
Received December 7, 2021, accepted January 21, 2022, date of publication January 25, 2022, date of current version February 9, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3146287

Enabling Type Checking on Columns in Data
Frame Libraries by Abstract Interpretation
YUNGYU ZHUANG , (Member, IEEE), AND MING-YANG LU
Department of Computer Science and Information Engineering, National Central University, Taoyuan 32001, Taiwan

Corresponding author: YungYu Zhuang (yungyu@ieee.org)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 107-2221-E-008-024-MY3.

ABSTRACT Data frames are a tabular data structure widely used in transforming data to an appropriate form
in data analysis, especially in data wrangling. However, when data frames are implemented with libraries
rather than supported at the language level, it is hard to find out errors due to the limitation of type checking on
columns. Data scientists may encounter errors due to missing column labels or inconsistent types, especially
when they reuse code snippets for new data. These errors are usually left to runtime, and it is sometimes
difficult to find out where the problems are. To address this issue, we propose using abstract interpretation to
perform type checking on data frame columns. We defined the type for data frames based on column labels
and developed semantics to verify the typing in general operations. A static checker can be implemented
based on the semantics to help programmers quickly fix errors without executing the code. To show the
feasibility, we implemented a proof-of-concept for the pandas library as an example, PDChecker, to discuss
the limitation and usage. It is then used to compare the functionalities with existing solutions. The results
show our approach can fulfill the function of type checking for data frames. Supporting more data frame
operations is included in our future work.

INDEX TERMS Data frames, type checking, source code analysis, static program analysis, data wrangling,
computer languages, programming, programming environments, software tools.

I. INTRODUCTION
Data wrangling, also known as data munging, is an essential
step in data science. It is the process of transforming raw
data to a format suitable for data analysis. In order to make
data suitable and usable in the later stages of the analytic
process, data have to be cleaned, extracted, merged, and
reshaped. Thus, the process of data wrangling is often the
most time-consuming task in data analysis, and how to effec-
tively and efficiently transform data is a challenge actively
discussed by many research [1], [2].

Data frames are a widely used data structure in data sci-
ence, especially in data wrangling. It is two-dimensional
and contains tabular data, including row labels and column
labels. Under the hood, a data frame is a list of vectors that
have the same length, and each vector represents a column
of the data frame [3]. Data scientists can use data frames
to store raw data, filter/merge data based on certain condi-
tions, and universally apply specific operations to data. The
idea of data frames might come from relational database

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

management systems (RDBMS) and spreadsheet programs,
but data frames are bound to programming techniques more
tightly and are usually implemented with object-oriented
programming. Data frame objects are first proposed in the
White book of S language [4] and followed byR language [5].
As what a relational database can do, data frames support var-
ious relational operations such as union, difference, and inter-
section. However, the data in data frames are ordered and have
no primary key. Data frames are used as other data structures
in programming and can benefit from several programming
techniques like method chaining and higher-order function
mapping (apply-to-all). Besides R language, recently data
frames are also supported in many languages and libraries for
data analysis, for example the pandas library [6] on Python
language, the Frames library [7] on Haskell language, the
frameless library [8] on Scala language, and Gamma lan-
guage [9]. Among these languages, Python seems the most
often used and popular one to recommend an aspiring data
scientist to learn first, according to the worldwide survey
conducted by Kaggle in these years [10], [11]. The features
attracting programmers might include dynamically typing,
C-like syntax, and code readability [12]. Most of all, a large

14418 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-9246-3322
https://orcid.org/0000-0002-7639-0696


Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

number of high-quality libraries and good community sup-
port make Python suitable for programming in research and
industry projects [13]. For example, SciPy Stack [14], [15],
the packages of which form an ecosystem that makes it
easy to carry out the whole process of data analysis, includ-
ing NumPy [16], [17], Matplotlib [18], IPython [19], and
pandas [6]. Programmers can conduct relational operations
as in SQL [20] and seamlessly pass data between libraries
for analysis and visualization; no explicit transformation is
needed.

However, providing data frames with libraries such as
pandas lacks the language support for checking the infor-
mation in columns. The columns of data frames are the
basis of manipulating data since they usually contain the
same information for different subjects, which means any
mismatch in data frame columns during data manipulation
will result in errors. As a library implementation, especially in
dynamically typed languages, such column errors can hardly
be figured out in an early stage. Even though the columns
can be considered as kind of types for data frames, they are
treated as values and determined at runtime. Furthermore,
programming in libraries like pandas is considerably error-
prone due to its complex design of API [21], [22], which
may lead to obscure error messages. The causes of common
errors include the lack of tracing column labels and types,
passing flag arguments with the string type, and the lack of
type information of the functions given as arguments.

Although migrating to languages with a rigorous type
system and modern abstraction features, such as Haskell
and Scala, is an effective solution, it might not sound con-
vincing to data scientists. First, these languages are usually
considered a steeper learning curve. Whether learning these
languages is more complex or not, data scientists hardly
choose any language other than Python and R, and learning
a new language is never easy. Second, data scientists often
reuse code snippets to construct new programs to analyze
new data. For those who collect a lot of useful code snippets,
it will be tough to migrate. This observation led us to propose
statically checking the columns of data frames in libraries.
The contributions of this study are two-fold. First, we point
out the column issues in data frame libraries and present how
to figure out these errors by abstract interpretation [23], [24].
Second, we define the type for data frame objects and use it
to develop semantics to check the correctness of data frame
operations. We also demonstrate how a static checker can
be implemented and integrated with existing development
environments to help programmers.

The remainder of this paper is organized as follows.
Section II shows a motivating example to point out the col-
umn errors concretely. Section III presents our approach and
explains how it checks the typing in general data frame
operations, along with the preliminary and the limitation.
Section IV gives a proof-of-concept implementation for pan-
das as an example of our approach. Section V evaluates our
approach by discussing the functionality of type checking
for data frames and comparing it with existing work, along

with a user scenario. In Section VI, several techniques toward
solving the issue we address are discussed as related work.
Finally, Section VII concludes this paper and mentions future
directions.

II. MOTIVATING EXAMPLE
In a library supporting data frames, such as pandas, data
frames are usually supported with the objects in object-
oriented programming, specifically defining a data frame
class, where every column in it is represented with a
series class. As shown in Figure 1, a series object is a
one-dimensional array with row labels (‘a’, ‘b’, and ‘c’
in this example), and a data frame object can be thought of as
a dictionary-like container for series objects [25], whichmaps
column labels (‘category’, ‘price’, ‘weight’, and
‘stock’ in this example) to series objects. When loading
data into data frame objects, records are stored in rows and
every column contains the same type of information for
different records. Programmers can call various methods on
data frame objects to manipulate data based on columns.
For example, the series in Figure 1(a) can be obtained by
specifying the column label ‘price’ on the data frame in
Figure 1(b), which contains only the integers in the column
‘price’ for every record. Column labels are usually used as
a keyword to characterize the information stored in the same
column and even imply the type of stored values.

FIGURE 1. An example of series (a) and data frame (b).

However, the error checking on columns of data frame
objects is not sufficient due to the lack of language support.
Although column labels can be regarded as some sort of
type for records, in the library they are managed as values
rather than types and thus any column error will be left to
runtime. In other words, invalid operations such as specifying
a missing column label will be a runtime error. Unlike type
errors, runtime errors are more difficult to resolve since they
are mixed up with logic problems. It means that programmers
might suffer from errors caused by incorrect labels or types
of columns, and the messages can hardly help debugging.
Taking Python and pandas as an example, programmersmight
write the code in Figure 2 for their data wrangling tasks. This
piece of code is to perform a sequence of operations starting
with a data frame object named df using the method chaining
technique:

1. drop duplicate rows in df based on columns labeled
‘x’ and ‘y’,

VOLUME 10, 2022 14419



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

2. merge with another data frame object named df2 with
a database-style join done on the columns‘x’ and‘y’
and using only keys from the left frame,

3. group by the columns ‘x’ and ‘y’ in SQL-style
(as_index=False), and

4. aggregate using the operation named ‘sum’ over the
column labeled ‘z’.

According to the semantics of object-oriented programming
and a general library design, every method call returns a
data frame object, which will then be used to perform the
following operation specified by the method call after the dot.
This code seems good and might work well in some cases,
but it has potential problems with column labels and types.
An experienced programmer who knows data frames well
may figure out the following potential problems:

a. Do these labels, ‘x’, ‘y’, and ‘z’, really exist in the
specified data frames? (Line 1, 2, 4, and 5)

b. Is it correct to use ‘left’ for the parameter how?
(Line 3)

c. Do the two data frames really have the common
columns ‘x’ and ‘y’? (Line 2)

d. Is the type of function specified in the agg method
consistent with the type of the target column, ‘z’?
(Line 5)

Data scientists are usually forced to find out the causes after
running such code with actual data and encountering these
problems. These problems are due to the lack of checking the
label and type of columns, even though most operations on
data frames are based on them.

FIGURE 2. An example of using data frames in data wrangling tasks.

A possible approach is to revise the above library design
in a statically typed language with advanced type features
as follows. 1) Breaking the merge method into several
ones named according to its parameter values or wrapping
parameter values up in enumerated types to avoid specifying
parameters with strings. 2) Considering the label and type
of columns with dependent types to involve columns in data
frame types. Then we may write the code shown in Figure 3.
It looks pretty similar to the one in Figure 2, but

- the spelling error in a string such as‘left’ and‘sum’
can be found in advance since they are themethod names
now (the potential problems a and b),

- no runtime error on referring to the wrong columns
since the type of data frames with ‘x’ and ‘y’ can
be distinguished from the ones whose column labels are
‘x’ and ‘z’ (the potential problem c), and

- no runtime type error occurs when applying the specified
functions since the types of the sum function and the
column ‘z’ can be retrieved (the potential problem d).

FIGURE 3. It is possible to check the types of columns by the compiler in
a statically typed language with dependent types.

However, this approach requires migration to a language with
dependent types and might not be realistic to data scientists.
Moreover, runtime errors cannot be prevented if column
information in the data frames df and df2 depend on file
contents rather than program code.

Suppose a static type checker based on abstract interpre-
tation can be provided to consider column information in
data frame libraries as types. In that case, programmers can
verify their code before executing it with extensive data. The
checker may even try to open files and read the first row for
the case that data frames depend on an external data source.
It can then be integrated into development environments for
showing hints and warnings. Since data scientists often reuse
code snippets to analyze new data, such a checker can help
them quickly find out the differences in data and fix the errors
accordingly.

So far as we know, there is no existing research activity
on such a static checker for data frame libraries. The reasons
might include the following. First, data frames are rarely
discussed in research activities. Unlike SQL, which was
developed based on relational algebra, data frames lack stan-
dards and formal semantics despite remarkable success. Even
though data frames were introduced almost three decades ago
and implemented in different languages, there is no standard
for them. Different implementations might have different
designs and behaviors. Second, the current type system of
external checkers for languages like Python is not powerful
enough. Although type hints have been introduced for third-
party static checkers, for example PEP 484 for Python [26],
column labels cannot be regarded as types. This motivated
us to develop the idea of interpreting data frame code with
alternative semantics for checking column labels and types.

III. A STATIC TYPE CHECKER FOR DATA FRAMES
To find out column errors in data frame libraries in an early
stage, we propose verifying column labels and types with
a static checker by abstract interpretation. For a code piece
written with data frame libraries, we can use a static checker
to model data frames and interpret the operations on them
to perform type checking. Instead of directly building a new
type system for its host language, our approach can retain
compatibility with existing programs and libraries.

A. ABSTRACT INTERPRETATION
Abstract interpretation is a technique to interpret a given
piece of code with different semantics, which enables the
structure sharing between static analysis methods and run-
time computation [23], [24]. In other words, programswritten
to denote runtime computation can also be used to describe

14420 VOLUME 10, 2022



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

computations in another abstract universe. For example, the
following line of code do simple arithmetic:

(-1) ∗ 2 ∗ (-3)

Compilers and interpreters generally evaluate the expression
to a numeric value, 6; it is based on the semantics of the
language we are using. Instead, we can define an abstract
universe that has the rule of signs to interpret it as follows:

(-) ∗ (+) ∗ (-)

which results in (+). It is useful when we care about only the
sign of numbers but not exact numbers. Similarly, the same
expression can be understood based on the semantics for type
checking:

int ∗ int ∗ int

In this case, checkers examine whether the type int can be
accepted by the operator ∗ or not. This technique makes it
possible to perform the execution, proofs, and analysis on the
same code.

B. TYPE DEFINITION OF DATA FRAMES AND SERIES
Following the idea of abstract interpretation, we define a type
for data frames and interpret their operation code based on
the semantics of type checking. Note that the type is not
the data type, i.e. class, defined in data frame libraries for
data manipulation but the one used in a static checker for
type checking. Below we first consider series type and define
data frame type based on it since data frame objects can be
regarded as a dictionary-like container for series objects.

We can define the type of a series object as the join of its
elements’ type since these data are the same information for
different data records. In other words, all elements of a series
object share the same type, which exactly represents the series
object’s type. Suppose a set of variables is given to construct
a series object named s as follows:

s = Series(x1, . . . , xn)

where the types of x1, . . . , xn are T1, . . . , Tn in the given
environment 0, respectively. The type of the generated series
object s can then be defined with a single type Tjoin, which is
the join, i.e. the least common supertype, of T1, . . . , Tn:

Tjoin = T1 ∧ . . . ∧ Tn

It means that any value typed with T1 or . . . or Tn can also
be typed with Tjoin. All data in the series object can be
characterized with the type Tjoin, and thus it is used as the type
for the series object. This type checking rule is described as:

0 ` x1 : T1, . . . , xn : Tn 0 ` T1 ∧ . . . ∧ Tn = Tjoin
0 ` Series(x1, . . . , xn) = s : Tjoin

(T-S-CREATION)

After defining the type of series objects, we can then define
the type of data frame objects as a set of type mapping.
Suppose l1, . . . , ln are column label strings and the types of

series objects s1, . . . , sn are T1, . . . , Tn in the environment 0.
When column labels and series objects are given in pairs to
construct a data frame object as follows:

df = DataFrame({l1, s1}, . . . , {ln, sn})

the generated data frame object’s type can be denoted by:

{li→ T i∈1..ni }

which maps a given column label to the type of its corre-
sponding series object. The rule for data frame creation is
described as:

0 ` l1 : String, . . . , ln : String 0 ` s1 : T1, . . . , sn : Tn
0 ` DataFrame({l1, s1}, . . . , {ln, sn}) = df : {li→ T i∈1..ni }

(T-CREATION)

Note that we use a mapping rather than a single type to
represent data frames’ type; it is a composite of series types.
Furthermore, we treat column labels as a part of type rather
than strings. Label literals are included in the data frame type
and used in type checking.

C. TYPE CHECKING FOR DATA FRAMES AND SERIES
Based on the types of data frames and series, we can check
the correctness of typing in their operations. For element-
wise operations, we can define the following T-S-ELEMOP rule
to ensure that the types of operands are consistent and the
operation results in a series object with the same type:

0 ` s1 : T 0 ` s2 : T
0 ` s1.elemop(s2) = s3 : T

T-S-ELEMOP

For applying a given function to a series object typed T1, the
function’s type must take T1 as the parameter type. Suppose
the function is typed T1→ T2, the resulted series object must
be typed T1 as described by the following T-S-APPLY rule:

0 ` s : T1 0 ` f : T1→ T2
0 ` s.apply(f ) = s′ : T2

T-S-APPLY

The type checking rules for general operations on data
frames [27], including selection, projection, union, join,
group-by, and apply, are listed in Figure 4. The selection oper-
ation is to select data records according to a given predicate,
so the type of its result should be consistent with the one it
operates on as described in T-SELECTION rule:

df .select(pred) = df ′ : T

where df is typed with T . The projection operation is to
project based on the specified columns, and T-PROJECTION

describes the case of only a specific column, resulting in a
series object:

df .project(x) = s : T 1≤k≤n
k

where x is a column label string. For projection with multiple
columns, we can combine T-PROJECTION rule with T-CREATION

rule to perform the check. The union operation is to simply
concatenate data frames with the same type, resulting in a
data frame with the same type {li → Ti i∈1..n} as described

VOLUME 10, 2022 14421



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

in T-UNION rule. On the other hand, the join (merge) operation
is to generate a data frame based on the union of the two sets
of data frame column labels, A and B:

{lk → T k∈A∪Bk }

which can be described as T-JOIN rule. As to the group-by
operation, it is to generate a group of data frames according
to the value in a specified column. In this case, the types of
these grouped data frames are the same as the original type
until the next operation is performed.

FIGURE 4. The semantics of type checking for data frame objects.

The apply operation is to aggregate the data using func-
tions. It can avoid explicit iteration on values of data frames
and might remind users of the MapReduce programming
model [28]. When applying a function to a data frame, there
are three cases. The first one is applying the function to every
element in the data frame, which means the function should
take a join of all column types and its return type will be used
to check every element’s type:

f : Tjoin→ Tret

where Tjoin = T1∧ . . .∧Tn. The result is still a data frame
whose type is a mapping from any given label to the func-
tion’s return type, as described in T-APPLYELEM rule:

df : {li→ Tret i∈1..n}

The second one is applying the function to each row to
reduce the information for every data record. In this case, the
function has to take all column types as its parameter type:

f : T1, . . . ,Tn→ Tret

and its return type must match the type of generated series,
as described in T-APPLYROW rule:

s : Tret

The last one is applying to every column to aggregate the
information of all data records based on each column as

described in T-APPLYCOL rule. The function type in this case
will be similar to the one in T-APPLYELEM rule since the function
needs to accept all column types as the input. However, the
result will be a series with its return type as in T-APPLYROW

rule. These type checking rules may be further combined to
check various operations, and extending them to verify more
sophisticated operations in data frame libraries is included in
our future work.

IV. PDCHECKER: A PROOF-OF-CONCEPT
IMPLEMENTATION FOR PANDAS
In order to show the feasibility and usability of our approach,
we implemented a proof-of-concept named PDChecker1 for
the pandas library as an example. Note that the type checking
semantics for data frames may be applied to any data frame
library, but here we took the case of pandas and Python to
explain implementation details, discuss the limitation, and
show the usage concretely. Our draft implementation also
follows Language Server Protocol (LSP) to implement a
frontend that can be used in most environments including
JupyterLab [29].

A. TYPE-LEVEL CLASSES AND CHECK FUNCTIONS
PDChecker accepts all the code that follows the syntax of
Python but evaluates them based on the type checking seman-
tics for data frames. As shown in Figure 5, we can consider
Python interpreter (a) and PDChecker (b) as functions that
accept a piece of Python code as input and return something
as output, following the idea in the referred papers [30], [31].
The output is a value in the case of the Python interpreter,
while the output of our checker is a type. Given a piece of
pandas code, PDChecker will replace the import of pandas
library with its check module and interpret code with its own
classes and methods for type checking.

FIGURE 5. PDChecker interprets code based on the type checking
semantics for data frames.

We prepared type-level classes to represent the types of
data frames and series in pandas, respectively. Figure 6
shows the definition of type-level classes and parts of check
functions for the explanation. As shown in Line 3, the

1The PDChecker Project. https://github.com/ncu-psl/pdchecker

14422 VOLUME 10, 2022



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

class DataFrame has a field named columns for mapping
between labels and their types. Note that both the type and
the value, i.e., the label string, are traced in DataFrame to
avoid losing label information during the type evaluation. The
method calls to data frame objects will then be replaced with
the ones defined in the type-level classes. Line 5-23 shows
an example of how we check the column labels and types for
the call to the merge method. It first checks the string given
in the parameter how, gets column labels in the parameter
on, and examines whether the specified labels exist in both
data frames or not. Furthermore, the common columns’ types
must be consistent; otherwise, an error will be thrown. On the
other hand, for the Series class, we only need to trace its
type as shown in Line 26 since all elements share the same
type. Line 28-32 shows an example of checking the addition
of two Series objects with the magic method technique in
Python, and Line 34-37 shows the apply operation. Note that
if the function type information cannot be known statically,
PDChecker will need users to provide them with type hints.

FIGURE 6. The type-level classes and parts of their check functions.

B. THE LIMITATION OF PDCHECKER
There are two kinds of columns PDChecker cannot handle
well: columns that depend on the rows of data frames, i.e.,

data records, and columns that depend on the results evaluated
in Python. For those determined by data records at runtime,
PDChecker has no way to check them unless users provide
hints. For example,

df.transpose()

will transpose rows and columns, which converts rows into
columns and makes columns unpredictable. Similarly,

df.dropna(axis=‘columns’)

drop the columns where at least one value is missing and
thus the columns cannot be determined in advance. As a
consequence of adopting the static approach, PDChecker has
no information about such runtime values. However, for the
values assigned in code, PDChecker can obtain and trace type
information from the beginning. PDChecker can also benefit
from the read_csv function in pandas to read data from an
external source and then get types, as shown in Figure 7.

FIGURE 7. Using the read_csv function to retrieve data and get types.

The other case that PDChecker cannot handle properly is
the code like:

df.columns

= [c.upper() for c in df.columns]

Without evaluating the expression in Python, it is not able
to understand the column labels. Note that PDChecker only
focuses on type checking for data frames and generic type
checking for Python has been already discussed in the related
work [30]. If there is any operation that involves the type in
Python, PDChecker will need users to provide the type infor-
mation. The integration with a generic Python type checker
might be possible and is included in our future work. On the
other hand, type inference based on external data sources is
already studied by several research activities, and it is not
included in the goal of this approach. For example, Type
providers in F# language can provide the type information
on external data sources at compile-time [32]. The Frames
library on Haskell language uses metaprogramming to infer
the type of CSV data. There are also several research and
implementations devoted to inferring the type of data in JSON
format [33]–[35]. Actually, in the implementation of pandas,
type inference is used in some functions like the read_csv
method [36].

C. THE OVERVIEW OF USAGE
PDChecker is designed as a middle layer in the development
of data wrangling. As shown in Figure 8, initially, the flow of
developing programs with pandas and Python is ¬, , and ±.

VOLUME 10, 2022 14423



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

FIGURE 8. The flow of using PDChecker.

After integrating PDChecker into the development, the flow
is modified to ¬, ®, ¯, °, and ±. It means PDChecker will
check users’ code (®) and interact with users (¯) before exe-
cuting the code in Python (°). Data scientists can statically
check the columns for their data wrangling programs with
PDChecker.

For the four problems discussed in the motivating example,
Figure 2, we can resolve them as follows:

(a) The labels might not exist in the data frames specified
for the operations.
The labels ‘x’, ‘y’, and ‘z’ specified in methods
such asdrop_duplicates, merge, groupby,
and agg can be correctly checked since PDChecker
retrieves the literal values of labels for type checking.

(b) The function parameter string might not be valid.
Similarly, PDChecker can check the literals used
in the parameter of functions, for example how =
‘left’.

(c) The specified data frames might not have common
columns.
PDChecker prepared type-level classes for data frames,
which makes it possible to check whether there are
common columns or not.

(d) The function given for the operation might not have the
same type as the target column’s type.
With users’ type hints, PDChecker can ensure that the
type of function given toagg is consistent with the type
of the target column ‘z’.

To improve the usability of such a static checker, we further
used the pygls library [37] to benefit from Language Server

FIGURE 9. Using PDChecker to check column labels in JupyterLab.

Protocol2 (LSP). It is a protocol between editors and lan-
guage servers providing features like code completion and
syntax highlighting, making PDChecker easy to integrate into
many environments such as JupyterLab, Visual Studio Code,
Eclipse IDE, and even Vim. Figure 9 is a screenshot of using
PDChecker to check column labels in JupyterLab.

V. EVALUATION
This section evaluates our proposal and PDChecker from the
functionality of type checking for data frames and compares it
with existing implementations. In addition, we provide a user
scenario to show how PDChecker can help data scientists in
programming data wrangling concretely.

TABLE 1. The functionality of type checking implemented in PDChecker.

A. THE FUNCTIONALITY OF TYPE CHECKING
FOR DATA FRAMES
Since PDChecker is targeted at checking the errors caused by
incorrect references to the columns in data frames, we evalu-
ated the functionality of type checking for the standard oper-
ations on data frames. Here we followed the usual operations
discussed in the research conducted by Petersohn et al. [27]
and listed in Table 1. Note that we evaluate proof-of-concept

2 https://microsoft.github.io/language-server-protocol/

14424 VOLUME 10, 2022



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

implementation with the standard operations on data frames
rather than the rich pandas API.

We classified the abilities of PDChecker to check the
potential problems in these operations into three groups:
checking the column labels (FI), checking the flag arguments
(FL), and checking the function type (FN). FI denotes the
ability to check the column labels, i.e., the fields on the given
data frame objects. Column labels are necessary input in
the operations such as CREATION, PROJECTION, UNION,
GROUPBY, and MELT/PIVOT, so a static checker must be
able to check whether the specified data frame object has the
column (field) or not. FL denotes the ability to check the flag
arguments specified in the operations like JOIN. Since the
how parameter set for the methods join and merge in pan-
das should be ‘inner’, ‘outer’, ‘left’ or ‘right’,
a static checker must be able to know whether the given
flag arguments are correct or not. Finally, FN denotes the
ability to check the type of function specified in the oper-
ations SELECTION and APPLY/AGG. Since the specified
function will be applied to the data, a static checker needs to
figure out whether the function type matches the data type
or not.

Our implementation has covered most operations to show
the feasibility of our approach. Note that we currently only
implement the read_csv method for external data sources
since it is the most used method for loading data. For
ASSIGNMENT, we implemented the simplest ones to show
its feasibility. Although our implementation currently does
not cover multi-level index, advanced functionality in pandas,
it is possible to describe with tuples in our approach. How-
ever, even implementing multi-level index, stack, and unstack
operations cannot be handled due to the limitation of the static
check.

B. COMPARING FUNCTIONALITY WITH EXISTING WORK
Here we discuss the implementations of data frames that can
trace and check column labels and types so far as we know.
The Frames library [7] is built on Haskell, which provides a
type-safe API for working with data frames in CSV format.
With the help of a powerful type system in Haskell, Frames
can represent labels with types, use type-level programming
to describe API for data frames, and benefit from metapro-
gramming to generate types for external data sources. Note
that in Frames, some methods such as apply and groupby
are supported through other libraries rather than Frames itself.
The frameless library [8] is a Scala library for improving the
expressive ability of types in Spark API [38]. It also benefits
from a powerful type system and uses a lot of type-level
programming. However, several operations in frameless that
change columns will lose column labels since it uses case
classes and tuples to represent. Gamma [9] is a language
based on objects and nominal typing. It represents external
data sources and query operations with objects and methods,
respectively. Since Gamma provides types with the methods
on objects, it allows users to compose rich and type-safe
queries.

TABLE 2. Comparing the ability of type checking with existing work.

The differences in the functionality between these imple-
mentations and PDChecker are summarized in Table 2. Note
that we left pandas in this table for comparison, and this
table shows the ability to perform type checking for these
operations rather than perform these operations. In other
words, it highlights the type checking ability of our approach
in the general operations for data frames [27]; the advantages
of each implementation over PDChecker are not shown in
the table. Unlike other implementations, PDChecker is a
standalone checker that must be used along with pandas.
Moreover, other implementations use the type system in the
language itself, but PDChecker uses abstract interpretation to
check the type.

FIGURE 10. An example of reusing code snippets for data wrangling.

C. A USER SCENARIO
This section demonstrates how PDChecker can help data sci-
entists in a typical scenario of data wrangling. For example,
suppose that a data scientist wrote a code snippet for data
wrangling before, as shown in Figure 10. Now the data scien-
tist got updated data and is going to reuse the code snippet
for the data wrangling task at hand. However, there might
be some differences in the label and type of columns in the
updated data. In an environment like JupyterLab, PDChecker
can figure out the errors without executing the code. Thus,
there are several advantages: no need to wait for the execu-
tion, no side effects in the current execution environment, and
meaningful information for debugging.
A) Warning about the inconsistency between the specified

function and column
In this example, PDChecker can notify the data sci-
entist that the type of some_transform function
does not match the type of column ‘b’ based on

VOLUME 10, 2022 14425



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

FIGURE 11. The type error (a) and type information (b) given by
PDChecker.

the external data source in Line 6 of Figure 10, and
shows an error message to warn the data scientist
as shown in Figure 11(a). The data scientist can also
see the type information of this data frame, as shown
in Figure 11(b). Note that PDChecker uses different
background colors for tooltips to distinguish errors and
information. According to the type information pro-
vided by PDChecker, the data scientist can know that
the type of column ‘b’ became float this time and
make appropriate modifications to the code.

B) Helping in clarifying the root cause of an error after
the merge operation
Suppose that the data scientist has fixed the type of
some_transform function and continues with the data
wrangling task. As shown in Figure 12(a), this time
another error marked with a red dotted line appears in
the code calling the merge method, i.e., Line 7-9 of
Figure 10. According to the information provided by
PDChecker, the data scientist can know that there is no
column named ‘c’ as expected after the merge oper-
ation and the root cause is the duplicate ‘c’ columns.
Without PDChecker, the data scientist cannot get the
error until executing the code as shown in Figure 12(b).
Moreover, error messages due to columns are usually
not as clear as the information provided by PDChecker.

VI. RELATED WORK
Several known techniques can be used to check data frame
columns, but they require language support. Type systems can
help programmers to trap type errors. Dependent type [39]
was developed to involve values in types. The5 type denotes
a function whose return type varies with its arguments, i.e.,
dependent function type. The 6 type enables an ordered pair
where the type of the second element is dependent on the
value of the first one, i.e., dependent pair type. In a program-
ming language supporting dependent type, it is possible to
represent the relations between the labels and values in the
columns of data frames. However, Python does not support
dependent types. Row polymorphism [40] lets operations on
records be polymorphically typed. In other words, we can
define a polymorphic record type for a finite set of field
labels, i.e., rows, and it allows programmers to operate on
only partial fields of a record. The use of row polymorphism
can help the representation of adding/removing columns of
data frames. Unfortunately, Python does not support row

FIGURE 12. The information given by PDChecker (a) and the runtime
error raised in the execution (b).

polymorphism, either. Type-level programming such as intro-
ducing type families [41] makes it possible to write functions
on types. Type-level functions can represent the operations
on data frames well. Although such overloading of data types
can be achieved in Haskell, it is still a challenge to do that
within languages like the current version of Python.

Domain-specific languages (DSLs) are mini-languages
that offer expressive power focused and usually restricted to
a particular domain [42]. In general, DSLs can be classified
into standalone DSLs and embedded DSLs [43]. Embedded
DSLs are those implemented as libraries on a host language
and can benefit from the software tools for the host lan-
guage [44]. Contrarily, the ability of the embedded DSLs
greatly depends on the power of their host languages. Data
frame libraries such as pandas can be regarded as some sort
of embedded DSLs for data frames on top of Python [45],
and its ability to check types is limited to the type system of
Python. On the other hand, it is possible to create a new stan-
dalone DSL for data frames as well by following the design
of pandas. However, reimplementing the functionality of a
sophisticated and widely-used library might not be a mean-
ingful job. In addition, we need to implement the fundamental
parts at the language level rather than benefiting the powerful
type system in existing languages such as Haskell and Scala.
Moreover, current ecosystems for Python, including tools and
libraries, cannot be directly reused.

14426 VOLUME 10, 2022



Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

VII. CONCLUSION
Due to the lack of language support, the columns in data
frame libraries cannot be regarded as types, resulting in run-
time errors. We proposed statically checking the label and
type of columns for data frame libraries. Our idea is based on
abstract interpretation but focuses on data frames, which can
help programmers find errors due to missing column labels
or inconsistent types in data frame operation. We defined
the type for data frames and described semantics based on
it for type checking. Instead of designing a new language,
a standalone checker can be built based on this approach for
existing data frame libraries. We took the pandas library as
an example to implement a proof-of-concept, PDChecker,
to explain implementation details, discuss the limitation, and
show the usage concretely. We compared PDChecker with
existing work, and the results showed that PDChecker is
competitive. Finally, a user scenario was given to demonstrate
how PDChecker can be integrated into data wrangling tasks.
Based on our research findings, formal verification for the use
of data frame libraries can be further studied, and data science
software development can benefit from such a checker in
practice. Our future directions include extending the seman-
tics to support more data frame operations and integrating
with existing generic type checkers.

ACKNOWLEDGMENT
The authors would like to thank the editors and the anony-
mous reviewers for their valuable comments, which greatly
helped improve the quality of this article.

REFERENCES
[1] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche,

C. Weaver, B. Lee, D. Brodbeck, and P. Buono, ‘‘Research directions in
data wrangling: Visualizations and transformations for usable and cred-
ible data,’’ Inf. Visualizat., vol. 10, no. 4, pp. 271–288, Oct. 2011, doi:
10.1177/1473871611415994.

[2] I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino, ‘‘Data wran-
gling: The challenging yourney from the wild to the lake,’’ Proc. 7th Bien-
nial Conf. Innov. Data Syst. Res. (CIDR), Asilomar, CA, USA, Jan. 2015.
[Online]. Available: http://cidrdb.org/cidr2015/program.html and http://
people.cs.uchicago.edu/~aelmore/class/topics17/wrangling-wild.pdf

[3] B. C. Boehmke, Data Wrangling With R. Cham, Switzerland: Springer,
2016. [Online]. Available: https://link.springer.com/content/pdf/
bfm%3A978-3-319-45599-0%2F1.pdf

[4] J. M. Chambers and T. J. Hastie, Statistical Models in S. Boca Raton, FL,
USA: CRC Press, 1991.

[5] R. Ihaka and R. Gentleman, ‘‘R: A language for data analysis and graph-
ics,’’ J. Comput. Graph. Statist., vol. 5, no. 3, pp. 299–314, 1996.

[6] W. McKinney, ‘‘Data structures for statistical computing in Python,’’ in
Proc. 9th Python Sci. Conf., Austin, TX, USA, vol. 445, 2010, pp. 51–56.

[7] A. Cowley. Frames: Data Frames For Working with Tabular Data
Files. [Online]. Available: https://hackage.haskell.org/package/Frames
Accessed: Jan. 23, 2022.

[8] The Frameless Project. Typelevel/Frameless: Expressive Types for Spark.
Accessed: Jan. 23, 2022. [Online]. Available: https://github.com/typelevel/
frameless

[9] T. Petricek, ‘‘Data exploration through dot-driven development,’’ in
Proc. 31st Eur. Conf. Object-Oriented Program. (ECOOP), 2017,
pp. 21:1–21:27. [Online]. Available: https://drops.dagstuhl.de/opus/
volltexte/2017/7261/

[10] Kaggle Inc. 2021 Kaggle Machine Learning & Data Science
Survey. Accessed: Jan. 23, 2022. [Online]. Available: https://www.
kaggle.com/c/kaggle-survey-2021/overview

[11] B. Hayes. For Data Professionals, Python Remains Top Programming
Language While R Continues to Decline. Accessed: Jan. 23, 2022.
[Online]. Available: http://businessoverbroadway.com/2021/01/11/for-
data-professionals-python-remains-top-programming-language-while-r-
continues-to-decline/

[12] Python Software Foundation. PEP 8—Style Guide for Python
Code. Accessed: Jan. 23, 2022. [Online]. Available: https://www.
python.org/dev/peps/pep-0008/

[13] J. Blank and K. Deb, ‘‘Pymoo: Multi-objective optimization
in Python,’’ IEEE Access, vol. 8, pp. 89497–89509, 2020, doi:
10.1109/ACCESS.2020.2990567.

[14] K. J. Millman and M. Aivazis, ‘‘Python for scientists and engineers,’’
Comput. Sci. Eng., vol. 13, no. 2, pp. 9–12, Mar./Apr. 2011, doi:
10.1109/MCSE.2011.36.

[15] T. E. Oliphant, ‘‘Python for scientific computing,’’ Comput. Sci. Eng.,
vol. 9, no. 3, pp. 10–20, May 2007, doi: 10.1109/MCSE.2007.58.

[16] T. E. Oliphant, A Guide to NumPy. Trelgol Publishing USA, 2006.
[17] S. van der Walt, S. C. Colbert, and G. Varoquaux, ‘‘The NumPy array: A

structure for efficient numerical computation,’’ Comput. Sci. Eng., vol. 13,
no. 2, pp. 22–30, 2011.

[18] J. D. Hunter, ‘‘Matplotlib: A 2D graphics environment,’’Comput. Sci. Eng.,
vol. 9, no. 3, pp. 90–95, May 2007, doi: 10.1109/MCSE.2007.55.

[19] F. Perez and B. E. Granger, ‘‘IPython: A system for interactive scientific
computing,’’ Comput. Sci. Eng., vol. 9, no. 3, pp. 21–29, May 2007, doi:
10.1109/MCSE.2007.53.

[20] The pandas Development Team. Comparison With SQL. Accessed:
Jan. 23, 2022. [Online]. Available: https://pandas.pydata.org/d
ocs/getting_started/comparison/comparison_with_sql.html

[21] Y. Wu, ‘‘Is a dataframe just a table?’’ in Proc. 10th Workshop Eval.
Usability Program. Lang. Tools (PLATEAU), 2020, pp. 6:1–6:10. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2020/11960/

[22] E. J. Ma, Z. Barry, S. Zuckerman, and Z. Sailer, ‘‘Pyjanitor: A cleaner
API for cleaning data,’’ in Proc. 18th Python Sci. Conf., 2019, pp. 50–53.
[Online]. Available: http://conference.scipy.org/proceedings/scipy2019/

[23] P. Cousot and R. Cousot, ‘‘Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,’’ in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang. (POPL), 1977, pp. 238–252.

[24] P. Cousot, ‘‘Types as abstract interpretations,’’ in Proc. 24th ACM
SIGPLAN-SIGACT Symp. Princ. Program. Lang. (POPL), 1997,
pp. 316–331.

[25] The pandas Development Team. Pandas.DataFrame—Pandas 1.1.0 Doc-
umentation. Accessed: Jan. 23, 2022. [Online]. Available: https://pandas.
pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

[26] Python Software Foundation. PEP 484—Type Hints. Accessed:
Jan. 23, 2022. [Online]. Available: https://www.python.org/dev/peps/pep-
0484/

[27] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, J. E. Gonzalez,
J. M. Hellerstein, A. D. Joseph, and A. Parameswaran, ‘‘Towards scalable
dataframe systems,’’ 2020, arXiv:2001.00888.

[28] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008,
doi: 10.1145/1327452.1327492.

[29] P. Jupyter. JupyterLab and Jupyter Notebook. Accessed: Jan. 23, 2022.
[Online]. Available: https://jupyter.org

[30] R. Monat, A. Ouadjaout, and A. Miné, ‘‘Static type analysis by abstract
interpretation of Python programs,’’ in Proc. 34th Eur. Conf. Object-
Oriented Program. (ECOOP), 2020, pp. 17:1–17:29. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/13174/

[31] A. Fromherz, A. Ouadjaout, and A. Miné, ‘‘Static value analysis of Python
programs by abstract interpretation,’’ in Proc. NASA Formal Methods
Symp. Newport News, VA, USA: Springer, 2018, pp. 185–202. [Online].
Available: https://hal.sorbonne-universite.fr/hal-01782390/document

[32] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek,
‘‘Themes in information-rich functional programming for internet-scale
data sources,’’ in Proc. Workshop Data driven Funct. Program. (DDFP),
Rome, Italy, 2013, pp. 1–4, doi: 10.1145/2429376.2429378.

[33] T. Petricek, G. Guerra, and D. Syme, ‘‘Types from data: Making struc-
tured data first-class citizens in F#,’’ in Proc. 37th ACM SIGPLAN Conf.
Program. Lang. Design Implement., Santa Barbara, CA, USA, Jun. 2016,
pp. 1–14, doi: 10.1145/2908080.2908115.

[34] The Quicktype Community. Quicktype/Quicktype. Accessed:
Jan. 23, 2022. [Online]. Available: https://github.com/quicktype/quicktype

VOLUME 10, 2022 14427

http://dx.doi.org/10.1177/1473871611415994
http://dx.doi.org/10.1109/ACCESS.2020.2990567
http://dx.doi.org/10.1109/MCSE.2011.36
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2429376.2429378
http://dx.doi.org/10.1145/2908080.2908115


Y. Zhuang, M.-Y. Lu: Enabling Type Checking on Columns in Data Frame Libraries by Abstract Interpretation

[35] M. J. Gajda. JSON-Autotype: Automatic Type Declaration for JSON
Input Data. Accessed: Jan. 23, 2022. [Online]. Available: https://hackage.
haskell.org/package/json-autotype

[36] A. Golubin. How Pandas Infers Data Types When Parsing CSV
Files. Accessed: Jan. 23, 2022. [Online]. Available: https://rushter.com/
blog/pandas-data-type-inference/

[37] Open Law Library. Openlawlibrary/Pygls. Accessed: Jan. 23, 2022.
[Online]. Available: https://github.com/openlawlibrary/pygls

[38] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, ‘‘Spark
SQL: Relational data processing in spark,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, Melbourne, VIC, Australia, May 2015, doi:
10.1145/2723372.2742797.

[39] P. Martin-Löf, ‘‘An intuitionistic theory of types: Predicative part,’’ in
Studies in Logic and the Foundations of Mathematics, vol. 80, H. E. Rose
and J. C. Shepherdson, Eds. Amsterdam, The Netherlands: Elsevier, 1975,
pp. 73–118.

[40] M. Wand, ‘‘Type inference for record concatenation and multiple
inheritance,’’ Inf. Comput., vol. 93, no. 1, pp. 1–15, 1991,
doi: 10.1016/0890-5401(91)90050-C.

[41] O. Kiselyov, S. P. Jones, and C.-C. Shan, ‘‘Fun with type functions,’’ in
Reflections on the Work, C. A. R. Hoare, A. W. Roscoe, C. B. Jones,
K. R. Wood, Eds. London, U.K.: Springer, 2010, pp. 301–331.

[42] A. van Deursen, P. Klint, and J. Visser, ‘‘Domain-specific languages:
An annotated bibliography,’’ ACM SIGPLAN Notices, vol. 35, no. 6,
pp. 26–36, Jun. 2000, doi: 10.1145/352029.352035.

[43] P. Hudak, ‘‘Building domain-specific embedded languages,’’ ACM Com-
put. Surv., vol. 28, no. 4es, p. 196, Dec. 1996.

[44] P. Hudak, ‘‘Modular domain specific languages and tools,’’ in
Proc. 5th Int. Conf. Softw. Reuse, Jun. 1998, pp. 134–142, doi:
10.1109/ICSR.1998.685738.

[45] A. Andrzejak, K. Kiefer, D. E. Costa, and O. Wenz, ‘‘Agile construction of
data science DSLs (tool demo),’’ in Proc. 18th ACM SIGPLAN Int. Conf.
Generative Program., Concepts Experiences, Athens, Greece, Oct. 2019,
pp. 27–33, doi: 10.1145/3357765.3359516.

YUNGYU ZHUANG (Member, IEEE) received
the B.S. and M.S. degrees in mechanical engi-
neering and computer science from the National
Taiwan University, Taiwan, in 2002 and 2004,
respectively, and the Ph.D. degree in information
science and technology from The University of
Tokyo, Japan, in 2014. He was a Research Assis-
tant with the Central Weather Bureau, Taiwan,
from 2004 to 2006. From 2006 to 2011, he worked
as a software engineer at the industry. He is cur-

rently an Assistant Professor with the Department of Computer Science and
Information Engineering, National Central University. From 2014 to 2016,
he was a Project Assistant Professor with The University of Tokyo. His
research interests include programming language design, software engi-
neering, high-performance computing, machine learning, and programming
education

MING-YANG LU received the B.S. degree in com-
puter science and information engineering from
Feng Chia University, in 2016, and theM.S. degree
in computer science and information engineer-
ing from the National Central University, Taiwan,
in 2020. His research interests include program-
ming languages, software engineering, and data
science.

14428 VOLUME 10, 2022

http://dx.doi.org/10.1145/2723372.2742797
http://dx.doi.org/10.1016/0890-5401(91)90050-C
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1109/ICSR.1998.685738
http://dx.doi.org/10.1145/3357765.3359516

