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ABSTRACT Many problems in science and engineering can be formulated as nonlinear least-squares (NLS)
problems. Thus, the need for efficient algorithms to solve these problems can not be overemphasized.
In that sense, we introduce a generalized structured-based diagonal Hessian algorithm for solving NLS
problems. The formulation associated with this algorithm is essentially a generalization of a similar result in
Yahaya et al. (Journal of Computational and Applied Mathematics, pp. 113582, 2021). However, in this
work, the structured diagonal Hessian update is derived under a weighted Frobenius norm; this allows
other choices of the weighted matrix analogous to the Davidon-Fletcher-Powell (DFP) method. Moreover,
to theoretically fill the gap in Yahaya et al. (Journal of Computational and AppliedMathematics, pp. 113582,
2021), we have shown that the proposed algorithm is R-linearly convergent under some standard conditions
devoid of any safeguarding strategy. Furthermore, we experimentally tested the proposed scheme on some
standard benchmark problems in the literature. Finally, we applied this algorithm to solve robotic motion
control problem consisting of 3DOF (degrees of freedom).

INDEX TERMS Nonlinear least squares, quasi-Newton, diagonal updating, least change secant, robotic
motion control.

I. INTRODUCTION
In this research article, we propose generalized structured-
based quasi-Newton algorithm for nonlinear least-squares

The associate editor coordinating the review of this manuscript and

approving it for publication was Felix Albu .

problems of the following form:

min
x∈Rn

f (x), f (x) =
1
2

m∑
i=1

(ri(x))2 =
1
2
‖r(x)‖2, (1)

where the residual, ri : Rn
→ R is a smooth function for

each i = 1, 2, · · · ,m.We assume that for higher-dimensional
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problems, i.e., when (n is large), the Jacobian matrix of r ,
J (x)T is not stored explicitly; however, we can evaluate the
matrix-vector product say, JT v,where v ∈ Rm. Moreover, the
gradient, g(x) and Hessian, H (x) of f are defined as follows:

g(x) =
m∑
i=1

ri(x)∇ri(x) = J (x)T r(x), (2)

and

H (x) =
m∑
i=1

∇ri(x)∇ri(x)T +
m∑
i=1

ri(x)∇2ri(x)

= J (x)T J (x)+ Q(x). (3)

Algorithms for solving (1) are paramount because of their
wide range of applications, since problems of the form (1)
arise in robotic motion, imaging, parameter estimation, data
fitting, and also when solving systems of nonlinear equations
(for more information, kindly see [1]–[19]).

In recent times, there are some algorithms developed for
solving (1) considering its structure. The approach adopted
in formulating these algorithms is mostly toward approximat-
ing the action of the Hessian of (1) by a structured vector,
z ∈ Rn which can be derived through Taylor series expansion
of r i or it’s gradient gi, for i = 1, 2, · · · ,m such that a
secant condition, Hs ≈ z or weak secant condition, sTHs ≈
sT z is satisfied, where s is a difference between successive
iterates. For instance, in [20] the authors approximate the
Hessian in (3) with a scalar multiple of an identity matrix
such that the secant condition is satisfied. They incorporated
this approximation into the well-known Barzilai and Bor-
wein [21] (BB) spectral parameters and their convex com-
binations, as reported in [22]. Similarly, although using a
different paradigm, Mohammed and Santos [23] came up
with diagonal-based approximations of Hessian’s (3) first and
second matrix terms. The derived approximations satisfied
the modified secant condition. However, despite approxi-
mating these matrices in (3), their search directions require
several safeguarding techniques before the sufficient descent
condition is satisfied.

To mitigate some of the shortcomings of their proposal,
recently, Yahaya et al. [24] proposed structured, quasi-
Newton-based algorithms for solving (1). First, the two
formulations of the structured vector were derived. Both
derivations approximate only the second term of (3), where
the first formulation is estimated using first-order Taylor
series expansion. On the other hand, the second term is
approximated to higher-order Taylor series expansion on r i

and its gi for each i = 1, 2, · · · ,m by using the Richardson
extrapolation technique to get rid of the tensor terms. These
derived formulations are such that a modified weak secant
condition of Dennis and Wolkowicz [25] is satisfied. Thus,
they used the formulations to develop two diagonal updating
schemes. These are then independently used in generating the
search directions. Interestingly, their algorithm requires fewer
user-defined parameters in the search direction.

This paper used the formulation in [24] to derive a general-
ized diagonal updating mechanism using a weighted Frobe-
nius norm defined as

‖A‖2W = tr(W−1AW−1AT ),

for solving (1), where A ∈ Rnxn, tr(·) is trace operator, andW
is a weighted matrix which changes at every update and often
different choices of it, leads to other updates. Some well-
known updates include Davidon-Fletcher-Powell (DFB) and
Powell-Symmetric-Broyden (PSB). Motivated by the previ-
ous works, this paper also aims to fill in the gap of the recent
work [24] by giving the rate of convergence results under
some standard assumptions with the aid of an Armijo line
search strategy.

Inspire by the work of Yahaya et al., [24] this paper gives
the following contributions:

1) We propose a generalized structured diagonal approxi-
mation of the Hessian of the objective function.

2) Under some standard assumptions and with the aid of
the chosen line search technique, we show theR−linear
convergence of the algorithm.

3) We apply the proposed algorithm to a robotic motion
control model with 3DOF.

We divided the remainder of the article into the following
sections: We will state the algorithm’s formulation and its
steps in section 2. Next, we describe the algorithm’s con-
vergence under some conditions in section 3, and finally,
we present experimental results of the algorithm and its appli-
cation in section 4. In this article, ‖·‖ means a Euclidean
norm.

II. DESIGN AND STATEMENT OF THE PROPOSED
ALGORITHM
From the second term of (3), we can observe that computing
the residuals’ second-order derivative is required. This second
term is computationally expensive; thus, approximating the
term may be a reasonable idea since it helps to evaluate the
Hessian of the objective function.

Suppose at an iteration say, k the second term of
equation (3) is as follows:

Q(xk+1) =
m∑
i=1

ri(xk+1)Ki(xk+1), (4)

in which ri(xk+1), and Ki(xk+1) denote the ith− compo-
nent of the residual vector r(xk+1), and Hessian of ri(xk+1),
respectively.

Thus, the goal is to find a diagonal matrix say, B(xk+1)
that satisfies the following weak secant condition stated as
follows:

sTk B(xk+1)sk ≈ sTk H (xk+1)sk
= sTk J (xk+1)

T J (xk+1)sk + sTk Q(xk+1)sk > 0,

where sk = xk+1 − xk , B(xk+1) denoted by Bk+1 is
defined using the least change secant condition and the term
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sTk J (xk+1)
T J (xk+1)sk = ‖J (xk+1)sk‖2 ≥ 0. Therefore,

we are now left with approximating the term sTk Q(xk+1)sk .
Now, post-multiplying (4) by sk gives

Q(xk+1)sk =
m∑
i=1

ri(xk+1)Ki(xk+1)sk , (5)

where for notational simplicity, we represent Q(xk+1) =
Qk+1, ri(xk+1) = r ik+1, and Ki(xk+1) = K i

k+1, this is
essentially approximating the action of the second order term
K i
k+1 on sk without explicitly computing the K i

k+1.

Suppose that the gradient of the residual r ik+1 at i
th
− com-

ponent is denoted by gik+1.Wenow, use Taylor’s series expan-
sion on gik+1 to approximate the term K i

k+1sk as follows:

gik ≈ gik+1 − K
i
k+1sk , i = 1, 2, 3, · · ·m,

this implies,

K i
k+1sk ≈ gik+1 − g

i
k . (6)

Now, we have

Qk+1sk =
m∑
i=1

r ik+1K
i
k+1sk . (7)

Therefore, plugging-in equation (6) into equation (7) and
summing over all i = 1, 2, 3, · · · ,m gives

sTk Qk+1sk ≈ sTk (Jk+1 − Jk )
T rk+1 = rTk+1(Jk+1 − Jk )sk . (8)

Hence, we aim to obtain diagonal matrix, Bk+1 which satis-
fies the property that

sTk Bk+1sk ≈ sTk H (xk+1)sk = sTk (J
T
k+1Jk+1)sk + s

T
k Qk+1sk .

Thus, the requirement is that

sTk Bk+1sk = sTk (J
T
k+1Jk+1)sk + s

T
k Qk+1sk . (9)

The diagonal approximation, Bk+1 of the Hessian, Hk+1
in the above modified weak secant condition is defined as
Bk+1 = Bk +Ck , in whichCk is a diagonal correctionmatrix,
where Bk is a diagonal approximation of Hk and both Bk and
Bk+1 are required to positive definite. Next, we state Lemma
with which we derive the diagonal entries of the correction
matrix.
Lemma 1: Let Ck and Bk be two diagonal matrices con-

taining the elements cik and b
i
k for i = 1, 2, · · · ,m respec-

tively. Then the entries, cik of the solution of the following
optimization problem

min
Ck

1
2
‖Ck‖2Wk

+ tr(Bk + Ck ), (10)

s.t sTk (Bk + Ck )sk = γk , (11)

satisfies

cik =

[
[sTkW

2
k sk − s

T
k Bksk + γk ]∑m

i=1(s
i
k )

4(wik )
2

(sik )
2
− 1

]
(wik )

2

i = 1, 2, · · · ,m (12)

where

γk = sTk (J
T
k+1Jk+1)sk + r

T
k+1(Jk+1 − Jk )sk , (13)

‖·‖W , is a weighted Frobenius norm and tr(·) is trace of a
matrix.

Proof: The optimization problem (10) can be reformu-
lated as

min
c

1
2

m∑
i=1

(cik )
2(wik )

2
+

m∑
i=1

(bik + c
i
k ) (14)

s.t
m∑
i=1

(sik )
2(bik + c

i
k ) = γk . (15)

Since the problem (10) is convex. So, the Lagrangian function
of (12) is as follows:

L(ck , βk ) =
1
2

m∑
i=1

(cik )
2(wik )

−2
+

m∑
i=1

(bik + c
i
k )

+βk

(
m∑
i=1

(sik )
2(bik + c

i
k )− γk

)
,

in which, βk is a Lagrangian multiplier. Now, evaluating ∂L
∂cik

and setting ∂L
∂cik
= 0 we have

∂L

∂cik
= cik (w

i
k )
−2
+ 1+ βk (sik )

2
= 0 for i = 1, 2, · · · ,m,

this implies,

cik = [−βk (sik )
2
− 1](wik )

2 for i = 1, 2, · · · ,m (16)

pre-multiplying equation (16) by (sik )
2 and calling up the

constraint (15) we have
m∑
i=1

(sik )
2cik =

m∑
i=1

(sik )
2[−βk (sik )

2
− 1](wik )

2

= γk −

m∑
i=1

(sik )
2bik , for i = 1, 2, · · · ,m.

Therefore, solving for βk from the above expression gives

βk =

[∑m
i=1(s

i
k )

2bik − γk −
∑m

i=1(s
i
k )

2(wik )
2
]∑m

i=1(s
i
k )

4(wik )
2

,

i = 1, 2, · · · ,m. (17)

Thus, plugging equation (17) into equation (16), gives the
entries of the correction matrix, Ck as

cik =

[[∑m
i=1(s

i
k )

2(wik )
2
−
∑m

i=1(s
i
k )

2bik + γk
]∑m

i=1(s
i
k )

4(wik )
2

(sik )
2
− 1

]
× (wik )

2for i = 1, 2, · · · ,m. (18)

Now, by setting Sk = diag(sk ) and Wk = diag(wk ) and sub-
stituting these terms in (18), the diagonal correction matrix,
Ck can simply be written as

Ck =

[
(sTkW

2
k sk − s

T
k Bksk + γk )

sTk (S
2
kW

2
k )sk

S2k − I

]
W 2
k . (19)
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Note: The motivation behind adding the trace operator in
equation (10) is that we intend to find the correction matrix
that clusters the eigenvalues of the updated diagonal matrix,
Bk+1, in such away that its condition number is improved.
Moreover, in what follows, we look at some possible

options of the weighting matrix, Wk in (19). Some of the
apparent choices ofWk are as follows:
1) Choice TakeWk = I , leads to the standard formulation

proposed in [24].
2) Choice Another alternative choice of Wk , motivated

from Davidon-Fletcher-Powell (DFP) update can be
obtain by setting Wk = Bk . This will yield the follow-
ing correction matrix

Ck =

[
(sTk B

2
ksk − s

T
k Bksk + γk )

sTk (S
2
kB

2
k )sk

S2k − I

]
B2k . (20)

It can be observed that by choosing a weighting that varies,
the denominator of (20) may become too small as the itera-
tion progresses. To remedy this, as was similarly suggested
in [26], we use the above correction matrix in the update
if sTk (S

2
kB

2
k )sk ≥ ν1‖sk‖2tr(S2kB

2
k ), where ν1 is some small

values in the interval, (0, 1).
Therefore, the search direction say, dk of the propose

method can simply be defined as

dk+1 =

{
−B−10 g0, for k = 0,
−B−1k+1gk+1, for k = 1, 2, 3, · · · ,

(21)

where B0 = diag(bi0), b
i
0 = 1 for all i, and the entries of the

diagonal matrix Bk+1 are given as follows

bik+1 = ν2b
i
k + c

i
k , for k = 0, 1, 2, · · · , (22)

where cik is given by (18) and ν2 ∈ (0, 1). The parameter ν2,
is introduce into (22) just to aid in showing the convergence
result.

We employed a monotone line search couple with back-
tracking strategy for selecting a suitable step length. The step
say, α that satisfies Armijo line search conditions together
with backtracking strategy, is computed as follows:

Algorithm 1 Armijo Line Search With Backtracking
Input: Objective function fk , the search direction vector,
dk at the point, xk and positive real numbers ς ∈ (0, 1)
Step 1: Set α = 1, if

f (xk + αdk ) ≤ fk + ςαgTk dk (23)

then αk = α. Else, set α = α/2 and test (23) again.
Output: αk

In what follows, we state the steps of our proposed algo-
rithm as follows:
Remark 1: The above Algorithm 2 is composed of two

algorithms depending on the choice of W . If W = I for all k,
then in evaluating the entries, cik for i = 1, 2, · · · ,m of the
correction matrix, Ck , wik = 1 for all k, however, if W = B

Algorithm 2 Generalized Structured Diagonal-Based
Algorithm (GSDA)
Input: Choose an initial approximation x0 ∈ Rn,

B0 = I , W0 = I , ν2 ∈ (0, 1), ς ∈ (0, 1). Set k = 0, and
Tol > 0.
Compute rk , fk and gk ; and then compute dk = −B

−1
k gk .

Step 1: If ‖gk‖ ≤ Tol, stop. Else, go to Next step
Step 2: Compute αk using Algorithm 1.
Step 3: Evaluate the next iterate using

xk+1 = xk + αkdk . (24)

Step 4: Evaluate the update of the entries, bik+1 of the
diagonal matrix, Bk+1 as follows:

bik+1 = ν2b
i
k + c

i
k ,

where cik is defined in (18).
Step 5: Update as follows:
Bk+1 = diag(bik+1).
dk+1 = −B

−1
k+1gk+1.

Wk+1 = diag(wik ) where wk ∈ Wk
Step 6: Set k := k + 1 and go to Step 1.

for all k, then the entries cik for i = 1, 2, · · · ,m are computed
using (20).

III. CONVERGENCE ANALYSIS
For the convergence analysis of the proposed algorithm,
we first present the following useful assumption:
Assumption 1: The objective function f is twice continu-

ously differentiable on a set, χ = {x ∈ Rn
|f (x) ≤ f (xo)}.

Assumption 2: There exist some positive constants N1 and
N2 where N1 ≤ N2 such that

N1‖u‖2 ≤ uT∇2f (x)u ≤ N2‖u‖2, (25)

for all u ∈ Rn and x ∈ χ, holds.
Next, we state an underline assumption on the Jacobian

matrix and residual as follows:
Assumption 3: We also assume that the Jacobian, denoted

by J (x) and the residual r(x) are Lipschitz continuous in
some neighborhood N of χ with Lipschitz constants l1 >

0 and l2 > 0 i.e ‖J (x) − J (y)‖ ≤ l1‖x − y‖, and ‖r(x) −
r(y)‖ ≤ l2‖x − y‖, ∀x, y ∈ χ .

It can be deduced from the above Assumption 3 that there
exist some positive constants l3, c1, c2, c3 such that ∀x, y ∈
χ , we obtain

‖g(x)− g(y)‖ ≤ l3‖x − y‖,

‖J (x)‖ < c1, ‖r(x)‖ < c2, ‖g(x)‖ ≤ c3.

Lemma 2: Suppose Assumptions 1, 3 and 2 hold,
then there exists some positive constants N1 and N̄ such
that, ∀k > 0,

N1‖sk‖2 ≤ |γk | ≤ N̄‖sk‖2. (26)
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Proof: Recall, that γk is defined in (13) as follows

|γk | = |sTk J
T
k+1Jksk + s

T
k (Jk+1 − Jk )

T rk+1|

≤ |sTk J
T
k+1Jksk | + |s

T
k (Jk+1 − Jk )

T rk+1|

≤ ‖Jk+1‖2‖sk‖2 + ‖sk‖‖Jk+1 − Jk‖‖rk+1‖

≤ c21‖sk‖
2
+ l1‖sk‖2‖rk+1‖

≤ c21‖sk‖
2
+ c1l2‖sk‖2

= (c21 + l1c2)‖sk‖
2

= L‖sk‖2,

where L := c21 + l1c2.
Now, from (25) and the above inequality, we have

N1‖sk‖2 ≤ sTk yk
≤ sTk zk
= sTk yk + |γk |

≤ (N2 + L)‖sk‖2,

where yk = gk−1 − gk and zk is a structured vector. Hence,
by setting N̄ = N2 + L, the inequality (26) holds.
Lemma 3: Suppose that the step-size αk is established by

Algorithm 1, and assume that Assumption 2 is satisfied. Then
either αk = 1 or there exist some positive constants p1 and
p2 such that:

p1
sTk Bksk
‖sk‖2

≤ αk ≤ p2
sTk Bksk
‖sk‖2

. (27)

Proof: Suppose 23 is satisfied by αk = 1, then the first
segment of the proof is achieved. Let αk < 1, which simply
mean that the relation (23) failed, for a step-size αk < α ≤

2αk . This implies

f (xk + αdk )− f (xk ) > ςαgTk dk .

Then by using mean-value theorem, we can have

f (xk + αdk )− f (xk ) = g(xk + δ1αdk )T (αdk ) > ςαgTk dk ,

in which δ1 ∈ (0, 1). Thus, this leads to

g(xk + δ1αdk )T (αdk )− αgTk dk > ςαgTk dk − αg
T
k dk . (28)

This implies, that

α[g(xk + δ1αdk )− gk ]T dk > α(ς − 1)gTk dk .

Now, using (28) and Assumption 2, yield

α(ς − 1)gTk dk < α[g(xk + δ1αdk )− gk ]T dk ≤ N2α‖dk‖2.

Then,

αk ≥
1
2
α >

(1− ς )(−gTk dk )

2N2‖dk‖2

=
(1− ς )
2N2

sTk Bksk
‖sk‖2

.

Thus, the lower bound on αk is established, when we set
p1 =

(1−ς )
2N2

.

The condition in (23) gives the upper bound on αk , by
Taylor’s theorem, we have

f (xk+1)− f (xk ) = gTk sk +
1
2
sTk H (ψ)sk ,

for some ψ that lie in the line segment joining xk+1 and xk .
Therefore,

gTk sk +
1
2
sTk H (ψ)sk = f (xk+1)− f (xk ) ≤ ςgTk sk ,

2gTk sk + s
T
k H (ψ)sk ≤ 2ςgTk sk ,

this implies sTk H (ψ)sk ≤ 2(ς − 1)gTk sk = 2(1− ς )(−gTk sk ),

this implies sTk H (ψ)sk ≤ 2(ς − 1)
sTk Bksk
αk

,

this implies αk ≤ 2(1− ς )
sTk Bksk

sTk H (ψ)sk

αk ≤ 2(1− ς )

sTk Bk sk
‖sk‖2

sTk H (ψ)sk
‖sk‖2

=
2(1− ς )
N1

sTk Bksk
‖sk‖2

.

The required inequality in (27) is obtain by setting
p2 =

2(1−ς )
N1

.

Lemma 4: Suppose the sequence {Bk} is generated by
Algorithm 2 and let Assumptions 1 and 2 hold, if the entries
of diagonal matrix B0 are bounded. Then, there exist some
positive constants 11, 12 and 13 such that

tr(Bk+1) ≤ 1
k+1
1 for appropriately large k.

Furthermore, if ν2 < 1, then

tr(Bk ) < 12 ∀k.

Moreover, B(i)k+1 ≥ 13 for i = 1, 2, · · · ,m.
Proof: Now, suppose we define σ1 = ‖Wk‖ =

max{|wik |}, for i = 1, 2, · · · ,m, and also ‖sk‖2 = sTk sk =
m∑
i=1

(sik )
2
≤

m∑
i=1

(smax
k )2 = mσ 2

2 , where s
max
k , is a component of

sk with largest term and β1‖sk‖2 ≤ sTk Bksk ≤ β2‖sk‖
2.

Consider β3 = max{|β1|, |β2|}
Now, from the diagonal matrix form of (22) we have,

tr(Bk+1)

≤ ν2tr(Bk )

+

[
(sTkW

2
k sk + s

T
k Bksk + γk )

sTk (S
2
kW

2
k )sk

tr(S2kW
2
k )− tr(I )tr(W

2
k )

]

≤ ν2tr(Bk )+

[
|sTkW

2
k sk + s

T
k Bksk + γk |

sTk (S
2
kW

2
k )sk

tr(S2kW
2
k )

]

≤ ν2tr(Bk )+

[
|sTkW

2
k sk | + |s

T
k Bksk | + |γk |

sTk (S
2
kW

2
k )sk

tr(S2kW
2
k )

]
.
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Now, using Lemma (2), we have

tr(Bk+1)

≤ ν2tr(Bk )+

[
|sTkW

2
k sk | + |s

T
k Bksk | + |γk |

sTk (S
2
kW

2
k )sk

tr(S2kW
2
k )

]

≤ ν2tr(Bk )+

[
‖sk‖2‖W 2

k ‖ + |s
T
k Bksk | + |γk |

sTk (S
2
kW

2
k )sk

tr(S2kW
2
k )

]

≤ ν2tr(Bk )+

[
σ 2
1 ‖sk‖

2
+ β3‖sk‖2 + |γk |

ν1‖sk‖2tr(S2kW
2
k )

tr(S2kW
2
k )

]

≤ ν2tr(Bk )+

[
(σ 2

1 + β3 + N̄ )‖sk‖2

ν1‖sk‖2tr(S2kW
2
k )

tr(S2kW
2
k )

]

≤ ν2tr(Bk )+

[
σ 2
1 + β3 + N̄

ν1

]
...

≤ νk+12 tr(B0)+

1+
k∑
j=1

ν
j
2

[σ 2
1 + β3 + N̄

ν1

]

≤ tr(B0)+ (k + 1)

[
σ 2
1 + β3 + N̄

ν1

]

≤ n+ (k + 1)

[
σ 2
1 + β3 + N̄

ν1

]
≤ 1k+1

1 ,

where 11 = max{2, n+
[
σ 21+β3+N̄

ν1

]
}.

Furthermore, if ν2 < 1, we have

tr(Bk+1) < tr(B0)+

1+ lim
k→∞

k∑
j=1

ν
j
2

[σ 2
1 + β3 + N̄

ν1

]

≤ n+
(

1
1− ν2

)[
σ 2
1 + β3 + N̄

ν1

]
= 12.

On the other-hand, we have

B(i)k+1 ≥ ν2B
(i)
k ≥ 13, ∀i.

Hence, the diagonal matrix B(i)k is bounded both above and
below by some positive constants for i = 1, 2, · · ·m.
We now state and prove the theorem that shows the con-

vergence rate of the proposed algorithm.
Theorem 1: Suppose the Algorithm 2 generates sequence
{xk+1} using (24) where the search direction, dk = −B

−1
k gk ,

whose elements of Bk are evaluated using (22) and let
Assumptions 1 and 2 hold. Then for any positive definite
matrix B0, which possesses bounded diagonal entries, the
Algorithm generate sequence of iterates which converges to
the minimizer say, x∗ and

∞∑
k=0

‖xk − x∗‖ <∞.

Moreso, there is a positive constant, ν3 in [0, 1) such that

f (xk+1)− f (xk ) ≤ ν
k+1
3 (f (x0)− f (x∗)),

where x0 is a starting point of f .
Proof: Suppose we define θk to be the angle between

the search direction, dk and negative gradient, −gk stated as

cos θk =
gTk B

−1
k gk

‖gk‖‖B
−1
k gk‖

=
sTk Bksk/α

2
k

‖Bksk‖‖sk‖/α2k

=
sTk Bksk
‖sk‖‖Bksk‖

.

Therefore, using the line-search condition in Algorithm 1, the
lower boundedness of αk in Lemma 3 and the assumptions on
f we have.

f (xk+1)− f (x∗) ≤ f (xk )− f (x∗)− ςαkgTk B
−1
k gk ,

≤ f (xk )− f (x∗)− ςp2
(sTk Bksk )

2

‖sk‖2
‖gk‖2

‖gk‖2
,

= f (xk )−f (x∗)− ςp2
(sTk Bksk )

2

‖sk‖2‖Bksk‖2
‖gk‖2,

= f (xk )− f (x∗)− ςp2 cos2 θk‖gk‖2,

where, p2 =
(1−ς )
2N1

. Now, from Assumption 2 i.e the bound-
edness of ∇2f , we have

N1‖xk − x∗‖2 ≤ (xk − x∗)T (g(xk )− g(x∗)),

where g(x∗) = 0 and hence, applying the Cauchy-Schwartz,
on the above expression, we have

N1‖xk − x∗‖2 ≤ ‖xk − x∗‖‖gk‖. (29)

Hence,

f (xk )−f (x∗)≤ (xk−x∗)T (g(xk )− g(x∗)) ≤ ‖xk − x∗‖‖gk‖.

(30)

Therefore, using (29) and (30), we have

f (xk )− f (x∗) ≤
1
N1
‖gk‖2

H⇒ N1[f (xk )− f (x∗)] ≤ ‖gk‖2,

f (xk+1)− f (x∗) ≤ f (xk )− f (x∗)− ςp2 cos2 θk‖gk‖2,

≤ [1− N1ςp2 cos2 θk ](f (xk )− f (x∗))

(31)

Now, using the upper bound of αk and the inequality which
states that ‖Bk sk‖

‖sk‖
≤ tr(Bk ).

Therefore, αk
cos θk

≤
p2‖Bk sk‖
‖sk‖

≤ p2tr(Bk ) = p212 = 14.

Since Bk is bounded as was shown in Lemma 3, therefore,
we have

k∑
i=0

αi

cos θi
≤ (k + 1)14. (32)
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Now, applying the geometric/arithmetic mean inequality (i.e

det(Bk+1)
1
m ≤

tr(Bk+1)
m ) to (32) gives

k∏
i=0

αi

cos θi
≤ 1k+1

4 . (33)

Similarly, using the upper bound for B(i)k obtained from
Lemma 4 we have

‖sk‖2

sTk Bksk
=
‖dk‖2

gTk dk
≤ 12.

Hence, using the above relation, together with bounds of αk ,
we have

αk ≥
p1sTk Bksk
‖sk‖2

≥
p1
12
. (34)

Thus, using the relations (33) and (34), we have

k∏
i=0

cos θi ≥

∏k
i=0 αi

1k+1
3

≥

(
p1

1213

)k+1
. (35)

Moreover, when induction is apply to (31), we have

f (xk+1)− f (x∗) ≤
k∏
i=0

[1− N1ςp2 cos2 θi](f (x0)− f (x∗))

(36)

Now, re-applying the geometric/arithmetic mean and
using (35), we get

f (xk+1)− f (x∗) ≤

(
1

k + 1

k∑
i=0

(1− N1ςp2 cos2 θi)

)k+1
(f (x0)− f (x∗))

≤

(
1− N1ςp2(

k∏
i=0

cos2 θi)
1

k+1

)k+1
(f (x0)− f (x∗))

≤ νk+13 (f (x0)− f (x∗)), (37)

where ν3 = 1− N1ςp2
(

p1
1213

)
< 1.

Furthermore, with the aid of Assumption 2, we can easily
achieve as follows:

1
2
m‖xk+1 − xk‖2 ≤ f (xk+1)− f (x∗)

≤ νk+13 (f (x0)− f (x∗))

≤
1
m
‖gk+1‖2. (38)

The above relation (38), together with (37) gives

‖xk+1 − xk‖2 ≤
2
m
νk+13 (f (x0)− f (x∗)).

Hence,

∞∑
k=0

‖xk+1 − xk‖ ≤
(
2
m

) 1
2
∞∑
k=0

(f (xk+1)− f (x∗))
1
2 ,

≤

(
2
m
(f (x0)− f (x∗))

) 1
2
∞∑
k=0

(ν
1
2
3 )

k+1 <∞.

Therefore, the sequence {xk} is convergent.

IV. NUMERICAL EXPERIMENTS
This section explores the proposed algorithm’s numerical
performance compared to other recent structured algorithms.
We segmented the experiment into two components. The first
part is composed of/discuss testing the algorithm on some
benchmark test problems. On the other hand, the second
segment comprises applying the proposed algorithm to solve
some data fitting problems in the literature. We conducted
these experiments on a MATLAB R2019b programming
packet installed on a PC with a processor speed of 1.60 GHz,
intel CORE i5-8265U, and 8 GB of RAM.

A. EXPERIMENTATION ON SOME BENCHMARK TEST
PROBLEMS
This subsection presented some numerical results on solving
a set of benchmark test problems. These results verify the
numerical efficiency of the proposed algorithm in comparison
to ASDA1 and ASDA2 (which are essentially the proposed
algorithm when W = I ) algorithms developed in [24]. The
extracted problems are from various sources in the literature;
we cited each problem’s reference and their respective stan-
dard initial starting point (see Table 1).

The set of problems considered in this experiment
comprises twenty(20) large-scales while the remaining
three (3) are small-scales. Each of these large-scale
problems had varying dimensions. This dimensions are
3000, 6000, 9000, 12000, 15000. The parameters used in
implementing the proposed GSDA algorithm are as follows:
• Algorithm GSDA: ε = 10−2, ς = 10−4, ε =
10−3, Tol = 10−4

On the other hand, we took the parameters of ASDA1
and ASDA2 from [24]. Furthermore, unlike ASDA1 and
ASDA2 algorithms, where a monotone line search strat-
egy is adopted, we used a simple Armijo line search tech-
nique based on Algorithm 1. An approximate solution is
achieved when the stopping criterion ‖gk‖ ≤ 10−6 is
satisfied. However, a failure by an algorithm reported as
F occurs when either the number of iteration surpasses
1000 and the stopping criterion mentioned above has not
been satisfied. The standard metrics of comparison used
are the number of iterations, number of functions evalu-
ations, number of matrix-vector products, and computing
time. These are represented by #niter, #nfval, #nmvp and
#ncpu respectively. The results of the numerical experiments
are tabulated and made available in this link: https://github.
com/MAHMOUDPD/Experimental_Results_of_GSDA_Alg
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TABLE 1. List of test problems with references and their respective
starting points.

orithm. It can be observed from the results that our proposed
algorithm GSDA (with W = B) solved all the test prob-
lems successfully. The ASDHA1 algorithm subsequently fol-
lows this. However, the ASDHA1 and ASDHA2 algorithms
recorded some failure cases in problems named P2, P15, and
P20. Moreover, for a concrete visual representation of the
result, each metric considered for all the problems is summa-
rized using the well-known performance profile of Dolan and
Moré [27]. That is, for each algorithm, we plot a fraction, say,
ρ of problems for which the algorithm performed well within
a factor, say τ. One can easily see from the Figs. 1-4, that the
performance of GSDA is superior to all of its competitors.
Since the curves formed by the proposed GSDA topped all
the algorithms thus, these results indicate that the GSDA
algorithm could provide a better alternative for solving NLS
problems. Thus, this further accentuates the efficiency of the
GSDA algorithm.
Remark 2: To mitigate the possible generation of non-

positive and singular updated diagonal matrix, Bk+1, we
obviously require that the entries, bik+1 > 0 for all
i = 1, 2, · · · ,m. In practical implementation, the direction,
d ik+1 = −g

i
k+1/b

i
k+1 if b

i
k+1 ≥ ε∗, for every i, else we set

d ik+1 = −g
i
k+1, where ε

∗ is a positive parameter.

B. APPLICATION IN 3DOF MOTION CONTROL OF ROBOTIC
MANIPULATOR
In this segment, we apply the proposed GSDA algorithm
to solve a real-robotic model with three degrees of freedom
(3DOF) that was describe in [36]. We describe the three joint
kinematic model in a planar, and the discrete kinematic model
equation with 3DOF can be represented using the following
equations

r(θ ) =
[
l1 cos(θ1)+l2 cos(θ1 + θ2)+ l3 cos(θ1 + θ2 + θ3)
l1 sin(θ1)+ l2 sin(θ1 + θ2)+ l3 sin(θ1 + θ2 + θ3)

]
,

(39)

FIGURE 1. Performance profile based on number of iteration.

FIGURE 2. Performance profile based on function evaluations.

FIGURE 3. Performance profile based on number of matrix-vector
product.

where r(·) is kinematic mapping function which relate the
position and orientation of a robot’s end-effector or any part
of the robot to an active joint displacements, θ ∈ R3, li (for
i = 1, 2, 3) denotes the length of each link, and in a context
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FIGURE 4. Performance profile based on CPU-TIME.

of robotic motion control, r(θ ) is an end effector position
vector. Suppose, δtk ∈ R2 denotes the desired path vector
at any given time say, tk .We formulated the following least-
squares problem which is solved at every time interval say,
tk ∈ [0, tf ]. The problem is stated as follows:

min
θ∈R3

1
2
‖r(θ )− δtk‖

2, (40)

where δtk as reported in [37] is the desired path at tk of a
Lissajous curve express as

δtk =

 1.5+ 0.4 sin(
π tk
5

)
√
3
2
+ 0.4 sin(

π tk
5
+
π

3
)

 . (41)

It can be observed that the above equation (40) resembles the
structure of (1). Thus the GSDA Algorithm can be used to
solve it.

Algorithm 3 GSDA for Solving (40)
Input: Initial time duration, t0, Initial joint angle, θt0 ,
maximum time duration, tmax , sampling period, g, and
maximum iteration, Kmax .
for k = 1 : Kmax do

tk = kg;
Evaluate δtk using (41).
Compute θtk using GDSA(θt0 , δtk ) stated in 2.
Set θnew = [θt0; θtk ]

Output: θnew

Now, to solve the model and subsequently simulate the
results, we initialize the joint at time instant, t = 0 to be
θt0 = [0, π3 ,

π
2 ], the link length as li = 1 (for i = 1, 2, 3) and

the maximum duration it takes as, tmax = 10s, in the above
Algorithm 3.

Finally, we can observe from the figures that portray
the results obtained from solving (40) using the proposed

FIGURE 5. End effector trajectory and desired path.

FIGURE 6. Synthesized robot trajectories.

FIGURE 7. Tracking residual error on the horizontal x-axis.

algorithm. These results are plotted in Figs. 5- 6. It can
be seen that from 6, the task of synthesizing the robot
trajectories is successfully achieved, and the error rate of
the residuals is about 10−6 which can be observed from
Figs. 7 and 8.
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FIGURE 8. Tracking residual error on the horizontal y-axis.

V. CONCLUSION
We have proposed an algorithm for computing a minimizer of
nonlinear least-squares problems. The developed algorithm
is essentially based on a standard quasi-Newton class of
algorithms; we called the algorithm ‘generalized structured
based diagonal algorithm’ (GSDA). It was derived based
upon a structured weak secant, the least-change secant updat-
ing scheme coupled with the trace of the correction matrix
of the updated matrix. The least-change secant is under a
weighted Frobenius norm. Thus, the algorithm is matrix-
free and straightforward; this simplicity, of course, yields
its low computational cost in each iteration. Furthermore,
it should be noted; this algorithm is a generalization of the
algorithms proposed in [24]. We have also presented the
convergence result of the proposed algorithm. In addition,
we have shown that the algorithm with monotone(Armijo-
line search) is R−linearly convergent; this fills the gap that
existed in [24] for a convex class of NLS problems. More-
over, the proposal was numerically shown to be efficient
and comparatively better than those proposed in [24] when
the associated weighted matrix, W , is taken as the previ-
ous diagonal update Bk . However, if the weighted matrix
is an identity, I , the proposed structured formulation of the
diagonal update becomes the one presented in [24]. Finally,
we have shown that the algorithm can be applied success-
fully to robotic planar motion control manipulators with
3DOF; this underscores the applicability of the proposed
algorithm. Our GSDA MATLAB codes are available on the
first Author’s GitHub page through this link: https://github.
com/MAHMOUDPD/GSDA_for_Robotic_Arm
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