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ABSTRACT A decomposition-coordination optimization method termed as analytical target cascading-
based exterior penalty function (ATC-EPF) is proposed to investigate the reliability allocation aiming at
the low computational efficiency for large complex systems. Firstly, the optimization model is established
via ATC-EPF, which is decomposed into the models of subsystems. Then the subsystems are calculated
in parallel, which reduces the computational cost greatly in the condition of keeping the computational
accuracy. The results are fine which are verified by two study cases including one numerical case and one
engineering case. This research is of great significance to large-scale system planning and design.

INDEX TERMS Analytical target cascading, optimization, exterior penalty function, reliability,
computational efficiency.

I. INTRODUCTION
Generally, a system is defined as a composed of several
units with specific functions. It is expected to find an
optimal design scheme that can meet different requirements
in terms of engineering system. At present, there are
two kinds of methods, one is direct solution method, the
other is the decomposed coordination method. The direct
solution method is to comprehensively consider the design
of each subsystem and design unit as well as their coupling
relationship, and directly search the optimal solution in the
design space of the system. However, this method will face
with the difficulty that the solution scale and calculation
amount will multiply with the increase of the complexity
due to the high dimension, multivariable and complex
coupling characteristics of the system. Thus, the general
optimization methods must be improved to solve the large-
scale optimization problems. Generally, there are two ways to
optimize a large-complicated system, namely, decomposition
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and coordination method (DCM) and analytical target cas-
cading (ATC). Though, DCM can improve the computational
efficiency orminimize the cost for the systems, there are some
shortcomings in design theory. However, the ATCmethod can
not only reduce the computational cost but also improve the
optimization accuracy. Furthermore, the ATC can be used to
study the reliability of large-scale engineering optimization.

DCM is suitable for large-scale system optimization
design [1]–[3]. It decomposes the system into several
sub-programmings and a master programming for global
coordination, such as large-scale railway networks, multi-
rotor Unmanned Aerial Vehicle, and multi-scale coupled
ecological system, etc. The bi-level optimal planning model
was investigated to determine the optimal location of energy
storage systems and capacity in a virtual power plant or
illustrate the performance of the proposed framework by
robotics [4], [5]. Some other schemes were researched such
as stochastic dual dynamic parallel programming [6], Dantzig
Wolfe decomposition algorithms [7], and the distributed
local selfish optimization models [8], to deal with high-
dimensional state-spaces and optimize power generation
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planning or large-scale block angular linear programming.
In addition, probabilistic distributed assessments or nonlinear
programing [9]–[11] were studied via decomposition and
coordination approach. All of these investigations improved
the computational efficiency or minimized the cost for the
systems [12]–[14]. However, there are some shortcomings in
design for the DCM.

In order to solve the shortcomings in design theory,
ATC method was introduced, which was first proposed by
Kim [15] as an object-based general model to handle the
optimization problem of hierarchical structure system. Later,
the scientific research team led by Professor Papalambros
conducted in-depth discussion on this model, and proposed
a series of solving methods. The significant feature of ATC is
that large-scale systems can be decomposed into subsystems
to improve computational efficiency and keep the cost to
a minimum, thus this method has been widely used in
engineering practices. For instance, wind farm cluster, active
distribution network, virtual micro-grid levels, multiregional
power systems and synchronous machine were investigated
byATC [16]–[18], which solved the optimal control problems
and time properties. This method was also widely used in
the research of vehicle systems, especially the suspension
system such as high-speed trains, commercial vehicle,
and the integrated automobile chassis system [19]–[22].
In addition, some researchers investigated the green design
problem of complex engineering system [23]–[25], config-
uring assembly supply chains including several enterprises,
which expanded the scope of production services [26]. These
investigations achieve the consistency and optimality for
overall system in industrial practices. The results provide
valuable insights in the feasibility of system-level design
targets and the adequacy of subproblem design spaces
during product development. Furthermore, the ATC method
reduces the computational cost and improves the optimization
accuracy.

To address the convergence efficiency for large-scale
engineering optimization problems, ATC was improved by
researchers, e.g., the linear and the proximal cutting plane
methods were developed to reduce the number of iterations
and function evaluations [27]. The accelerated and robust
ATC was presented to solve the optimal power flow dis-
tributedly [28]. The collaborative planning method was used
to optimize the distributed power supply for the distribution
network [29]. In addition, alternating direction with paral-
lelization in non-hierarchical ATC [30], nonlinear convex
and non-convex ATC [31], nonhierarchical target-response
coupling between subproblems functions [32] were studied,
which could significantly reduce the number of iterations and
solve the problem of slow convergence, oscillation around the
optimal point, divergence or unbalance of objective terms.
The original all-at-once constrained optimization problem
is decomposed into a hierarchical system. The objective
function is combined with the consistency constraints in
each element. Also, these methodologies can parallelize
the subproblem optimizations, which are implemented in

conjunction with augmented Lagrangian coordination for
ATC-decomposed problems.

Practically, many influencing factors were uncertain, some
scholars studied the reliability of large-scale engineering
optimization problems-based ATC. The probabilistic ATC
was combined with first-order reliability assessment algo-
rithms to estimate the statistical performance of the subsys-
tems, modules, components, and address the uncertainties
efficiently in investigating the concurrent and consistent
design [33]–[39]. Considering the impacts of variability and
uncertainty in design variables, the probabilistic ATC can
calculate the probabilistic characteristic of the interrelated
responses and linking variables, also, it can solve the
reliability allocation problems for large scale system and
deal with the matching of the high order moments for the
multilevel design with non-normal interrelated responses.
The probabilistic optimization problem was converted into
an equivalent deterministic optimization problem, then hier-
archically decomposed them into subproblems. The com-
putational efficiency is remarkably improved. In addition,
some researchers considered the interval uncertainty and
researched the complex system with the maximum variation
analysis-based ATC, and optimized all the subsystems
autonomously to search the robust optimal solution [40]. The
above investigations manifest the most of the optimization
problems are separable in decomposition and coordination
methods, which have certain limitations. Based on this, the
ATC is improved, i.e., analytical target cascading based
on exterior penalty function (ATC-EPF), to investigate
the reliability allocation of larger complex engineering
optimization.

This decomposition-coordination optimization method is
attractive for complex and large-scale systems in industrial
practices. The EPF formulation is implemented using double-
loop (EPF I) and single-loop (EPF II) coordination strategies,
and two penalty-parameter-updating schemes. The decom-
posed subsystem can be calculated in parallel, which can
accurately and efficiently determine the optimal capacities
with large quantities of stochastic scenarios, and reduce
the computational cost observably to achieve overall system
consistency and optimality.

II. RELATED WORK
Generally, the hierarchical structure of system is described by
the classical ATC model, as Fig. 1.

FIGURE 1. System hierarchical structure of ATC model.
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The optimization problems of system described by Fig. 1,
which can be written as

min
∥∥Rsys (x)− T

∥∥
s.t g (x) ≤ 0 (1)

where T is the target of system, Rsys (x) is the response
function of system, g (x) is the constraint function of system,
x is the vector of system.

The optimization goal is to minimize the difference
between the Rsys (x) and T under the constraint condition
g (x) ≤ 0. This optimizationmodel is called All in One (AIO)
model, which is the initial model of system optimization.
However, it is very difficult to solve such a model using
the direct solution method for complex systems. In this
work, based on the idea of decomposition coordination
optimization, the objectives of each subsystem are imported
into AIO model to decompose the original optimization
model, which is called Analytical Target Cascading-based
Exterior Penalty Function (ATC-EPF).

Firstly, the response function is expressed as

R = (R1,R2,R3, · · · ,Rn)T (2)

Rj = rj
(
xj, yj

)
, j = 1, 2, · · · , n (3)

y = yj, j = 1, 2, · · · , n (4)

The optimization model of Eq. (1) is rewritten as

min
∥∥Rsys

(
xsys,Rj∈E , y

)
− T

∥∥
s.t gsys

(
xsys,R, y

)
≤ 0, j ∈ E;

gj
(
xj, yj

)
≤ 0, j ∈ E

Rj = Rlj, j ∈ E;
y = yj, j ∈ E; (5)

where gsys is the constraint function of system, gj is the
constraint function of the jth subsystem, xsys is the local
design variables at system, xj is the local design variable of
the jth subsystem, rj

(
xj, yj

)
is the response function of the

jth system, which is expressed by Rlj at the subsystem layer
and by Rj at the system layer. yj is the connection variable
corresponding to the jth subsystem, which is expressed by y
at system, ε represents the set of all subsystems, where the
number of elements is n.

The equation constraint in Eq. (5) is introduced into the
objective function, the optimization model is denoted as

min

∥∥Rsys (xsys,Rj∈E , y)− T
∥∥+ σ

2

∑
j∈E

∥∥∥Rj − Rlj∥∥∥22
+

∑
j∈E

∥∥y−yj
∥∥2
2


s.t gsys

(
xsys,Rj, y

)
≤ 0

gj
(
xj, yj

)
≤ 0, j ∈ E (6)

where σ is penalty factor.

Then, the original system is decomposed into two parts,
one is the master programming at system layer, and the other
is the sub-programming at subsystem layer.

The master programming is described as

min
{∥∥Rsys

(
xsys,R, y

)
− T

∥∥
+
σ

2

∑
j∈E

∥∥Rj − rj (xj, yj)∥∥22 +∑
j∈E

∥∥y−yj
∥∥2
2


s.t gsys

(
xsys,R, y

)
≤ 0 (7)

The sub-programming of the jth subsystem is expressed as

min
{∥∥∥Rj − Rlj∥∥∥+ ∥∥y−yj

∥∥}
s.t gj

(
xj, yj

)
≤0, j ∈ E

Rlj = rj
(
xj, yj

)
(8)

The computational procedure of master programming and
sub-programming is as follow:

(1) The master programming in Eq. (7) is solved and the(
x(k)sys,R(k), y(k)

)
is obtained, where σ (k) is given, and Rlj ,

yj are, respectively, as the parameter values of the master
programming.

(2) The
(
R(k)j , y(k)

)
is passed to the jth (j ∈ E) sub-

programming, then the sub-programming is calculated, and(
x(k)j , y

(k)
j ,R

l(k)
j

)
is obtained.

(3) Order εR =
(
εR1 , εR2 , · · · , εRn

)T
, and εy =(

εy1 , εy2 , · · · , εyn
)T
, then ε(k)Rj = R(k)j − Rl(k)j and ε(k)yj =

y(k)− y(k)j , (j ∈ E) are calculated. Next, the loop is exited and
optimization results are outputted if ‖εR‖ ≤ ε and

∥∥εy∥∥ ≤ ε,
otherwise, go to step (4).

(4) The penalty factor σ (k+1) = βσ (k), β > 1
is renewaled. Order k = k + 1 and return to step (1).

The calculation process is shown in Fig. 2.

FIGURE 2. Flow chart of ATC-EPF-based penalty function.

The relationship of master programming and sub-
programming is shown in Fig. 3.
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FIGURE 3. Flow chart of reliability optimization in random constraint.
Notice: MP: master programming, SPi : sub-programming, Ri [x∗i (ȳi )] is the
reliability of the optimal solution x∗i and dRi /dy i is the derivative of the
reliability Ri . ni is the number of random variables. FMi (xi ) is the limit
state equation, Ri (xi , ωi ) is reliability function and R0i is the reliability
level. xL

i is the random variable composed by lower limit value and xU
i is

the random variable composed by upper limit value. yi (xi , ωi ) is the
function, Pi is the reliability.

Fig. 3 indicates that the optimization model is converted
into the master planning optimization model and m sep-
arable planning optimization models. The main system is
assigned to each component by master planning and the
assigned system is obtained by the ith sub-programming,
then the optimization solution is back to the master
planning. According to the return value, the system is
redistributed by master planning until the output results is
convergent and the optimal value is matched with the actual
requirements.

However, the constraint is the random in the ith sub-
programming, which needs to be transformed into the
deterministic constraint. The planning idea is introduced to
optimize system reliability considering other constraints in
the condition of minimizing subsystem. Every subsystem is
optimized but finally achieve the purpose of optimization for
the whole system, and the computational efficiency of system
via ATC-EPF are greatly improved.

The Ri(xi,ωi) of the ith subsystem is expressed as

Ri(xi,ωi) = Pi{FMi(xi,ωi) ≥ 0)} =
1
√
2π

∫
−
µFMi
σFMi

−∞

e−
t2
2 dt

(9)

The flow chart of system by ATC-EPF is further described
in Fig. 4.

The solution procedure of the ATC-EPF is shown in Fig. 5.
where M̄ (0)

i is the ith initial subsystem, ε1 is the convergent

tolerances of
∥∥∥x̄(l+1)i − x̄(l)i

∥∥∥, ε2 is the convergent tolerances
of
∥∥∥M̄ (t+1)

i − M̄ (t)
i

∥∥∥, and 0 < ε1 < 0.0015, 0 < ε2 <

0.0012.
Fig. 5 indicates that the reliability optimization is an

iterative process of master planning and separable planning
until the output values satisfy the actual requirements.

FIGURE 4. Flow chart of reliability optimization in deterministic
constraint. Notice: µFMi

and σFMi
are the mean and standard deviation,

gi (x̄i ) and ui (x̄i ) are the deterministic constraint functions.

FIGURE 5. Solution procedure via ATC-EPF.

However, ATC-EPF method can reduce dimensions and
improve computational efficiency and accuracy.

III. CASE STUDIES
A. NUMERICAL CASE
In order to verify the calculation accuracy and efficiency of
the ATC-EPF, firstly, a numerical case is given. This is a
quadratic function optimization problem including 14 design
variables, 6 inequality constraints and 4 equality constraints,
and all design variables are required non-negatively. The
optimization model is expressed as

min f = x21 + x
2
2

s.t g1 = x−23 + x
2
4 − x

2
5≤ 0

g2 = x25 + x
−2
6 − x

2
7 ≤ 0

g3 = x28 + x
2
9 − x

2
11 ≤ 0

g4 = x−28 + x
2
10 − x

2
11 ≤ 0

g5 = x211 + x
−2
12 − x

2
13 ≤ 0

g6 = x211 + x
2
12 − x

2
14 ≤ 0

h1 = x21 − x
2
3 − x

−2
4 − x

2
5 = 0

h2 = x22 − x
2
5 − x

2
6 − x

2
7 = 0

h3 = x23 − x
2
8 − x

−2
9 − x

−2
10 − x

2
11 = 0

h4 = x26 − x
2
11 − x

2
12 − x

2
13 − x

2
14 = 0

x1, x2, · · · , x14 ≥ 0
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This optimization can be expressed byATC-EPF according
to Eqs. (6-8), as shown in Fig.6. The results of optimal value
obtained by AIO and ATC-EPF are compared, as Table 1.

FIGURE 6. Optimization model of numerical case by ATC-EPF.

TABLE 1. Comparison of AIO method and ATC-EPF method in numerical
case.

It is seen from Table 1 the rate of deviation via ATC-
EPF compared with that of AIO is 0.07%-3.20% and the
rate of deviation of the minimum function is 0.67% obtained
by ATC-EPF compared with that of AIO, which satisfy the
accuracy requirement. Thus, the optimal solution obtained
by ATC-EPF is consistent with that of obtained by AIO,
which verifies the accuracy of this method. In addition,
the computational efficiency of ATC-EPF is improved
95.97% compared with that of AIO. Thus, the computational
efficiency of ATC-EPF is significantly improved compared
with AIO in the condition of satisfying the computational
accuracy.

B. ENGINEERING CASE
The reliable product is very important for society, and
reasonable reliability index allocation is of great significance

FIGURE 7. Structure block diagram of system.

to the life span. It is known the computational cost of
reliability is expensive, thus ATC-EPF is adopted to calculate
the reliability index allocation of products in this work. It is
required to minimize the cost of the system in the condition
of satisfying the constraint of reliability index. The block
diagram of system is shown in Fig. 7. This large system
contains 5 subsystems, which contains two components. The
optimization model is as follow:

minCS =
5∑
i=1

2∑
j=1

Cij

s.t RS ≥ 0.999

Rs = R5 + R1 (1− R5) (R2R3 + R4 − R2R3R4)

0.5 ≤ Rij ≤ 0.98, i = 1, 2; j = 1, 2

0.2 ≤ Rij ≤ 0.99, i = 3, 4, 5; j = 1, 2

Ri = Ri1Ri2 ≥ 0.5, i = 1, 2

0.5 ≤ Ri ≤ 0.998, i = 3, 4, 5

Ri = 1− (1− Ri1) (1− Ri2) , i = 3, 4, 5

Ci1 = R2i1/3, Ci2 = R2i2/2, i = 1, 2

Ci1 =
[ln (1− Ri1)]2

100
, i = 3, 4, 5

Ci2 =
[ln (1− Ri2)]2

60
, i = 3, 4, 5

Note: Rij is the reliability index of the jth unit in the ith
subsystem, and Cij is the cost of the jth unit in the ith
subsystem.

FIGURE 8. Optimization model by ATC-EPF.
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TABLE 2. Comparison of AIO and ATC-EPF.

The above optimization problems can be decomposed
into the ATC-EPF model according to Eqs. (6-8), as shown
in Fig. 8 and the sub-systems are shown in Eqs. (10-14).
Table 2 shows the comparison of the optimal value of AIO
and ATC-EPF.

Subsystem1 :

min (Rsys1 − R
sub1
1 )2 + (Csys

1 − C
sub1
1 )2

s.t Rsub11 = R11R12

Csub1
1 =

R211
3
+
R212
2

0.5 ≤ Rsub11 ≤ 1.0

0.5 ≤ R11 ≤ 0.98; 0.5 ≤ R12 ≤ 0.98

Csub1
1 ≥ 0 (10)

Subsystem2 :

min (Rsys2 − R
sub2
2 )2 + (Csys

2 − C
sub2
2 )2

s.t Rsub22 = R21R22

Csub2
2 =

R221
3
+
R222
2

0.5 ≤ Rsub22 ≤ 1.0

0.5 ≤ R21 ≤ 0.98; 0.5 ≤ R22 ≤ 0.98

Csub2
2 ≥ 0 (11)

Subsystem3 :

min (Rsys3 − R
sub3
3 )2 + (Csys

3 − C
sub3
3 )2

s.t Rsub33 = 1− (1− R31)(1− R32)

Csub3
3 = (ln(1− R31))2/100+ (ln(1− R32))2/60

0.5 ≤ Rsub33 ≤ 0.998

0.2 ≤ R31 ≤ 0.99; 0.2 ≤ R32 ≤ 0.99

Csub3
3 ≥ 0 (12)

Subsystem4 :

min (Rsys4 − R
sub4
4 )2 + (Csys

4 − C
sub4
4 )2

s.t Rsub44 = 1− (1− R41)(1− R42)

Csub4
4 = (ln(1− R41))2/100+ (ln(1− R42))2/60

0.5 ≤ Rsub44 ≤ 0.998

0.2 ≤ R41 ≤ 0.99; 0.2 ≤ R42 ≤ 0.99

Csub4
4 ≥ 0 (13)

Subsystem5 :

min (Rsys5 − R
sub5
5 )2 + (Csys

5 − C
sub5
5 )2

s.t Rsub55 = 1− (1− R51)(1− R52)

Csub5
5 = (ln(1− R51))2/100+ (ln(1− R52))2/60

0.5 ≤ Rsub55 ≤ 0.998

0.2 ≤ R51 ≤ 0.99; 0.2 ≤ R52 ≤ 0.99

Csub5
5 ≥ 0 (14)

It is seen from Table 2 the rate of deviation via
ATC-EPF compared with that of AIO is 0.02%-2.56%. Thus,
the optimal solution obtained by ATC-EPF satisfied the
accuracy in engineering practice. In addition, the iterations
of ATC-EPF are 5 and AIO is 387, so the ATC-EPF is 77.4
times as much as AIO. That is, the computational efficiency
of ATC-EPF is improved 98.71% compared with that of AIO.
Therefore, the results show that the method presented in this
paper is observably superior to the AIO.

IV. CONCLUSION
Analytical Target Cascading-based Exterior Penalty Function
(ATC-EPF) is proposed to handle system optimization
problems. The response bias of subsystem layer is introduced
into the objective function of system through penalty factor
according to the idea of objective level decomposition and
coordination optimization. The optimization is decomposed
into the master programming and the sub programming, and
the solution scale of system is reduced.

The results are transferred to the master programming
in the form of decoupled parameters after the independent
optimization of each sub-programming. The master pro-
gramming carries out global coordination optimization in
accordance with the principle of overall system optimization,
and sends the results to the sub-programming in the form of
coordination parameters to coordinate the optimization activ-
ities of each subsystem. This method reflects the structural
characteristics of the overall system and subsystem as well
as subsystems. It is convenient for ‘‘parallel calculation’’ to
further improve the efficiency and solves the difficulty of
direct solution method, which is a practical method that can
be popularized in engineering practices.

Two cases, that is, numerical and engineering examples,
indicate that the optimal solution obtained by ATC-EPF is
consistent with that of obtained by AIO, which verifies the
accuracy. In addition, the computational efficiency of ATC-
EPF is improved 95.97% and 98.71% compared with that
of AIO in numerical and engineering examples. Thus, the
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method presented in this work is observably superior to
the AIO method whether the computational efficiency or
computational accuracy.
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