining process for blockchain networks, the most
well-known of which is Bitcoin. Accordingly, the blockchain
mining process adds a new valid block to the chain of blocks
by hashing a block header, which includes values such as
the previous block hash, Merkle root hash, timestamp, target,
and nonce. For a new block to be considered valid, miners
must find a valid nonce to make the hashing output value less
than the target [17]. To quickly determine the valid nonce and
win the reward, miners often use an ultrahigh-performance
double SHA-256 circuit to speed up the hash computation
of the block header. The double SHA-256 circuit must be
fast enough to compete favorably in a blockchain network
and be power efficient so that the energy costs do not exceed
the mining revenue [18], [19]. Therefore, developing high-
processing-rate double SHA-256 hardware with high hard-
ware efficiency has recently become an attractive research
area.

Conventional works have applied many techniques or
proposed new architectures to optimize the performance of
SHA-2 hardware. For example, the authors of [20]–[22]
applied the pipeline technique to shorten the critical path in
the SHA-256 and SHA-512 hardware. The authors of [23]

FIGURE 1. High-level diagram of the proposed system.

proposed the reordering computation method to reduce the
critical path of the SHA-256 circuit. An unrolling technique
with multiple factors was proposed in [24] and [25] to reduce
the delay of the SHA-2 loop, thereby increasing the through-
put. In [26]–[30], several hardware techniques, such as CSA,
unrolling, and pipelining, were applied to SHA-2 accel-
erators to increase throughput. Although the performance
of the accelerators in [20]–[30] was effectively optimized,
these accelerators still deliver poor performance and are not
compatible with high-speed SHA-2 applications. To address
speed-demanding applications, the authors of [31]–[38] pro-
posed several new hardware architectures to achieve high per-
formance for SHA-2 computations. For instance, the authors
of [31]–[36] proposed a full pipeline architecture to acceler-
ate SHA-256 computation for blockchainmining. In addition,
a multicore architecture was proposed in [37], [38] to perform
multiple SHA-256 processes simultaneously, thereby achiev-
ing high performance. Despite the advantage of a high pro-
cessing rate, the accelerators in [31]–[38] have no flexibility
because they can only execute a single hash function, such as
the SHA-256 function. Overall, the accelerators in [20]–[38]
need to improve performance and flexibility to be compati-
ble with multiple SHA-2 applications, ranging from generic
applications to blockchain mining.

This work proposes a multimode SHA-2 accelera-
tor (MSA) that achieves a high processing rate and flexi-
bility for generic applications and blockchain mining. The
high-level diagram of the proposed system is shown in Fig. 1,
where the proposed MSA is applied to support servers, edge
computing nodes, or miners to perform high-speed compu-
tations with high flexibility. Concretely, the server or edge
computing node can employ the proposed MSA to perform
a large number of hash computations with a variety of hash
functions, including SHA-224, SHA-256, SHA-384, and
SHA-512. In addition, miners can adopt our accelerator to
accelerate the double SHA-256 calculation for blockchain
mining process.

To achieve the high processing rate and flexibility for
multiple applications, the proposed MSA employs several
optimization techniques, such as multiple multimode pro-
cessing elements (M-PE), dual arithmetic logic unit (ALU)
architecture inside each M-PE, a nonce generator (NOG),
and a nonce detector (NOD). The impact of those

VOLUME 10, 2022 11831



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

TABLE 1. Parameters of the SHA-2 functions.

optimization techniques is analyzed and evaluated in this
paper. The implementation and verification of the proposed
MSA on the Xilinx Alveo U280 field programmable gate
array (FPGA) for general applications and blockchain mining
are explicitly presented. The experimental results on the
FPGA show that the proposed MSA is better than state-
of-the-art works in terms of performance, hardware effi-
ciency, and flexibility. Compared to the currentmost powerful
CPU and GPU, the FPGA-based MSA is better than the
Intel i9-10940X CPU and RTX 3090 GPU in terms of power
efficiency.

The remainder of this paper is organized as follows:
Section II presents the background. Section III describes our
proposed multimode SHA-2 accelerator in detail. Section IV
presents the implementation, verification, and evaluation of
the proposed MSA on the FPGA. Finally, Section V con-
cludes the paper.

II. BACKGROUND
This section briefly describes basic information about the
SHA-2 functions for generic applications and blockchain
mining. Additionally, the preliminary ideas for the proposed
MSA are clearly analyzed.

A. SHA-2 FUNCTIONS FOR GENERIC APPLICATIONS
SHA-2 is a set of one-way and collision-resistant cryp-
tographic hash functions. The SHA-2 family consists of
six hash functions, namely, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, and SHA-512/256. Because the
SHA-512/224 and SHA-512/256 functions are truncated ver-
sions of SHA-512 and are not widely used, we focus on only
the first four hash functions, SHA-224, SHA-256, SHA-384,
and SHA-512. These four hash functions are essentially the
same in terms of operational process, but they have differ-
ences in parameters, which are shown in Table 1. Based on
the similarities of the parameters and operational processes,
the SHA-2 hashing algorithms are divided into two main
groups: SHA-224/256 (SHA-224 or SHA-256) and SHA-
384/512 (SHA-384 or SHA-512). Algorithm 1 shows the

Algorithm 1 Hash = SHA-2(Message)
1: SHA224/256:
2: R = 64, S = 512, Llen = 64, D = 32, nH = 7/8
3: M consists of N 512-bit padded blocks.
4: H0

[0:7] : 32-bit square root of the first 8 primes.
5: K[0:63]: 32-bit square root of the first 64 primes.
6: SHA384/512:
7: R = 80, S = 1024, Llen = 128, D = 64, nH = 6/8
8: M consists of N 1024-bit padded blocks.
9: H0

[0:7] : 64-bit square root of the first 8 primes.
10: K[0:79]: 64-bit square root of the first 80 primes.
11: L[0:Llen−1] = length_in_bit(message)
12: N = (L ÷ S) + 1
13: (M[0:N−1], N) = Padding (message)

Padding:
14: k = S − (1 + D + (L mod S))
15: Pad = {1, zeros(1,k), L}
16: M[0:N−2]

= message[0 : ((N − 2) ∗ S)− 1]
17: MN−1

= {message[(N − 2) ∗ S : L − 1], Pad}
18: for t← 0 to (N-1) do

W[0:R−1] =Message_Expansion(Mt )
Message Expansion:

19: for i← 0 to (R-1) do
20: if i < 16 then
21: Wi =Mt

[i∗D:(i+1)∗D]
22: else
23: Wi =Wi−16 + σ0(Wi−15) +Wi−7 + σ1(Wi−2)
24: end if
25: end for

Ht+1
=MessageCompression(Ht , K, W)

Message Compression:
26: a = H t

0, b = H t
1, c = H t

2, d = H t
3

e = H t
4, f = H t

5, g = H t
6, h = H t

7
27: for i← 0 to (R-1) do
28: T1 = h + 61(e) + Ch(e,f,g) + Ki +Wi
29: T2 = h + 60(a) +Maj(a,b,c)
30: h = g, g = f, f = e, e = d + T1,

d = c, c = b, b = a, a = T1 + T2
31: end for
32: H t+1

0 = H t
0 + a, . . .H t+1

7 = H t
7 + h

33: end for
34: return Hash = {HN

0 , . . . ,H
N
nH−1}

SHA-2 algorithm pseudocode. It includes three main steps:
padding, message expansion, and message compression.

1) PADDING
The padding process is performed to make the last block have
the same size as the other blocks. Concretely, the original
message has L bits, and then the bit ‘‘1’’ is appended at
the beginning bit and k zero bits at the remaining bits. The
appended bits must satisfy the equation L+1+k ≡ 448 mod
512 for SHA-224/256 functions or the equation L + 1+ k ≡
896 mod 1024 for SHA-384/512 functions. Then, the padded

11832 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

message is divided into N blocks (M[1:N ]) of S-bit size, where
S is 512 for SHA-224/256 and 1024 for SHA-384/512.

2) MESSAGE EXPANSION
After padding, all blocks (M[1:N ]) have a fixed length of
S bits. Each block is compressed through two processes: mes-
sage expansion (ME) and message compression (MC). Both
ME and MC processes include R loops, where R is 64 for
SHA-224/256 and 80 for SHA-384/512. Sixteen chunks of
the 32/64-bit word (denoted asWi, 0≤ i≤ 15) parsed from the
tth block (denoted as Mt ) are compressed in the first 16 loops
of the MC process. The ME process expands the message
input (Mt ) to the R-16 chunks of the 32/64-bit Wi (16 ≤ i
≤ R-1) required in the last R-16 loops of the MC process.

3) MESSAGE COMPRESSION
Basically, the MC process compresses the R chunks of
the 32/64-bit Wi (0 ≤ i ≤ R-1) from the ME process
into a 224/256/384/512-bit hash output. The MC process
involves three main steps: initialization, compression, and
final adding. In the initialization step, eight internal hash
values (denoted as a, b, c, d, e, f , g, h) are assigned to the
eight hash inputsH t

0,H
t
1, . . . ,H

t
7. Note that in theMC process

for the first block (M0, t = 0), the eight hash inputs are the
eight H constants (H0

[0:7]: eight 32- or 64-bit decimal places of
the square roots of the first eight primes). In the compression
step, the eight internal hash values a, b, . . . , h are computed
and updated through R loops. In the final adding step, the
hash output (Ht+1) is updated by adding the eight internal
hash values a, b, . . . , h to the eight hash inputs H t

0, H
t
1, . . . ,

H t
7. After finishing the ME and MC process for block Mt+1,

the Ht+1 value is used as the hash input in the MC process for
the next block (Mt+1). Finally, the concatenation of the hash
output HN updated by compressing the last block (MN−1) is
the final hash output of the hash algorithm.

The details of the logical functions σ0(x), σ1(x), 60(x),
61(x), Ch(x, y, z), and Maj(x, y, z) in the ME and MC pro-
cesses can be found at [39]. Note that the logical functions
σ0(x), σ1(x), 60(x), and 61(x) are different between SHA-
224/SHA-256 and SHA-384/SHA-512. Algorithm 1 uses
parameters to distinguish the hash functions of the SHA-2
family. The most typical parameters, such as S, nH, D, and
R, are presented in Table 1. In addition, the parameter Llen is
used to determine the length of the L string, where the L string
is a bit string representing the length of the input message in
bits padded to the last block.

In practice, the storage of the R-16 chunks (W[16:R−1])
in the last R-16 loops of the ME process will occupy a
large amount of memory. To reduce hardware resources,
most previous works, such as [27], [29], [40], employed a
shift-register method for the message expansion calculation,
which uses only sixteen 32/64-bit registers to store the last
16 chunks, and the sixteen 32/64-bit registers must shift con-
tinuously during the loop calculation. Therefore, this paper
also applies the shift-register method to reduce hardware
resources but does not consider it a contribution.

FIGURE 2. Double SHA-256 architecture for blockchain mining.

B. DOUBLE SHA-256 FOR BLOCKCHAIN MINING
The most famous application of SHA-2 is Bitcoin cryp-
tocurrency. Essentially, Bitcoin operates based on blockchain
technology, which uses the double SHA-256 (SHA-256d)
to validate transactions. Concretely, blockchain technology
stores transactions in a block, and then blocks are linked
together to become a chain of blocks known as ledgers [41].
To add the new block to the ledger, miners in the blockchain
network compete for the SHA-256d computation of block
headers as a proof of work (PoW) to find a valid block and
receive a decent reward, commonly called blockchainmining.
SHA-256d is not a variant hash function of the SHA-2 family
but calculates SHA-256 twice. For example, SHA-256d(x) is
equivalent to SHA-256(SHA-256(x)). In blockchain mining,
SHA-256d is used to prevent length extension attacks [42].

Fig. 2 illustrates the overview architecture of SHA-256d
for blockchain mining. Specifically, the message input to
the SHA-256d computation is the 1024-bit block header,
including a 32-bit version, a 256-bit hash of the previous
block, a 256-bit hash of the Merkle root, a 32-bit timestamp,
a 32-bit target, a 32-bit nonce, and 384-bit padding. The
1024-bit message is divided into two 512-bit messages.
Then, SHA-256d0 computes the first 512-bit message, and
SHA-256d1 calculates the final 512-bit message. Due to the
double SHA-256 requirement, SHA-256d2 compresses the
256-bit hash output from SHA-256d1. In blockchain mining,
the final hash output from SHA-256d2 is compared with
the target hash to determine the valid nonce. If the final
hash output is smaller than the target hash, the valid nonce
will be determined, and a new block will be added to the
ledger. Otherwise, the nonce is increased by one to create
the new 1024-bit message for the SHA-256d computation
again. Because of the infrequent change of the first 512-bit
message, SHA-256d0 is regularly computed at the software
level. Meanwhile, the nonce value has to be tried billions
of times to find a valid nonce, causing the final 512-bit
message to change continuously. Thus, the computation of
SHA-256d1 and SHA-256d2 should often target hardware
design for performance optimization.

C. PRELIMINARY IDEA FOR THE MSA
There are three characteristics of SHA-2 functions that should
be noted. First, SHA-2 functions use only low-cost arithmetic
logic operators, such as adders, rotations, shifts, and XORs.
There are no complex operators, such as multipliers, dividers,

VOLUME 10, 2022 11833



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

and exponents. Second, the number of operators per loop
calculation is quite large, specifically, approximately 50 oper-
ators. Third, the data among loops have high dependencies.
For example, the (i+1)th loop calculation needs the results
of the ith loop calculation. Because of these three character-
istics, high-performance hardware platforms such as CPUs
and GPUs do not efficiently execute the SHA-2 computation.
On the other hand, the memory blocks of the CPUs and
GPUs, such as double data rate (DDR) memory and caches,
are located far away from the computational units. Thus,
the data transfer time between memories and computational
units can constitute a large amount of the total processing
time, which reduces the processing rate. Although CPUs and
GPUs have multiple cores to perform a large number of
hash computations in parallel to achieve high performance,
they often suffer from large power consumption, resulting in
limited energy efficiency.

In another approach, state-of-the-art FPGA-based SHA-2
accelerators are developed to be compatible with the
three characteristics of SHA-2 functions, thus significantly
improving the area and energy efficiency. However, these
accelerators can only execute either SHA-256 or SHA-512
and lack flexibility. The reason is that the calculations in the
SHA-2 functions use different word sizes (32-bit or 64-bit
words), and it is challenging for these accelerators to calculate
both 32-bit and 64-bit words. Moreover, most FPGA-based
accelerators focus only on improving a single computational
block and overlook developing an architecture for a large
amount of hash computation. Thus, these accelerators often
have poor performance when performing multiple hash cal-
culations.

To be applicable for generic applications and blockchain
mining, the SHA-2 hardware architecture should be
high-performance and flexible (supporting various SHA-2
functions) with high hardware efficiency. However, there has
been no high-performance and flexible SHA-2 hardware until
now.

In this study, we develop an MSA that achieves high
performance and flexibility with high hardware efficiency
by eliminating the weaknesses of CPUs, GPUs, and state-
of-the-art FPGA-based accelerators. There are three ideas
in the proposed MSA to achieve this purpose. Idea 1: A
multimode processing element with dual ALUs. Since the
smallest word size in the SHA-2 functions is 32 bits, the
ALU is proposed to perform the 32-bit word calculations.
In the ALU, registers (considered local memory) are located
near computational units to reduce the data transfer time.
There is a problem that a single ALU cannot perform the
SHA-384/512 functions because the calculations in SHA-
384/512 functions use 64-bit words. In addition, a single
ALU is insufficient to execute double SHA-256 computation
for blockchain mining. To solve these problems, we use
dual ALUs that can be concatenated to create one ALU for
calculations of 64-bit words. In another approach for the
concatenation of dual ALUs, the output of the first ALU
is transferred to the input of the second ALU to construct

FIGURE 3. Overview architecture of the proposed multimode SHA-2
accelerator at the system-on-chip level.

a double SHA-256 circuit for blockchain mining. Moreover,
dual ALUs can execute two independent SHA-224/256 func-
tions in parallel to double the processing rate. Because dual
ALUs can improve the performance and flexibility of the
MSA, dual ALUs are located inside each processing ele-
ment PE) of the MSA. By using dual ALUs, the PE can
execute multiple SHA-2 functions (modes); thus, it is called
a multimode processing element (M-PE). Idea 2: Pipelined
dual-ALU architecture. Although only low-cost arithmetic
logic operators are employed, the dual ALUs must use a large
number of operators for the loop calculation, approximately
50 operators. This means that the dual ALUs suffer from a
very long critical path, resulting in a low processing rate.
To shorten the critical path, we employ the pipeline tech-
nique for the dual ALUs. Accordingly, the dual ALUs have
three-stage pipelines, and the computational workload is bal-
anced for each stage. Moreover, the carry-save adder (CSA)
technique is also applied for the dual ALUs to reduce the
critical path and hardware resources. Idea 3: Nonce gen-
erator (NOG) and nonce detector (NOD) mechanisms.
In blockchain mining, the MSA must scan all possible values
of 232 32-bit nonces to find the valid nonce. To scan and
verify one nonce value, the accelerator must exchange at least
1,280-bit data (the 512-bit message input to SHA-256d1, the
256-bit hash input to SHA-256d1, the 256-bit hash input to
SHA-256d2, and the 256-bit hash output) with DDRmemory.
However, the bandwidth transmission between DDRmemory
and the accelerator is limited, which creates a long data
transfer time, thus causing the total processing time to be very
large. Optimizing the accelerator performance for blockchain
mining will be meaningless if the bandwidth transmission
between DDR memory and MSA is bottlenecked. Therefore,
NOG and NOD mechanisms are proposed to solve this prob-
lem. Concretely, the NOG can automatically generate up to

11834 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 4. High-level flowchart of the working session on FPGA.

FIGURE 5. Timing chart of the multimode processing element execution.

232 nonce values, equivalent to creating 232 message inputs
to the SHA-256d computation. On the other hand, the NOD
can automatically verify the hashing output to find a valid
nonce value inside each M-PE. Thanks to the NOG and NOD
mechanisms, the MSA performance for blockchain mining is
not reliant on the transmission bandwidth between the DDR
memory and the accelerator, thus achieving 100% hardware
efficiency.

III. PROPOSED MULTIMODE SHA-2 ACCELERATOR
A. OVERVIEW ARCHITECTURE
Fig. 3 shows the overview architecture of the proposed MSA
at the system-on-chip (SoC) level. The CPU is responsible
for controlling the operations of the entire system. In the
task of controlling the proposed accelerator, the CPU sends a
request to direct memory access (DMA) to transfer data from
the DDR memory to the MSA, where the MSA connects to
DMA via the advanced extensible interface (AXI) bus. The
communication between the CPU and the proposed MSA is
separated into many working sessions. Each working session
of the proposed system is shown in Fig. 4. Concretely, at the
start of a new session, the CPU transfers configuration data
to the proposed MSA. The configuration data are written to
CFGmemory and then are used to configure the hash function
mode of the processing element array (PEA). Afterward, the
CPU sends the input data to the proposed accelerator, includ-
ing themessage and hash inputs. Notably, the input data trans-
fer is executed in parallel with the hash computation of the

FIGURE 6. The memory organization of the MSA: (a) config memory;
(b) shared Wt memory; (c) shared Ht memory; (d) global Ht+1 memory;
(e) mining memory.

proposed MSA to accelerate the total processing rate. After
the completion of the hash computations, the hash outputs
cannot be immediately transferred to DDR memory but must
wait for a request from the CPU. Therefore, we develop a
global hash output memory to store the hash outputs to reduce
the number of DDR memory requests and increase the pro-
cessing rate. In addition, miningmemory is developed to store
the valid nonce and hash output for blockchain mining. After
the CPU finishes reading output data from global hash output
or mining memories, the working session is completed.

The proposed MSA consists of four main components:
the processing element array (PEA), memory, NOG, and
execution controller. The four components are presented as
follows: First, the PEA is the key component of the proposed
MSA that accelerates the hash computation with various
hash functions. The PEA includes sixty-four M-PEs, which
are designed to perform hash computations in pipeline and
parallel, as shown in Fig. 5. When the AXI bus is writing and
reading data to and from an M-PE, the other M-PEs of the
MSA are still executing the hash computation. Accordingly,
the data transfer time between the DDR memory and the
proposed MSA will not affect the total processing rate of the
system if the AXI bus in the system is fast enough. In our sys-
tem, we use an AXI bus with a 512-bit data width to improve
the transfer data time between the DDR memory and the
accelerator. Second, there are five types of memory, includ-
ing configuration memory, shared message (M t ) memory,
shared hash input (H t ) memory, global hash output (H t+1)
memory, and mining memory, to store the configuration data,
message, hash input, hash output, and mining results, respec-
tively. Fig. 6 presents the organization of the five types of

VOLUME 10, 2022 11835



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 7. Multimode processing element (M-PE) architecture.

TABLE 2. Operating mode of dual ALUs.

memory. As shown in Fig. 6 (a), the 512-bit configuration
memory stores configuration information for the execution
controller, NOG, and M-PEs. In Fig. 6 (b) and (c), we present
the organization of the sharedM t and H t memories. Because
M-PEs operate in parallel and pipeline, only one M-PE
receives the message and hash input data at a time. Thus,
the shared H t and H t memories need to store only enough
message and hash input data for one M-PE to minimize the
hardware resources. To continuously write data from the AXI
bus and read data to load to the M-PEs without collision, the
shared M t and H t memories are designed with two memory
banks according to the ping-pong memory mechanism [43].
In particular, while memory bank 0 writes data from the AXI
bus, memory bank 1 reads data to load to the M-PEs, and vice
versa. Since the dual ALUs inside the M-PE are developed in
the three-stage pipeline to execute three hash computations in
parallel, the sharedM t andH t memories must be designed to
store sufficient messages and hash inputs. Specifically, the six
512-bit transactions (denoted T1 to T6) stored in the shared
M t memory are three 1024-bit message inputs, and the three
512-bit transactions (denoted T7 to T9) stored in the shared
H t are three 512-bit hash inputs. In Fig. 6 (d), we present the
global H t+1 memory used to store 192 512-bit hash outputs
(denoted H0 to H191) from sixty-four M-PEs. As shown in
Fig. 6 (e), the mining memory is used to store the valid hash
output, found nonce value, status flag (equal to 0 if no valid
nonce is found and equal to 1 if the valid nonce is found), and
finish flag when the proposed MSA performs the blockchain

mining task. Third, the NOG block is used to automatically
generate up to 232 nonce values, which are employed to
update the 232 messages to the SHA-256d computation for
blockchain mining. The details of the NOG are described in
Section III-D. Fourth, the execution controller controls the
operations of the PEA, memories, and NOG.

B. MULTIMODE PROCESSING ELEMENT (M-PE)
ARCHITECTURE
In the PEA, the processing elements are named multi-
mode processing elements because they are designed to per-
form multiple SHA-2 functions for generic applications and
blockchain mining. In this section, the M-PE architecture is
clarified.

Fig. 7 illustrates the multimode processing element archi-
tecture with dual ALUs. Basically, each ALU executes the
32-bit word calculations in the message expansion and com-
pression processes of the SHA-224/256 functions. However,
one ALU cannot perform the SHA-384/512 computations
because the SHA-384/-512 functions require 64-bit word
calculations. Therefore, it is proposed that each M-PE uses
dual ALUs that can be concatenated to perform 64-bit word
calculations. The dual ALUs are ALU1 and ALU2, where
ALU1 and ALU2 obtain the 32 most significant bits (MSBs)
and the 32 least significant bits (LSBs) in the 64-bit word
calculations, respectively. Additionally, ALU1 andALU2 can
perform two independent 32-bit word calculations in parallel
to double the processing rate of the SHA-224/256 functions.
For ALU1 andALU2 to correctly perform both 32-bit and 64-
bit word calculations, the 32-bit and 64-bit arithmetic logic
operators for the calculations are processed as follows: The
two 32-bit bitwise logic operators in ALU1 and ALU2 can
be concatenated to create one 64-bit bitwise logic operator
because the bitwise logical operators, such as AND, OR, and
XOR, examine one bit at a time. In the shift and rotation
logic operators, two 32-bit operators and one 64-bit operator
execute in parallel, and the results are then selected by a mul-
tiplexer gate. In the arithmetic operator, the two 32-bit adders
in ALU1 and ALU2 can be concatenated to form one 64-bit
adder by turning the 32nd carry bit of the adder in ALU2
on or off. Overall, using dual ALUs, the M-PE can execute
two SHA-224/256 functions in parallel or perform one SHA-
384/512 function with no wasted hardware resources.

In each M-PE, the PE controller controls the concatenation
of the arithmetic logic operators in ALU1 and ALU2 by the
first bit of the two-bit mode (denoted as m) received from
the configuration memory. In addition to concatenating the
arithmetic logic operators, ALU1 and ALU2 can be concate-
nated to create a double SHA-256 (SHA-256d) circuit for
blockchain mining. Accordingly, the hash output of the SHA-
256d1 computation in ALU1 is transferred to the message
input to the SHA-256d2 computation in ALU2. The M-PE
uses the second bit of the two-bit mode to configure ALU1
and ALU2 as the SHA-256d circuit. As a result, ALU1 and
ALU2 can execute the various hash functions for generic
applications and blockchain mining, configured by a two-bit

11836 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 8. The three-stage pipelined dual ALU architecture.

mode received from the configuration memory, as shown in
Table 2. On the other hand, each M-PE can be activated
or deactivated by an enable signal from the configuration
memory to reduce the redundant power consumption. The
power overhead for the unused M-PEs is diminished by the
clock gating technique.

To optimize this system for blockchain mining, we pro-
pose a NOD in each M-PE to find the hash output of the
SHA-256d2 computation less than the target threshold, which
is used to determine the valid nonce. The detailed presenta-
tion of the NOD is described in Section III-D.

C. PIPELINED DUAL-ALU ARCHITECTURE
The dual-ALU architecture is an iteration structure, requiring
64 or 80 loops to generate the hash output. Consequently, the
dual ALUsmust contain all operators for one loop calculation
of the ME and MC processes. However, a large number of
operators in the dual ALUs can cause a long critical path,
resulting in a significantly limited processing rate. Therefore,
we propose using the pipeline technique for the dual ALU
architecture to reduce the critical path and improve the pro-
cessing rate.

Fig. 8 shows a three-stage pipelined dual ALU architecture.
According to this architecture, both the ME and MC pro-
cesses in the dual ALUs are divided into three-stage pipelines,
where the computational workload of each stage is balanced
to achieve the lowest critical path. Since the adders have the
highest computational cost, the path through the adders is
the critical path in each stage. Therefore, this architecture

FIGURE 9. Nonce generator architecture.

replaces several full adders FAs) and half adders (HAs) with
CSAs to reduce the critical path and hardware resources.
Accordingly, the hardware can be improved to be at least 14%
faster [44] when applying two CSAs to construct an adder of
four operands.

With this architecture, the ith loop calculation is executed
through the three stages. The results of the ith loop calculation
are outputted from the third stage and then fed back to the
first stage to perform the (i + 1)th loop calculation. Thus,
all 64 (at SHA-224/256) or 80 (at SHA-384/512) loops of

VOLUME 10, 2022 11837



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 10. Detailed timing chart of the proposed MSA in (a) generic
application and (b) blockchain mining.

the ME and MC processes can be completed in the dual
ALUs. Note that the shift-register method is applied to the
ME process, so we use only sixteen variablesW0, W1,. . . , and
W15 to compute and update the Wi of the last 48 or 60 loops.
To efficiently use 100% of the hardware resources of the dual
ALUs, three data flows, including messages and hash inputs,
from the sharedM t andH t memories should be used as input
data to the three-stage pipelined dual ALUs. The registers at
three stages (denoted registers 1, 2, and 3) are used to store
enough variables that the three stages can execute three data
flows in parallel. Since all stages are always busy, the dual
ALU architecture achieves 100% hardware efficiency. After
completing the 64 or 80 loops, the three results of the MC
process are added to the three hash inputs (H t ) to generate
three hash outputs (H t+1), which are then stored in the global
H t+1 memory.

D. NONCE GENERATOR AND DETECTOR FOR
BLOCKCHAIN MINING
In blockchain mining, the MSA should scan all possible
instances of 232 32-bit nonce values, equivalent to calculating
232 messages, to find a valid hash smaller than the target.
Since the bandwidth between the DDR memory and the
accelerator is limited, the writing time of the 232 messages

FIGURE 11. Implementation and verification of the proposed MSA on a
Xilinx Alveo U280 FPGA.

and the reading time of the 232 hash outputs is a bottleneck
for the process of finding the nonce. Therefore, this section
presents two mechanisms, NOGs and NODs, to improve the
processing time.

The NOG automatically updates the nonce value inside
the 512-bit messages in the shared M t memory, as shown
in Fig. 9. In each M-PE, the message to the SHA-256d1
computation is performed in ALU1. According to our shared
M t memory organization, transactions T1-T3 are 512-bit
messages to the SHA-256d1 computation in ALU1. Based
on our investigation, the nonce value is located at posi-
tion W3 of the messages to SHA-256d1 in blockchain net-
works. Therefore, the NOG repeatedly updates the W3 value,
where W3 is in bits 384 to 415 inside transactions T1-T3.
So that it is user oriented, the NOG only generates nonce
values between the start nonce and end nonce thresholds.
The NOG will send the stop signal to the execution con-
troller to stop the MSA operation if the generated nonce
exceeds the end nonce threshold. At that time, the fin-
ish flag in the mining memory is valid for the CPU to
check.

The NOD is used to compare the hash output of the
SHA-256d2 computation from ALU2 with the target value,
as shown in Fig. 7. If the hash output is less than the target,
the status flag, 32-bit found nonce and 256-bit hash output
will be written to the mining memory. After that, the NOD
will send the stop signal to the execution controller to stop
the MSA operation and turn on the finish flag in the mining
memory for the CPU to check.

To clarify the impact of the NOG and NOD, we present
a detailed timing chart of the proposed MSA in generic
applications and blockchain mining, as shown in Fig. 10.
In generic applications, the accelerator performance is highly
dependent on the AXI bus bandwidth, as shown in Fig. 10 (a).
Specifically, the accelerator performance is low since the
M-PEs have a long idle time to wait for writing and reading
data. Thanks to the NOG and NOD mechanisms, writing and
reading data between the DDR memory and the MSA are
only performed once during the process of finding the nonce.
Therefore, theM-PEs execute continuously with no idle time,
thereby maximizing the performance for blockchain mining,
as shown in Fig. 10 (b).

11838 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 12. Power and throughput of the seven MSA versions with seven
different processing element array (PEA) dimensions.

IV. VERIFICATION AND EVALUATION
In this part, the proposed architecture is verified, imple-
mented, and evaluated on a Xilinx FPGA Alveo U280
Data Center Accelerator Card (Alveo U280 FPGA), which
is a 16nm FPGA featuring more than 1,300k Look-Up
Tables (LUTs) and 2,600k Flip-flops (FFs). Thanks to the
huge resource of Alveo U280 FPGA, we can evaluate various
MSAversionswith different PEA dimensions to find themost
suitable PEA size. Besides, the FPGA Alveo U280 board has
PCIe Express 3.0, which can speed up the data transfer rate
performance between the CPU and the FPGA-based MSA to
8.0 GT/s (equivalent to 32 GB/s).

A. FPGA-BASED MSA VERIFICATION
In this section, the proposed MSA is implemented and ver-
ified on the Xilinx FPGA Alveo U280 Data Center Accel-
erator Card, as shown in Fig. 11. The experimental devices
are an Alveo U280 FPGA and a host PC with an Intel Xeon
CPUE5-2620v2@2.10GHzwith 94GBRAM.The proposed
MSA is developed on the Alveo U280 FPGA (denoted as
the FPGA-based MSA) and exchanges data with the host PC
via a Xilinx PCI Express DMA (XDMA). To maximize the
transmission bandwidth between the host PC’s DDRmemory
and the FPGA, we use the XDMA with a performance of
8.0 gigatransfers per second (GT/s), which connects to the
MSA via the 512-bit data width AXI bus. In the host PC,
we design embedded software for the FPGA-based MSA
to transmit test data and read the hash outputs. Regarding
debugging, Chipscope ILA is added to the AlveoU280 FPGA
to monitor the MSA signals. After the system-on-chip devel-
opment, the FPGA-based MSA is verified for both generic
applications and blockchain mining.

1) FPGA-BASED MSA VERIFICATION IN GENERIC
APPLICATIONS
This section verifies the accuracy of the proposed MSA for
the SHA-224, SHA-256, SHA-384, and SHA-512 computa-
tions, which are frequently performed in generic applications.
Since the messages in generic applications are usually of an

TABLE 3. Performance comparison between two MSA architectures: MSA
without the NOG and MSA with the NOG.

unknown length and value, the proposedMSA should be veri-
fied for hash computation with different bit sizes andmessage
values. Therefore, the messages are randomly generated with
various bit sizes and values for the FPGA-based MSA to
compute in the SHA-224, SHA-256, SHA-384, and SHA-512
modes. The experiment is conducted with 100,000 random
messages for each mode. For verification, the hashing output
from the globalH t+1 memory of the MSA is compared to the
hashing results computed from the software in the host PC.
The experimental results show that FPGA-based MSA works
100% correctly for the SHA-224, SHA-256, SHA-384, and
SHA-512 computations.

2) FPGA-BASED MSA VERIFICATION IN BLOCKCHAIN
MINING
This section verifies the correctness of the proposed MSA
for the SHA-256d computation, which is used in blockchain
mining. The 1024-bit message to the SHA-256d computa-
tion is obtained from the block headers in the blockchain
network. For the sake of saving hardware resources, the
1024-bit message is computed in both the host PC (con-
sidered software) and FPGA-based MSA (considered hard-
ware). The first 512-bit message to SHA-256d0 is computed
in the host PC. Then, the hashing output of SHA-256d0
and the final 512-bit message to SHA-256d1 are loaded to
the FPGA-based MSA to find a valid 32-bit nonce. In the
blockchain mining mode, the FPGA-based MSA executes
the SHA-256d1 and SHA-256d2 computations until the valid
nonce is found. For verification, the found valid nonce and
hash output from the mining memory of the proposed MSA
are compared with the available results on the website of the
blockchain network. The experiment uses the 1024-bit mes-
sage of block headers from various blockchain networks, such
as Bitcoin, BitcoinCash, Bitcoin Atom, Bitcoin V, BitcoinSV,
FreiCoin, ZetaCoin, DeVault, Deutsche eMark, Embargo-
Coin, Susucoin, FreeCash, and Kryptofranc. The experimen-
tal results show that the FPGA-based MSA operates 100%
correctly in the mining process on many different blockchain
networks.

B. EVALUATING THE IMPACT OF THE PROPOSED
TECHNIQUES INSIDE THE MSA
This section presents the suitable PEA dimension for the
proposed MSA and the impact of the nonce generator for
blockchain mining. Throughout this section, we use the two
quantities of power and throughput for evaluation. The power
consumption is obtained using the Xilinx Power Estimator

VOLUME 10, 2022 11839



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

TABLE 4. Comparison between the proposed dual ALU architecture and related works based on FPGA synthesis results.

tool in Vivado version 2019.2. The throughput, measured
in megahashes per second (Mhps), is calculated by eq. (1),
where #Hash is the number of generated hashes, TWR_MSA
is the time to write data from the DDR memory to the
MSA, TMSA_EXE is the execution time of the MSA, and
S(TWR_MSA,TMSA_EXE) is the total time of the data writing
and MSA execution.

Throughput =
#Hash

S(TWR_MSA,TMSA_EXE)
(1)

Note that the throughput estimation does not consider the
time for reading data from the accelerator to DDR memory
because the data reading process can be performed in parallel
with the execution of the M-PEs, as shown in Fig. 10 (a).

1) SUITABLE PEA DIMENSION FOR THE PROPOSED MSA
The proposed MSA uses multiple M-PEs to accelerate the
SHA-2 computations. Theoretically, increasing the number
of M-PEs (the PEA dimension) may improve the perfor-
mance of the MSA. However, increasing the PEA dimension
will greatly increase the power consumption of the MSA.
Meanwhile, the MSA processing rate will not increase much
because of the bandwidth bottleneck between the DDRmem-
ory and the accelerator. In addition, the large PEA dimension
can make the arbiters and the global H t+1 memory more
complex, which increases the critical path. In contrast, if a
PEA dimension is excessively small, theMSAwill have a low
performance. To find a suitable PEA dimension, this section
evaluates the throughput and power of MSAs with different
PEA dimensions.

In Fig. 12, we present the throughput and power of the
seven MSA versions with seven PEA dimensions: 1 × 1,
2 × 2, 4 × 4, 8 × 4, 8 × 6, 8 × 8, and 8 × 10. Overall, the
throughput and power of the MSA increase with increasing
PEA dimensions. Specifically, the MSAs with 1×1 to 8×10

PEA dimensions consume 0.15 W to 7.34 W, respectively.
For the SHA-224/256 computations, the MSAs with 1× 1 to
8 × 10 PEA dimensions deliver 7.21 Mhps to 103.81 Mhps,
respectively. For the SHA-384/512 computations, the perfor-
mance of the MSAs with 1 × 1 to 8 × 10 PEA dimensions
is 2.93 Mhps to 49.83 Mhps, respectively. On the other hand,
the MSA performance for the SHA256d computation only
increases when the PEA dimension increases from 1 × 1 to
8×8, reaching 3.91Mhps to 250Mhps, respectively. Because
ALU1 and ALU2 of each M-PE compute 64 loops in SHA-
256d mode, using 64 M-PEs (8 × 8 dimensions) will enable
the M-PEs to execute continuously with no idle status. If the
PEA dimension exceeds 64 M-PEs, some of the M-PEs will
stop after executing 64 loops, leading to wasted execution
time. The proof is that the throughput of SHA-256d reaches
the saturation threshold of 250 Mhps with 8 × 10 PEA
dimensions.

Based on the above analysis, the 8 × 8 PEA dimension is
the most suitable for the MSA to maximize the SHA-256d
throughput and improve the SHA-224/256/384/512 through-
put while maintaining reasonable power consumption. There-
fore, the 8 × 8 PEA dimension is selected for the
proposed MSA.

2) THE IMPACT OF THE NONCE GENERATOR (NOG) FOR
BLOCKCHAIN MINING
The above analysis shows that the SHA-256d throughput is
superior to the SHA224/256/384/512 throughput and peaks
at 250 Mhps. The main reason for the excellent SHA256d
throughput is that the NOG and NOD help to reduce the
bandwidth pressure between the DDRmemory and theMSA.
Because this evaluation does not consider the data reading
from the MSA to DDR memory, we only evaluate the NOG.
To clarify the impact of the NOG, this section analyzes the

11840 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

TABLE 5. Comparison of hardware efficiency between the proposed MSA and FPGA-based works.

throughput and power of the MSA with and without the
proposed NOG.

To demonstrate that the NOG can maximize the SHA256d
throughput, we evaluate two versions of the MSA architec-
ture: the MSA without the NOG and the MSA with the NOG.
In this experiment, the two architectures try 232 nonce values
by performing the SHA256d computation of 232 messages.
In the MSA without the NOG, the 232 messages are trans-
mitted from the DDR memory 232 times. However, the MSA
with the NOG receives only one message from the DDR
memory, and the NOGwill update the 232 32-bit nonce values
to generate 232 messages.
Table 3 describes the performance comparison between

the two MSA architectures when performing the SHA256d
computation for 232 messages. Specifically, the MSA with
the NOG is 4.17 times (250 vs. 62.5) better than the MSA
without the NOG in terms of throughput. Additionally, the
MSAwith the NOG is not much better than the MSAwithout
theNOG in terms of power consumption. Therefore, theMSA
with the NOG is approximately 4.17 times (38.05 vs. 9.57)
higher than the MSA without the NOG in terms of energy
efficiency.

Using the NOG, the MSA can achieve the maximum per-
formance for the SHA256d computation. Therefore, the NOG
is integrated into the proposed MSA to achieve 250 Mhps for
blockchain mining.

C. PERFORMANCE EVALUATION
1) EVALUATING THE PROPOSED DUAL ALU ARCHITECTURE
In the proposed MSA, the dual ALUs are the most impor-
tant component to accelerate the computational performance
of SHA-2 functions. On the other hand, most previous

SHA-2 works only focus on optimizing the SHA-2 ALU.
Therefore, this section presents a performance evaluation
between the proposed dual ALU architecture and related
ALU architectures.

For a fair comparison with the existing SHA-2 ALU archi-
tectures such as [11], [27], [28], [45], [46], we have synthe-
sized the proposed dual ALU circuits on two Xilinx Virtex
FPGA boards, including Virtex XCV200-2 FF324 and Vir-
tex 2 XC2VP20-7 FG676. Note that the proposed dual ALU
architecture is discarded the final adders, used for hashing
completion after message expansion and compression pro-
cesses, to be similar to the ALU architectures in [27], [28].
In contrast, the proposed dual ALU architecture is kept intact
for comparison with the related ALU architectures in [11],
[45], [46]. Comparative factors include throughput, area effi-
ciency, and flexibility. During our experiment, we used an
Xilinx ISE version 10.1.

The throughput, measured in megahashes per second
(Mhps), is calculated by eq. (2), where #Hash is the number
of generated hashes per working session, frequency is the
maximum operating frequency obtained from ISE synthesis
results, and #Cycle is the number of clock cycles to generate
#Hash.

Throughput =
#Hash× Frequency

#Cycle
(2)

Then, hardware efficiency is calculated by eq. (3).

Area Efficiency =
Throughput

Area
(3)

Table 4 shows the throughput and area efficiency com-
parisons between the proposed dual ALU architecture and
previous ALU architectures on the Virtex XCV200 and Vir-
tex 2 XC2VP20 boards.

VOLUME 10, 2022 11841



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

FIGURE 13. Comparison of the proposed MSA with a state-of-the-art CPU and GPU: (a) Power, (b) throughput, and (c) energy efficiency comparisons.

On the Virtex XCV200 board, the proposed dual ALU
architecture occupies 3,449 slices, operates at a maximum
frequency of 101 MHz, and reaches 3.156, 1.263, and
1.578 Mhps for SHA256, SHA512, and SHA256d compu-
tations, respectively. In SHA256 mode, the proposed dual
ALU architecture is 2 times (3.156 vs. 1.563) and 1.9 times
(3.156 vs. 1.656) higher than [27] and [28] in throughput,
respectively, and 1.7 times (0.92 vs. 0.53) and 1.4 times
(0.92 vs 0.65) better than [27] and [28] in area efficiency,
respectively. In SHA512 mode, the proposed dual ALU
architecture is 2 times (1.263 vs. 0.625) and 1.5 times
(1.263 vs. 0.828) greater than [27] and [28] in throughput,
respectively, and 1.8 times (0.37 vs. 0.21) and 1.1 times
(0.37 vs 0.33) better than [27] and [28] in area efficiency,
respectively.

On the Virtex 2 XC2VP20 board, the proposed dual
ALU architecture utilizes 3,695 slices, operates at a maxi-
mum frequency of 165 MHz, and delivers 5.077, 2.037, and
2.538 Mhps for SHA256, SHA512, and SHA256d computa-
tions, respectively. In SHA256 mode, the proposed dual ALU
architecture is 40.6 times (5.077 vs. 0.125) and 21.2 times
(5.077 vs. 0.239) higher than [11] and [45] in throughput,
respectively, and 4.7 times (1.37 vs. 0.29) and 6.9 times
(1.37 vs 0.20) better than [11] and [45] in area efficiency,
respectively. In SHA512mode, the proposed dual ALU archi-
tecture is 2.3 times (2.037 vs. 0.901) greater than [46] in
throughput, and 1.3 times (0.55 vs. 0.42) higher than [46] in
area efficiency.

In addition to comparing throughput and area efficiency,
we evaluate the flexibility between the proposed dual ALU
architecture and the previous ALU architectures in [11],
[27], [28], [45], [46]. Particularly, the proposed dual ALU
architecture can be configured by embedded software to
change between many SHA-2 functions (modes) immedi-
ately. Although the ALU architectures in [27], [28] are con-
figurable, those ALUs can only perform SHA-256 and SHA-
512 but SHA256d.Meanwhile, the ALU architectures in [11],
[45], [46] are not configurable and can only execute a single

hash function. Therefore, the proposed dual ALU architecture
has more flexibility than previous ALU architectures.

2) MSA VS. FPGA-BASED WORKS
This section presents a comparison of the throughput, area,
and energy efficiencies between the proposedMSA and state-
of-the-art designs based on the results of the FPGA evalua-
tion, as shown in Table 5. We evaluate them at two levels: the
standalone core and SoC.

At the standalone core level, only the dual ALUs (ALU1
and ALU2) and PE controller of the proposed MSA are
synthesized and evaluated on the Xilinx Alveo U280 FGPA.
The MSA needs 210,880 LUTs and 366,208 flip-flops (FFs),
operates at a maximum frequency of 650 MHz, and con-
sumes 13.63W. The throughput of the proposedMSA reaches
1,280 Mhps, 580 Mhps, and 650 Mhps for the SHA256,
SHA512, and SHA256d computations, respectively. Note
that the throughput of the accelerators in [20] and [36] is
calculated based only on the number of generated hashes
over the execution time inside the computational unit (ALU)
without considering the transmission time between the DDR
memory and the accelerator. For a fair comparison, the
throughput of the proposed MSA is also calculated similarly
to that of the designs in [20] and [36]. In SHA256 mode,
the proposed MSA is 6.46 times (6.07 vs. 0.94) and 8 times
(93.91 vs. 11.74) better than [20] in area and power efficien-
cies, respectively. In SHA512 mode, the proposed MSA is
6.42 times (2.44 vs. 0.38) and 1.46 times (2.44 vs. 1.67)
greater than [20] and [36] in area efficiency, respectively, and
is 7.34 times (37.67 vs. 5.13) better [20] in energy efficiency.

At the SoC level, the full circuit of the proposed
MSA is implemented and evaluated on the Xilinx Alveo
U280 FGPA. The proposedMSAoccupies 285,754 LUTs and
522,944 FFs, operates at 250 MHz, and consumes 6.57 W.
The throughput of the proposed MSA reaches 99.7 Mhps,
47.5 Mhps, and 250 Mhps for SHA256, SHA512, and
SHA256d computations, respectively. Note that the through-
put of the proposed MSA is calculated by eq. (1). Compared

11842 VOLUME 10, 2022



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

with the state-of-the-art works in SHA256 mode, the pro-
posed MSA is 5.83 times (0.35 vs. 0.06) and 1.94 times
(0.35 vs. 0.18) higher than [38] and [47] in area efficiency,
respectively, and is 7.3 times (15.18 vs. 2.08) and 3.99 times
(15.18 vs. 3.8) greater than [38] and [47] in energy effi-
ciency, respectively. In SHA512 mode, the proposed MSA
is 1.31 times (0.17 vs. 0.13) and 1.63 times (7.23 vs. 3.08)
better than [48] in area and energy efficiencies, respectively.

In addition to comparing area and energy efficiencies,
we evaluate the flexibility between the proposed MSA and
the accelerators in [20], [36], [38], [47], and [48]. Specif-
ically, the proposed MSA can be configured by embedded
software to switch between many SHA-2 functions (modes)
instantly. Additionally, the accelerators in [20], [36], [38],
[47], and [48] are fixed hardware for performing only a sin-
gle hash function. Therefore, the proposed MSA has higher
flexibility than state-of-art FPGA-based works.

3) MSA VS. A STATE-OF-THE-ART CPU AND GPU
Since state-of-the-art FPGA-based accelerators have poor
performance and low flexibility, the proposed MSA needs
to be evaluated with other high-performance and flexible
hardware platforms that can execute a large number of
hash computations with various SHA-2 modes. Therefore,
this section evaluates the proposed MSA in comparison
with high-performance hardware platforms, such as CPUs
and GPUs. Concretely, this section compares the power,
throughput, and energy efficiency of the proposed MSA with
the most powerful CPU and GPU when executing SHA-
224/256, SHA-384/512, and SHA-256d in two scenarios:
single-thread (or one activated M-PE of the proposed MSA)
and multithread (or the full sixty-four activated M-PEs of the
proposed MSA).

Fig. 13 (a)-(c) compares the power, throughput, and energy
efficiency of three hardware platforms: the proposed MSA
on the Xilinx Alveo U280 FGPA (FPGA-based MSA), the
Intel i9 10940X CPU, and the RTX 3090 GPU. It should
be noted that each hardware platform consumes a different
amount of static power even without running SHA-2 pro-
grams. Specifically, the static power of the CPU, GPU, and
FPGA-basedMSA is 13, 31, and 10.9W. However, the power
for SHA-2 execution is known as dynamic power. For a
fair comparison, the power consumption considered in this
section is only dynamic power. Fig. 13 (a) shows that the
GPU consumes the most power regardless of the experimen-
tal scenario. Additionally, the CPU consumes approximately
half as much power as the GPU. Regarding the most energy-
efficient platform, the FPGA-based MSA power is at least
9.4 times (30 vs. 3.2) and 36.6 times (117 vs. 3.2) less
than the CPU and GPU power, respectively. In the perfor-
mance comparison, Fig. 13 (b) presents the throughput of
SHA224/256, SHA384/512, and SHA256d performed on the
CPU, GPU, and FPGA-based MSA. When performing the
SHA-2 computations in a single thread, the CPU and GPU
platforms exhibit poor performance, less than 1.7 Mhps.
In the single thread experiment, the FPGA-based MSA deliv-

ers at least 2.9 Mhps, which is significantly better than the
CPU and GPU. For multithread execution, the GPU outper-
forms the CPU and MSA since the GPU has a large number
of cores and threads. Specifically, the GPU performance
peaks at 943 Mhps for SHA-224/256, which is 58.9 times
(943 vs. 16) and 9.5 times (943 vs. 99.7) higher than that
of the CPU and FPGA-based MSA, respectively. Note that
the FPGA-based MSA is less than 1.6 times (250 vs. 411)
less than the GPU in SHA-256d throughput thanks to the
proposed NOG and NOD mechanisms. Despite being infe-
rior in performance to the GPU, the FPGA-based MSA’s
energy efficiency is still better than that of the GPU since
the FPGA-based MSA power is very low compared to the
GPU power. As shown in Fig. 13 (c), the energy efficiency of
the FPGA-based MSA reaches 38.05 Mhps/W for the SHA-
256d computation, which is 543.6 times (38.05 vs. 0.07) and
29 times (38.05 vs. 1.3) higher than that of the CPU andGPU,
respectively.

V. CONCLUSION
The SHA-2 cryptographic functions play an important role
in many applications, from ensuring data security and
integrity in network security to maintaining the distribution
of blockchain networks. Developing hardware architectures
with high performance and flexibility for a wide range of
SHA-2 applications has thus become an attractive research
trend. Unfortunately, it is difficult to achieve state-of-the-
art SHA-2 architectures with high performance and flexibil-
ity with high hardware efficiency. In this study, we solve
the above problems by developing a multimode SHA-2
accelerator (MSA) at the system-on-chip level. Specifi-
cally, the proposed MSA applies several optimization tech-
niques, including multiple multimode processing elements,
dual pipeline ALUs, nonce generators, and nonce detectors,
to achieve this purpose. The proposed MSA is implemented
and verified on the Xilinx Alveo U280 FPGA. With FPGA
Xilinx 16 nm FinFET technology, the proposedMSA reaches
a maximum processing rate of 250Mhps in SHA-256d mode.
The experimental results on the FPGA show that the MSA
not only achieves high performance and hardware efficiency
but also has superior flexibility compared to previous works.
Comparing general hardware platforms such as CPUs and
GPUs, the proposedMSA is significantly better than the Intel
i9-10940X CPU and RTX 3090 GPU in energy efficiency.

Overall, our accelerator supports only the hash functions
of the SHA-2 family. However, data security applications
and blockchain mining require the use of various crypto-
graphic hash algorithms, such as SHA-3, BLAKE, andMD-5.
Therefore, developing high-performance and power-efficient
hardware that can support more hash functions will be our
research direction in the near future.

APPENDIX
The synthesized results on the FPGA, the C code for the
CPU, and the Cuda code for the GPU can be found at
https://github.com/archlab-naist/MSA_Luan/.

VOLUME 10, 2022 11843



H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

REFERENCES
[1] Q. H. Dang, ‘‘Secure hash standard,’’ Federal Inf. Process. Standards

Publication, 2015, pp. 180–184.
[2] X. Wang, Y. L. Yin, and H. Yu, ‘‘Finding collisions in the full SHA-

1,’’ in Proc. 25th Annu. Int. Conf. Adv. Cryptol. Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 17–36.

[3] M. J. Dworkin, ‘‘Sha-3 standard: Permutation-based hash and extendable-
output functions,’’ 2015.

[4] H. E. Michail, G. S. Athanasiou, V. Kelefouras, G. Theodoridis, and
C. E. Goutis, ‘‘On the exploitation of a high-throughput SHA-256 FPGA
design for HMAC,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 5,
no. 1, pp. 1–28, Mar. 2012.

[5] M. Juliato and C. Gebotys, ‘‘A quantitative analysis of a novel SEU-
resistant SHA-2 and HMAC architecture for space missions security,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 49, no. 3, pp. 1536–1554,
Jul. 2013.

[6] H. Choi and S. C. Seo, ‘‘Optimization of PBKDF2 using HMAC-SHA2
and HMAC-LSH families in CPU environment,’’ IEEE Access, vol. 9,
pp. 40165–40177, 2021.

[7] W. Shan, W. Dai, C. Zhang, H. Cai, P. Liu, J. Yang, and L. Shi, ‘‘TG-
SPP: A one-transmission-gate short-path padding for wide-voltage-range
resilient circuits in 28-nm CMOS,’’ IEEE J. Solid-State Circuits, vol. 55,
no. 5, pp. 1422–1436, May 2020.

[8] P. Gallagher, ‘‘Digital signature standard (DSS),’’ Federal Inf. Process.
Standards Publications, 2013, pp. 186–193.

[9] A. Coughlin, G. Cusack, J.Wampler, E. Keller, and E.Wustrow, ‘‘Breaking
the trust dependence on third party processes for reconfigurable secure
hardware,’’ in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, New York, NY, USA, 2019, pp. 282–291.

[10] M. Feldhofer and C. Rechberger, ‘‘A case against currently used hash
functions in RFID protocols,’’ inProc. Int. Conf. MoveMeaningful Internet
Syst., AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-CIAO, MONET.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 372–381.

[11] R. García, I. Algredo-Badillo, M. Morales-Sandoval, C. Feregrino-Uribe,
and R. Cumplido, ‘‘A compact FPGA-based processor for the secure hash
algorithm SHA-256,’’ Comput. Electr. Eng., vol. 40, no. 1, pp. 194–202,
Jan. 2014.

[12] F. Tschorsch and B. Scheuermann, ‘‘Bitcoin and beyond: A technical
survey on decentralized digital currencies,’’ IEEE Commun. Surveys Tuts.,
vol. 18, no. 3, pp. 2084–2123, 3rd Quart., 2016.

[13] H. Michail, A. Kakarountas, A. Milidonis, and C. Goutis, ‘‘A top-down
design methodology for ultrahigh-performance hashing cores,’’ IEEE
Trans. Dependable Secure Comput., vol. 6, no. 4, pp. 255–268, Oct. 2009.

[14] F. Wang, Y. Chen, R. Wang, A. O. Francis, B. Emmanuel, W. Zheng, and
J. Chen, ‘‘An experimental investigation into the hash functions used in
blockchains,’’ IEEE Trans. Eng. Manag., vol. 67, no. 4, pp. 1404–1424,
Nov. 2020.

[15] A. A. Monrat, O. Schelén, and K. Andersson, ‘‘A survey of blockchain
from the perspectives of applications, challenges, and opportunities,’’ IEEE
Access, vol. 7, pp. 117134–117151, 2019.

[16] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, ‘‘A survey on consensus mechanisms and mining strategy man-
agement in blockchain networks,’’ IEEE Access, vol. 7, pp. 22328–22370,
2019.

[17] T. H. Tran, H. L. Pham, T. D. Phan, and Y. Nakashima, ‘‘BCA: A 530-mW
multicore blockchain accelerator for power-constrained devices in securing
decentralized networks,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68,
no. 10, pp. 1–14, Oct. 2021.

[18] K. J. O’Dwyer and D. Malone, ‘‘Bitcoin mining and its energy footprint,’’
in Proc. 25th IET Irish Signals Syst. Conf. China-Ireland Int. Conf. Inf.
Communities Technol. (ISSC/CIICT), 2014, pp. 280–285.

[19] S. Valfells and J. H. Egilsson, ‘‘Minting money with megawatts [point of
view],’’ Proc. IEEE, vol. 104, no. 9, pp. 1674–1678, Sep. 2016.

[20] R. Martino and A. Cilardo, ‘‘A flexible framework for exploring,
evaluating, and comparing SHA-2 designs,’’ IEEE Access, vol. 7,
pp. 72443–72456, 2019.

[21] R. Martino and A. Cilardo, ‘‘Designing a SHA-256 processor for
blockchain-based IoT applications,’’ Internet Things, vol. 11, Sep. 2020,
Art. no. 100254.

[22] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, ‘‘Cost-efficient
SHA hardware accelerators,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 8, pp. 999–1008, Aug. 2008.

[23] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido, and
M. Morales-Sandoval, ‘‘FPGA-based implementation alternatives
for the inner loop of the secure hash algorithm SHA-256,’’ Microprocess.
Microsyst., vol. 37, no. 6, pp. 750–757, Aug. 2013.

[24] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane, ‘‘Optimi-
sation of the SHA-2 family of hash functions on FPGAs,’’ in Proc. IEEE
Comput. Soc. Annu. Symp. Emerg. VLSI Technol. Arch. (ISVLSI), 2006,
pp. 317–322.

[25] H. E. Michail, G. S. Athanasiou, G. Theodoridis, and C. E. Goutis, ‘‘On the
development of high-throughput and area-efficient multi-mode crypto-
graphic hash designs in FPGAs,’’ Integration, vol. 47, no. 4, pp. 387–407,
Sep. 2014.

[26] R. Ramanarayanan, S. Mathew, F. Sheikh, S. Srinivasan, A. Agarwal,
S. Hsu, H. Kaul, M. Anders, V. Erraguntla, and R. Krishnamurthy,
‘‘18 Gbps, 50 mW reconfigurable multi-mode SHA hashing accelerator
in 45 nm CMOS,’’ in Proc. ESSCIRC, Sep. 2010, pp. 210–213.

[27] R. Glabb, L. Imbert, G. Jullien, A. Tisserand, and N. Veyrat-Charvillon,
‘‘Multi-mode operator for SHA-2 hash functions,’’ J. Syst. Archit., vol. 53,
nos. 2–3, pp. 127–138, Feb. 2007.

[28] A. Hodjat, P. Schaumont, and I. Verbauwhede, ‘‘Architectural design
features of a programmable high throughput AES coprocessor,’’
in Proc. Int. Conf. Inf. Technol., Coding Comput. (ITCC), 2004,
pp. 498–502.

[29] N. Sklavos and O. Koufopavlou, ‘‘Implementation of the SHA-2 hash fam-
ily standard using FPGAs,’’ J. Supercomput., vol. 31, no. 3, pp. 227–248,
Mar. 2005.

[30] W. Sun, H. Guo, H. He, and Z. Dai, ‘‘Design and optimized implementation
of the SHA-2(256, 384, 512) hash algorithms,’’ in Proc. 7th Int. Conf.
ASIC, Oct. 2007, pp. 858–861.

[31] L. V. T. Duong, N. T. T. Thuy, and L. D. Khai, ‘‘A fast approach for
bitcoin blockchain cryptocurrency mining system,’’ Integration, vol. 74,
pp. 107–114, Sep. 2020.

[32] V. Suresh, S. Satpathy, and S. Mathew, ‘‘Bitcoin mining hardware accel-
erator with optimized message digest and message scheduler datapath,’’
U.S. Patent 15 274 200, Mar. 29, 2018.

[33] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Optimized SHA-
256 datapath for energy-efficient high-performance Bitcoin mining,’’
U.S. Patent 10 142 098, Nov. 27, 2018.

[34] V. B. Suresh, S. K. Satpathy, and S. K. Mathew, ‘‘Energy-efficient
bitcoin mining hardware accelerators,’’ U.S. Patent 10 313 108,
Jun. 4, 2019.

[35] H. L. Pham, T. H. Tran, T. D. Phan, V. T. Duong Le, D. K. Lam,
and Y. Nakashima, ‘‘Double SHA-256 hardware architecture with com-
pact message expander for bitcoin mining,’’ IEEE Access, vol. 8,
pp. 139634–139646, 2020.

[36] Y. Zhang, Z. He, M. Wan, M. Zhan, M. Zhang, K. Peng, M. Song, and
H. Gu, ‘‘A new message expansion structure for full pipeline SHA-2,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 4, pp. 1553–1566,
Apr. 2021.

[37] V. D. Phan, H. L. Pham, T. H. Tran, and Y. Nakashima, ‘‘High performance
multicore SHA-256 accelerator using fully parallel computation and local
memory,’’ in Proc. IEEE Symp. Low-Power High-Speed Chips (COOL
CHIPS), Apr. 2021, pp. 1–3.

[38] T. H. Tran, H. L. Pham, and Y. Nakashima, ‘‘A high-performance
multimem SHA-256 accelerator for society 5.0,’’ IEEE Access, vol. 9,
pp. 39182–39192, 2021.

[39] R. Martino and A. Cilardo, ‘‘SHA-2 acceleration meeting the needs
of emerging applications: A comparative survey,’’ IEEE Access, vol. 8,
pp. 28415–28436, 2020.

[40] I. Ahmad and A. Shoba Das, ‘‘Hardware implementation analysis of SHA-
256 and SHA-512 algorithms on FPGAs,’’ Comput. Electr. Eng., vol. 31,
no. 6, pp. 345–360, Sep. 2005.

[41] M. Rahouti, K. Xiong, and N. Ghani, ‘‘Bitcoin concepts, threats,
and machine-learning security solutions,’’ IEEE Access, vol. 6,
pp. 67189–67205, 2018.

[42] J. Taskinsoy, ‘‘Bitcoin and Turkey: A goodmatch or a perfect storm,’’ SSRN
Electron. J., Oct. 2019, doi: 10.2139/ssrn.3477849.

[43] Y. Joo and N. McKeown, ‘‘Doubling memory bandwidth for network
buffers,’’ in Proc. IEEE INFOCOM, vol. 2, 1998, pp. 808–815.

[44] T. Kim, W. Jao, and S. Tjiang, ‘‘Circuit optimization using carry-save-
adder cells,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 17, no. 10, pp. 974–984, Oct. 1998.

[45] M. Kim, D. G. Lee, and J. Ryou, ‘‘Compact and unified hard-
ware architecture for SHA-1 and SHA-256 of trusted mobile com-
puting,’’ Pers. Ubiquitous Comput., vol. 17, no. 5, pp. 921–932,
Jun. 2013.

[46] G. S. Athanasiou, C. E. Goutis, G. Theodoridis, and H. E. Michail,
‘‘Optimising the SHA-512 cryptographic hash function on FPGAs,’’ IET
Comput. Digit. Techn., vol. 8, no. 2, pp. 70–82, 2014.

11844 VOLUME 10, 2022

http://dx.doi.org/10.2139/ssrn.3477849


H. L. Pham et al.: High-Efficiency FPGA-Based Multimode SHA-2 Accelerator

[47] M. Kammoun, M. Elleuchi, M. Abid, and A. M. Obeid, ‘‘HW/SW archi-
tecture exploration for an efficient implementation of the secure hash
algorithm SHA-256,’’ J. Commun. Softw. Syst., vol. 17, no. 2, pp. 87–96,
2021.

[48] A. Al Khas and I. Cicek, ‘‘SHA-512 based wireless authentication scheme
for smart battery management systems,’’ in Proc. 8th Int. Conf. Renew.
Energy Res. Appl. (ICRERA), Nov. 2019, pp. 968–972.

HOAI LUAN PHAM (Graduate Student Member,
IEEE) received the bachelor’s degree in computer
engineering from Vietnam National University
Ho Chi Minh City (VNUHCM)—University of
Information Technology, Vietnam, in 2018, and
the M.S. degree in information science from
the Nara Institute of Science and Technology
(NAIST), Japan, in 2020, where he is currently
pursuing the Ph.D. degree. His research interests
include blockchain technology and cryptography.

THI HONG TRAN (Member, IEEE) received
the bachelor’s degree in physics and the mas-
ter’s degree in microelectronics from Vietnam
National University Ho Chi Minh City
(VNU-HCM)—University of Science, Vietnam,
in 2008 and 2012, respectively, and the Ph.D.
degree in information science from the Kyushu
Institute of Technology, Japan, in 2014. From
January 2015 to September 2021, she has been
with the Nara Institute of Science and Technology

(NAIST), Japan, as a full-time Assistant Professor. Since October 2021,
she has been with Osaka City University, Japan, as a full-time Lecturer,
and NAIST as a Visiting Associate Professor. Her research interests include
digital hardware circuit design, algorithms related to wireless communica-
tion, communication security, blockchain technology, SHA-2, SHA-3, and
cryptography. She is a Regular Member of IEEE, IEICE, and REV-JEC.

VU TRUNG DUONG LE (Graduate StudentMem-
ber, IEEE) received the B.E. degree in IC and hard-
ware design from Vietnam National University
Ho Chi Minh City (VNUHCM)—University of
Information Technology, in 2020. He is currently
pursuing the M.S. degree with the Nara Institute
of Science and Technology (NAIST), Japan. His
research interests include blockchain technology
and cryptography.

YASUHIKO NAKASHIMA (Senior Member,
IEEE) received the B.E., M.E., and Ph.D. degrees
in computer engineering from Kyoto University,
in 1986, 1988, and 1998, respectively. He was
a Computer Architect with the Computer and
System Architecture Department, Fujitsu Ltd.,
from 1988 to 1999. From 1999 to 2005, he was an
Associate Professor with the Graduate School of
Economics, Kyoto University. Since 2006, he has
been a Professor with the Graduate School of

Information Science, Nara Institute of Science and Technology. His research
interests include computer architecture, emulation, circuit design, and accel-
erators. He is a fellow of IEICE, a Senior Member of IPSJ, and a member of
the IEEE CS and ACM.

VOLUME 10, 2022 11845


