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ABSTRACT There has been a wide interest in high-resolution air quality monitoring with low-cost gas
sensor systems in the last years. Such gas sensors, however, suffer from cross-sensitivities, interferences
with environmental factors, unit-to-unit variability, aging, and concept drift. Therefore, reliability and trust-
worthiness of the measurements in the low parts-per-billion (ppb) range remain a concern, particularly over
the course of the lifetime of a sensor network in urban environments. In this simulation study, the possibility
to continuously recalibrate a wireless sensor network with mobile references and stochastic gradients,
computed from encounters, is explored. By using data collected in field experiments, encounters between
static and mobile nodes are modeled as a probabilistic process. Moreover, the influence of a collection of
design parameters such as base calibration, initial recalibration, choice of optimization algorithm, as well as
encounter frequency are analyzed and discussed. With an optimized protocol, it can be shown that long-term
reliable measurements with absolute errors of about 50 ppb for CO, 3 ppb for NO2, and 4 ppb for O3 could
be achievable with a few mobile references in urban environments.

INDEX TERMS Air qualitymonitoring, calibration, gas sensor, Internet of Things, low-cost, online learning,
wireless sensor network.

I. INTRODUCTION
Due to the health impact of low air quality [1], [2], a lot
of research with low-cost gas and particulate matter sen-
sors for high-resolution air quality monitoring has been con-
ducted in the last years [3]–[7]. Unit-to-unit variability [8],
interferences with other gases and environmental parameters
[9], [10], as well as aging [10], [11] are common problems of
such sensors.

For air quality monitoring, however, data quality objectives
imposed by legislators must be met [12]. Thus, researchers
came up with the idea of combining an array of different sen-
sors into so-called low-cost sensors systems with the purpose
of compensating interfering effects with models obtained
from machine learning algorithms [13], [14] (e.g., neural
networks [4] or random forests [9]) and field data. Unfor-
tunately, this generally leads to non-representative models
followed by concept drift [15], [16]; the environmental condi-
tions vary over time and space, so the calibration parameters
need to change frequently. Hence, maintaining reliability and
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trustworthiness over the course of the lifetime of an air quality
sensor network remains a challenge.

Traditionally, measurement instruments are recalibrated
periodically against references provided by authorities to
maintain trustworthiness and to assign measurement uncer-
tainties [17]. For wireless sensor networks, however, such a
workflow does not scale, and dedicated network calibration
methods have been developed in the last decade. A recently
published survey by Maag et al. [18] summarizes proposed
sensor network calibration algorithms and their suitability for
air quality monitoring applications.

For instance, blind calibration approaches [19]–[22] lack
the (legally required) information on the measurement uncer-
tainty and appear to not work for low-cost gas sensors [18].
Multi-hop calibration approaches with static references and
mobile sensors [23]–[25] generally lead to the propagation of
errors [26], but additional error sources should be avoided at
all costs. Moreover, low-cost gas sensors have response times
in the range of 30 − 90 s [27]–[29], which is considerably
long for mobile nodes. Alternatively, mobile reference instru-
ments, i.e., reliable mobile devices mounted on vehicles,
could continuously monitor and recalibrate static low-cost
sensor nodes [30].
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Regarding data transmission, Saukh et al. [24] propose
that static and mobile nodes submit measurements, indexed
by time and location, to a database on the cloud at inde-
pendent frequencies; they define a ‘‘rendezvous’’ as a time
interval in which two nodes have time and space distances
below certain thresholds. Note that both distances can be
minimized if static nodes were placed close to stops where
vehicles spend about half a minute.

This definition is particularly useful if recalibration is
performed periodically in a batch so that a database can be
queried for all measurements of interest. Nonetheless, this
adds an additional error due to the imprecision of the indexes.
In addition, the larger the allowed spatial or temporal dis-
tance for a rendezvous, the higher the additional measurement
uncertainty will be. If the recalibration frequency is low, more
recent measurements should receive a higher weight [31].
From a metrological point-of-view, however, a low recalibra-
tion frequency leads to less representative parameters.

While performing recalibration in batches (consisting
of many encounters) is well-established, treating network
calibration as an online learning (i.e., streaming data)
problem [32] has not been considered so far. In a recently
published conference paper [31], the idea to sequentially
recalibrate nodes as part of a sensor network with mobile
references and stochastic gradient descent (SGD) [33], [34]
was briefly sketched. On one side, such a lightweight protocol
would account for sensor aging and the rapid changes in the
atmospheric conditions (i.e., concept drift) yet be robust to
single anomalies (e.g., sudden artifacts in the signals).

One the other side, a traceable measurement uncertainty
could be associated with each device so that measurements
can be interpreted properly [17], [35]. Furthermore, due to
the success of deep learning in the last decade [36], more
advanced update rules like RMSProp (possibly with addi-
tional momentum of the gradient) [33], have been developed,
which should be considered as well.

This work builds upon the concept and evaluates such
a protocol for gas sensors using field data and simulated
encounters under different base calibrations, initial recali-
bration, algorithms, and encounter frequencies. The paper
is structured as follows. In a first step, the problem and its
design parameters are presented formally, and the generalized
SGD for online calibration is illustrated. Furthermore, the
used experimental field data and the performed simulations
are rigorously described. In a next step, the obtained results
and possible limitations are presented and discussed. Finally,
the paper closes with a conclusion and an outlook on future
work.

II. MATERIALS AND METHODS
A. PROBLEM DEFINITION
The calibration process aims is to find the set of optimal
calibration parameters W ∈ R(p+1)×q that map the sensor
signal s to the reference data r , i.e., r̂ = sW . In this study,
the calibration model was fixed to a linear regression with

model input s = (1, s1, . . . , sp) ∈ R1×(p+1) and model output
r = (r1, . . . , rq) ∈ R1×q. Note that the model input contains
a ‘‘1’’ for the intercept. (In principle, any other model that can
be trained via SGD is also possible.)

The problem of stochastic online calibration with mobile
references over a node lifetime T was modeled according to
the scheme depicted in Figure 1.

FIGURE 1. Schema of the protocol.

During a deployment phase, a low-cost sensor system with
a base calibration Wb (i.e., initial calibration parameters) is
synchronized with a mobile reference system for a short time
period h� T (via somewireless technology standard, treated
as black box in the following) so that it adapts to its new
environment.

At time point t , the tuple (st , rt ) of sensor and reference
signals is collected. With every collected tuple, an online
recalibration procedure based on SGD is performed, thereby
updating the set of calibration parametersW .

Afterwards, the operational phase begins. Several refer-
ence instruments mounted on arbitrary vehicles, e.g., trams
or buses, have encounters with static nodes, leading to com-
parison of sensor and reference values. At every encounter,
the same tuple of sensor and reference signals is collected for
a recalibration iteration.

In general, finding a map for continuous output vari-
ables can be achieved via least squares optimization.
Since the output variables can span across different orders
of magnitude (i.e., some pollutants are more abundant
than others), it might be reasonable to weight their loss
contributions by factors e1, . . . , eq, stored in a matrix
E = diag(e1, . . . , eq) ∈ Rq×q. Hence, with a collection of
n measurements, i.e., S ∈ Rn×(p+1) and R ∈ Rn×q, the loss
L (in matrix notation, tr refers to the trace) to be minimized
is given in (1).

min
W

L =
1
2
tr((SW − R)T (SW − R)E) (1)

In case of very large data sets or streaming data, the optimal
solution is best found via SGD [32], [33]. The gradient g, i.e.,
the derivative of the loss with respect to themodel parameters,
is given in (2).

g =
dL
dW
= ST (SW − R)E (2)
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Algorithm 1 describes a generalized version of SGD for the
stochastic online calibration of network nodes, i.e., after one
encounter. (� is the Hadamard operator.) In the deep learning
literature [33], this procedure is known as RMSProp with
momentum (RMSProp-m). The variable v is responsible for
memorizing the momentum of the gradient; it is controlled
by α ∈ [0, 1] (the momentum parameter). A high value of
α accelerates the gradient and speeds up convergence when
several consecutive incorrect predictions are performed [33].
The variable a stores a discounted moving average of the
squared gradient and is controlled by β ∈ [0, 1] (the decay
rate). With a high value of β, previous (in)correct predictions
are remembered for adapting the individual learning rates.
Finally, γ ∈ R+ is the step size (the global learning rate).

With a ← 1, α = 0, and β = 1, vanilla SGD is obtained
(i.e., without momentum and adaptive learning rate). Setting
only α = 0 results in RMSProp (i.e., without momentum).
Note that the square root operation is applied element-wise
(i.e., Hadamard square root). ε is a stability constant and
should be fixed to a value that is much smaller than the
gradients. Therefore, the design parameters of the protocol
are Wb, h, E , α, β, γ , and the encounter frequency.

Algorithm 1 Stochastic Online Calibration
1: procedure Calibrate(Wb,E, α, β, γ )
2: W ← Wb
3: v← 0
4: a← 0
5: ε ← 10−8

6: for t ← 1,T do
7: if (st , rt ) collected then #At encounter.
8: Wi← W + αv
9: g← sTt (stWi − rt )E

10: a← βa+ (1− β)g� g
11: v← αv− γ

√
a+ε
� g

12: W ← W + v
13: end if
14: end for
15: end procedure

16: functionMeasure(st ,W )
17: r̂t ← stW
18: return r̂t
19: end function

B. DATA
As data set, the field study conducted by Zimmerman et al. [9]
was used. The data set was collected at an urban background
site from August 2016 to February 2017 and consists of
quarter-hourly measurements from 19 low-cost sensor sys-
tems. References values for carbon monoxide (CO), nitro-
gen dioxide (NO2), and ozone (O3) in the parts-per-billion
(ppb) range (Table 1) are available from the second month
(i.e., October). Considering that the lifetime of such sensors
is roughly six to twelve months [11], the duration is sufficient

TABLE 1. Summary of the reference distribution.

to make reasonable statements about the efficacy of the
protocol. There are even reports about relevant drift after one
month of operation [37].

Each low-cost sensor system contained the widely used
electrochemical sensors CO-B41 [29], NO2-B43F [28], and
Ox-B431 (NO2 and O3 combined) [27] from Alphasense as
well as sensors for temperature (T) and relative humidity
(RH). According to the study authors, the sensor outputs were
measured with a custom-designed electronic circuit board
and optimized for signal stability. More precisely, said board
comprised custom electronics to operate the device, multiple
stages of filtering, and an analog-to-digital converter. In addi-
tion, the data were logged at a rate of 4 per minute but down-
sampled to 4 per hour by averaging.

For low-cost gas sensor systems, those are important
requirements to minimize the noise. In practice, a network
node would sample raw sensor signals s̃ at a predefined fre-
quency and compute an average in an online fashion, thereby
avoiding to store all values. With K required samples, the
average µs̃ with the k-th raw signal s̃k is given in (3).

µs̃← µs̃ +
s̃k
K

(3)

After all samples have been collected, this computation
terminates; the most recent average is memorized, serving as
sensor input for the next encounter with a mobile reference
(i.e., st ← µs̃, µs̃← 0).
Out of the 19 devices, three low-cost sensor systems

(#4: device 1, #16: device 2, and #17: device 3) have the
least values missing. In order to keep bias as low as possible,
only these three systems have been considered in the analysis.
Specifically, the optimal protocol was developed solely with
device 1 and validated on the data from the remaining two.
The measurements from devices 2 and 3 stop one month
earlier (i.e., in January). Missing values between start and
stop have been imputed with forward filling, since this was
seen as an opportunity to simulate potential erroneous events
during operation. An overview of the data set is shown in
Figure 7 (Appendix A).

In their original paper [9], the authors provided two popu-
lation calibrations for each sensor type (Table 2), i.e., param-
eters obtained from a collection of sensors that fits well
on average but not necessarily for every unit; a simple (s)
laboratory calibration (CO: 0-1600 ppb, NO2: 0-50 ppb,
in 3-4 points), and an extended (e) field calibration including
parameters for the interferences with T and RH (calibration
distribution described in Table 1).

Note that neither accounts for cross-sensitivities with other
pollutants. Unfortunately, no simple calibration was made
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TABLE 2. Simple (s) and extended (e) population calibrations for the
three gas sensors with intercept w0, sensitivity ws, and
corrections wT , wRH .

available for the Ox-B431 sensor, so the values from the
NO2-B43F sensor had to be used instead. This can be justified
by the fact that the data sheets [27], [28] suggest similar
calibration parameters. In the following, both population cal-
ibrations were examined as potential base calibrations before
deployment.

C. SIMULATIONS
The initial recalibration period during deployment (i.e., h)
was fixed to 24 hours. Furthermore, errors for NO2 and
O3 have been weighted by a factor of ten, since they are
more relevant [2]. Where not further specified, values for
the hyperparameters of the algorithms were taken from the
literature (i.e., α = 0.9, β = 0.99) [33], or determined in
preliminary experiments (i.e., γ = 10−7 for SGD, γ = 10−3

for RMSProp and RMSProp-m).
Encounters between mobile references have been simu-

lated via Bernoulli trials. At each time point t , there is a
probability π for an encounter [31]. For t 6 h, π is equal to 1.
Since the data set consists of roughly 100 data points per day,
a value of π = 1 corresponds to an average encounter rate
of 100 per day. Thus, different encounter rates were modeled
in this manner. Since this is a stochastic process, 100 such
simulations were performed to yield average results, thereby
removing the influence of single encounters.

As metric for the performance of a low-cost sensor system,
the absolute error for every pollutant i ∈ {CO,NO2,O3} was
computed. It is defined as the average absolute deviation of
the predicted concentration from the actual reference value
over the period T ignoring missing values (4).

1i =
1
T

T∑
t=1

|ri,t − r̂i,t | (4)

III. RESULTS AND DISCUSSION
Figure 2 illustrates the performance of device 1 with the
three algorithms under different encounter frequencies using
a simple base calibration, whereas Figure 3 shows the same
result with an extended base calibration. The dotted line is
the base case error; it is the performance that is obtained
if no further adjusted is made (i.e., no recalibration during
deployment or operation).

The offset in the absolute error at low encounter frequency
is the result from the recalibration during deployment. This
observation suggests that a recalibration for a few hours

during deployment is actually beneficial, as the absolute
error generally decreases. This improvement has two reasons.
On the one hand, the base calibration is a population calibra-
tion that does not necessarily fit for a specific unit.

On the other hand, no corrections for interferences with
T and RH are included in the simple base calibration model.
Specifically, the inclusion of T and RH corrections lowers the
base case error (dotted line) for NO2 and O3 significantly in
comparison with the simple calibration. In general, there is
a large consensus that such compensations are necessary [3].
Figure 8 shows how such corrections are introduced during
deployment. However, the sensitivities and intercepts of the
extended calibration are also different (Table 2), so theymight
better represent these sensors.

The subplots in both Figures illustrate that RMSProp gen-
erally leads to the highest decrease in absolute error for
NO2 and O3, whereas RMSProp-m leads to the highest
decrease for CO. Further increase of the performance can
only be achieved in case of several encounters per day. The
reason is that either the deployment duration is too short so
that calibration parameters are not yet optimal, or that they
need adjustment due to aging and concept drift. For example,
Figure 9 illustrates how the model parameters continuously
evolve over time.

With RMSProp-m, the performance even decreases for
NO2 and O3 at low to moderate encounter frequencies.
In this case, it appears that momentum only benefits adjust-
ing the calibration parameters of CO. Furthermore, since
erroneous signals are possible (e.g., due to imputed missing
values), they could also increase the absolute error at mod-
erate encounter rates. Nonetheless, the methodology seems
to be quite robust to such events, since the performance still
increases at the highest encounter frequencies.

The error reduction could be probably even lower without
these events; some encounters surely contain more informa-
tion than others do. Hence, it might be a good idea to filter
out erroneous instances before performing gradient descent.
Completely faulty nodes, on the other hand, could be identi-
fied by monitoring the absolute error over time.

For CO, however, the highest concentrations are not cor-
rectly predicted, as shown in Figure 10. The explanation
for the higher error of the CO measurements might be
that high concentrations were not properly covered by the
base calibrations; because the upper limit of the simple
calibration lies higher compared to the extended calibra-
tion, it performs slightly better for CO (Figures 2 and 3).
More precisely, support is lacking for high concentrations,
and without these upper levels, the hyperplane might be
improperly oriented, thereby resulting in predictions of low
quality.

The question arises whether some better base calibrations
could be obtained from experiments with orthogonal vari-
ables [15]. In field experiments, calibration ranges can not be
chosen and all factors of interest are usually correlated. With
calibrationmodels obtained fromfield data, it is even possible
to ‘‘measure’’ any pollutant with any sensor if correlations are
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FIGURE 2. Absolute error from a simple base calibration as a function of algorithm and encounter frequency (100 simulations per
encounter frequency). The dotted line refers to the absolute error without any recalibration. An offset is the result from the initial
recalibration during deployment.

FIGURE 3. Absolute error from an extended base calibration as a function of algorithm and encounter frequency (100 simulations per
encounter frequency). The dotted line refers to the absolute error without any recalibration. An offset is the result from the initial
recalibration during deployment.

very strong [15]. Thus, it is challenging to find representative
calibration parameters using field data.

Since SGD and RMSProp-m bring no additional benefit
over RMSProp for the two relevant pollutants NO2 and O3,
both algorithms were not considered in the further analy-
sis. Moreover, the hyperparameters of the algorithm have
not been optimized thus far. Figure 4 illustrates the error
landscape (in ppb) for the three pollutants under different
combinations of the hyperparameters.

It shows that the situation could be improved by imple-
menting individual hyperparameters. By decreasing β and
increasing γ , the performance can be improved for NO2
andO3. Moreover, predicting COwith low error requires high
values of β and γ . In this case, the optimal hyperparameters
should be fixed to β = 0.8 and γ = 0.005 for NO2/O3 as
well as β = 0.999 and γ = 0.01 for CO.

Because the hyperplane might be improperly oriented
initially, large consecutive gradient updates are required to

reorient it, as the highest concentrations occur only rarely.
Consequently, there is an interaction with the inadequate
base calibration and the choice of the optimization algo-
rithm. Alternatively, a ‘‘better’’ base calibration covering
the full range might allow the same hyperparameters for all
pollutants.

Figure 5 illustrates the agreement between sensor and
reference measurements for device 1 using RMSProp with
the set of optimal hyperparameters and ten encounters per
day, starting with an extended calibration. The agreement is
exceptionally good, considering that the measurements are
coming from low-cost gas sensors.

The final absolute errors from device 1, corresponding to
the standard uncertainties in metrology [35], are about 50 ppb
for CO, 3 ppb for NO2, and 4 ppb for O3. In relation to
the medians, these uncertainties are 26% for CO, 33% for
NO2, and 19% for O3. Due to uncertainty propagation, the
uncertainty from the reference instrument adds up to the one
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FIGURE 4. Absolute error (ppb) as a function of hyperparameters β and γ using an extended calibration and RMSProp at ten encounters per
day (50 simulations per parameter combination).

FIGURE 5. Performance of device 1 over time with optimal hyperparameters at ten encounters per day.

from the low-cost sensor system [35]; a sample calculation
is given in Appendix B. To put it into legal context [12], the
maximum allowed expanded measurement uncertainties are
25% for CO and NO2 as well as 30% for O3. The higher the
pollution levels, the easier it is to meet these requirements.

Finally, since an optimal protocol has been found, it can be
validated on the remaining data from devices 2 and 3. Figure 6
evaluates the absolute error and its reduction by switching
from a simple base calibration without any further recali-
bration to an extended base calibration with an initial recal-
ibration during deployment as well as recalibration during
operation using RMSProp (with optimal hyperparameters)
at ten encounters per day. It shows that this reduction is of
similar magnitude for the other two devices, hence supporting
the theoretical concept.

In the original study [9], the authors developed several
different calibration models from the collected field data.

They claimed that they could reduce the absolute errors to
8 ppb for CO and even below 1 ppb for NO2 and O3 with
random forest models. With these calibration models, the
absolute errors suddenly increased to values of about 49 ppb
for CO, 5 ppb for NO2, and 3 ppb for O3 during an indepen-
dent test at another location. Thus, their absolute errors were
much higher during test time. Moreover, with purely linear
models, the errors were generally higher.

On the one hand, this observation suggests that their
machine learning models captured the local atmosphere of
the location at which the models were developed [15], since
the performance decreased at the new location. The underly-
ing problem is that the relationships between the pollutants
and/or environmental factors are different at other locations
or at other time points. Therefore, less reliable measurements
can be expected upon relocation of field-calibrated low-cost
sensor systems [15].
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FIGURE 6. Reduction of the absolute error by switching from simple base calibration without recalibration to an optimal protocol at ten
encounters per day.

On the other hand, the low error that they achieved with
random forest models advocates basis expansion (i.e., the
introduction of power and interaction terms). In particular,
random forests (and neural networks) are great at captur-
ing non-linear behavior without explicit basis expansion.
Consequently, describing potential non-linearity should fur-
ther decrease the absolute error. An example for a non-
linearity would be the interaction between sensitivity and
temperature that is even reported in the data sheets [27]–[29].
(This also motivated calibrating low-cost gas sensors with
machine learning algorithms in the first place [3].)

With these results in mind, the question arises as to what
extent several encounters per day are realistic. In the case of
the city Basel in Switzerland, for example, trams circulate for
about 20 hours per day and there are about eight relevant lines.
A tram associated to a line has about 45 to 60 minutes from
one terminal to the other.

Therefore, it can be expected that the encounter frequency
should be up to 20 per day if one tram per line would be
equipped with a mobile reference. Thus, operating in this
regime with eight such references would be not too far-
fetched, though the question arises what kind of reference
instruments could possibly be used, as such devices should
be affordable yet reliable [30].

In contrast to using only mobile reference instruments
mounted on trams or buses, the temporal resolution with
additional static nodes can be much higher. In this manner,
down-sampling can be performed when a high data acquisi-
tion rate is available, which essentially lowers the noise in the
measurements. In addition, multiple data points per hour can
be made available.

The presented outcomes demonstrate that stochastic online
calibration with reliable mobile references bears the poten-
tial for long-term accurate measurements from low-cost gas
sensors, since unit-to-unit variability, aging, and concept drift
can be continuously compensated. Although the algorithms
were only applied to low-cost gas sensors system within one

data set, it can be expected that the concept generalizes to
arbitrary sensor systems and networks, since SGD was suc-
cessfully applied in several distinct online learning scenarios
before [32].

Despite these promising results, it is also important to
point out some of their shortcomings. In particular, several
additional error sources can be expected in real-world sce-
narios. For instance, the response times of the measurement
instruments have been assumed to be zero. Due to response
times of the reference instruments, a spatial carryover equals
to sl = vmtr (with vehicle velocity vm and response time tr )
would result in a real-world scenario. Hence, a short response
time can be seen as one requirement for candidate refer-
ence devices. A complete list of requirements would help to
identify an existing product or guide the development of a
new one.

Although every reader intuitively understands the term
‘‘encounter’’, it is not absolutely defined. During an
encounter, the distance first decreases and then increases
again. In practice, an encounter between nodes requires
machine-to-machine communication and the range depends
on the chosen wireless technology standard (e.g., Bluetooth 5
has ranges up to 200 m [38]). Hence, there is a also
time window for data exchange. The larger the allowed
distance, the less representative a communicated reference
measurement is.

In the presented schema (Figure 1), every encounter trig-
gers a computation, thereby consuming a small amount of
energy, which might not always be available. Alternatively,
before updating the parameters, the loss in (1) could be
computed to assess whether a gradient update would be
even required, e.g., by setting a minimum error threshold.
(Intuitively, no gradient step is necessary if predictions and
reference values coincide.)

Yet another option would be that the stationary node trans-
mits the sensor data together with the current calibration
parameters so that the mobile reference can perform all
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FIGURE 7. Overview of the data set. White regions correspond to missing
measurements.

FIGURE 8. Adaptation of the calibration parameters (absolute values)
from simple base calibration for CO during deployment (i.e., within the
first 24 hours) with SGD.

computations. Nonetheless, transmitting data also requires
energy. For an upcoming real-world solution, other aspects
such as price and availability of references, network over-
head, energy consumption of nodes, or costs of computations
on the cloud need to be considered as well.

IV. CONCLUSION AND OUTLOOK
This work expanded the concept of sequentially recalibrating
nodes of a low-cost gas sensor network for air quality moni-
toring with mobile references and stochastic gradients. With
such mobile references and the proposed algorithm, network
nodes could be monitored and continuously recalibrated,
thereby aiding to maintain trust in the measurements.

A proper base calibration is crucial for the success of the
approach. Thus, characterizing a small population of low-cost
gas sensor systems to obtain an adequate base calibration
might be an effort worth taken. As of now, this is mostly
achieved in lengthy field campaigns, but establishing it as an
efficient and inexpensive service in a laboratory setting with
orthogonal variables is planned [15].

It could be shown that an initial recalibration during
deployment is beneficial for a low-cost gas sensor system,

FIGURE 9. Adaptation of the calibration parameters (absolute values)
from simple base calibration for CO, NO2 and O3 (from top to bottom)
during operation (SGD at ten encounters per day).

FIGURE 10. Agreement between reference and prediction of CO from
device 1 over time (RMSProp with β = 0.99 and γ = 0.001) at ten
encounters per day.

as every device needs unit-specific calibration parameters.
Moreover, a calibration model should also include compensa-
tions for interfering variables and cover the range of interest.

If the calibration parameters change over time due to aging
and concept drift, they are adjusted accordingly. Moreover,
it could be demonstrated that the choice of gradient update
rule matters, since RMSProp performed better than vanilla
SGD. With optimal hyperparameters and an encounter fre-
quency of up to 20 per day, the absolute error can be reduced
to about 50 ppb for CO, 3 ppb for NO2, and 4 ppb for O3 by
performing gradient descent updates after encounters.

Finally, future work should focus on filtering out erroneous
instances to further increase the performance as well as defin-
ing requirements for adequatemobile reference systems. If no
commercially available devices meet the requirements, novel
ones could be developed. Once potential references have been
determined, the proposed protocol needs to be validated in
field studies.

APPENDIX A
SUPPLEMENTARY FIGURES
See Figs. 7–10.
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APPENDIX B
UNCERTAINTY PROPAGATION
With K standard uncertainty sources uj, j ∈ {1, . . . ,K },
the expanded uncertainty U of a measurement instrument is
defined in (5) [35].

U = 2×

√√√√√ K∑
j=1

u2j (5)

Typically, references for air quality (e.g., NO2) have stan-
dard uncertainties of 5% [39]. With 30% of standard uncer-
tainty coming from a low-cost sensor, the resulting expanded
uncertainty is U = 2×

√
(30%)2 + (5%)2 = 61%.
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