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ABSTRACT To solve the problem of poor recognition effect of transient signal in low Signal-to-Noise
ratio (SNR) and strong interference electromagnetic environment, a morphological filtering method based
on the multi-scale combined difference product (MCDPMF) was proposed. This paper concentrates on the
issues of sudden changes in transient electronic signal, such as impulses and edges. Firstly, it provides a
difference product morphological filter. Moreover, the extended and multi-origin morphological Structural
Elements (SEs) is constructed, combining with the multi-structural layers a (a indicates the structural
layers of the MCDPMF), the transient electromagnetic weak signal is multi-scale filtered. They are used
to optimize the number of the structure layers a adaptively based on the amplitude characteristic ratio of the
positive and negative polarity of the filtered signal (HML value), combining the kurtosis-SNR (kx − SNR)
ratio characteristic coefficient. MCDPMF is proposed to enhance the filtering results and suppress the
noise frequency points. Meanwhile, it can extract the structure components and identify the features of
the transient electromagnetic weak signal. It can be shown from simulation and experimental results that
the proposed method is superior to EMD, AVG, OCCO, and other methods in subjective evaluation and
objective indicators.

INDEX TERMS Transient electromagnetic signal, weak signal extraction, morphological filtering,
multi-scale combined difference.

I. INTRODUCTION
With the development of wireless communication, the com-
munication signal system and modulation style are becoming
more complex and more diverse. The frequency spectrum
is developing increasingly crowded and overlapped, leading
to a significant increase in background noise and interfer-
ence [1]. The extraction of weak transient electromagnetic
signals can analyze the coupling characteristics of electro-
magnetic interference signals. Meanwhile, electromagnetic
signals also contain a large amount of character information
that can characterize the interference intensity of electro-
magnetic emission sources and the types of abnormal sig-
nals. Transient electromagnetic signals have non-stationary
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characteristics typically. They appear as single or multiple
periodic pulse signals in the time domain with sharp changes
in amplitude, extremely fast rising and falling edges, as well
as extremely short duration. At the same time, the frequency
of interfering sources is complicated, and the components
are unpredictable [2], leading to the pulse signal being sub-
merged by strong background noise and interfering com-
ponents. Therefore, it is challenging to extract and identify
the structure of weak electromagnetic transient signals under
strong background noise.

There are many electromagnetic signal detection methods
under strong background noise, all of which have achieved
good extraction results, such as mechanical fault signal
diagnosis, weak vibration signal extraction, etc [3], [4].
In traditional transient signal detection methods, the short-
time spectral correlation method requires prior knowledge
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of the detected signal [5], [6]. Power-Law detection
method [7], transient energy detection method [8], and
cepstral analysis [9] results are greatly affected by noise.
Besides, the detection performance deteriorates sharply or
even fails in a low SNR environment. In time-frequency
analysis methods, Hilbert-Huang transform [10], Empiri-
cal mode decomposition (EMD) [11], learning modula-
tion filter network (LMFN) [12], and Convolutional Neural
Network [13], [14] are introduced to preprocess transient
signals. However, in essence, the transient energy is used as
the measurement, which increases the amount of calculation
in the process of signal extraction, and its applicability is poor.

Morphological filter [15], [16] is a nonlinear filtering pro-
cessing method [17] based on mathematical morphological
transformation. Morphological filtering is widely used in
image processing [18], speech recognition, fault diagnosis,
and other fields [19], [20]. In recent years, it has been applied
in detecting transient signals and achieved good application
effects [21], [22], especially in expanding morphological
operators’ construction, the optimal SE selection and adap-
tive morphological filter [23], which has become a research
hotspot [24]–[27]. The morphological filter combined with
the structural element (SE) as the filtering window [28] to
matche the geometric features of the signal to be analyzed.
It modifies the local signals in the time domain [29], [30],
effectively extracting the signal’s edge contour and shape fea-
tures. Morphological filtering can effectively remove large-
scale noise interference and baseline drift that are aliased in
the signal. It can identify, reconstruct, and enhance the poten-
tial morphology for distorted signals. However, the morpho-
logical filteringmethod for transient signal extraction has two
problems: (1) Strong background noise environment’s inter-
ference components are complex. The traditional morpholog-
ical filters have simple structures, such as Differentiation gra-
dient (MG) [31] and Mathematical morphology (MM) [32],
which are prone to produce truncation errors when remov-
ing interfering harmonic signals. The useful electromagnetic
signal is still retained in the separated noise signal, and thus
detection errors arise [33]. EDMF [19], DIF (Difference Fil-
ter) [34], ACDIF [35] combined with classical morphological
operators can alleviate detection error, and has been applied
to the device’s fault transient signal reduction. However,
thesemethods cannot evaluate different SNR ratios’ detection
effects effectively. They aren’t universal for they only focus
on the results of frequency filtering of transient signal, but lit-
tle on the characteristics of the signal structure. (2) In propos-
ing morphological filters, the construction of morphological
operators and the selection of SE are mainly considered. For
example, the Kurtosis criteria (KR) [36] and Feature energy
factor (FEF) [37] are used to select the optimal SE scale and
shape. Combining with traditional morphological operators
to construct new operators AVG (Average operator) [29],
OCCO [38] to enhance the extraction of weak signals, but
the role of structural layers a [39] in morphological filtering
is ignored.

To solve the above problems, this article proposes a multi-
scale combined difference product morphological filtering
method (MCDPMF). The main contributions are as follows:
With the breakthrough of strong noise and abnormal fre-
quency point suppression based on the morphological filter-
ing, the filtering effect under different SNR ratio is discussed
by using the extensible, multi-origin, and multi-scale SEs
and the multi-structural layers a optimized by characteristic
parameter index. A multi-scale combined difference product
morphological filter is constructed to enhance the filtering
results. Finally, the structure and feature extraction of tran-
sient weak signals in a strong noise electromagnetic environ-
ment is realized. Themethod proposed in this paper is feasible
and superior in extracting transient electromagnetic weak
signals under strong background noise, based on simulation
and experimental results.

II. BASIC OPERATION IN MATHEMATICAL
MORPHOLOGY
In mathematical morphology, expansion and corrosion oper-
ations constitute a pair of dual transformations. The corro-
sion operator has the function of weakening the peak and
strengthening the trough of the signal. The expansion oper-
ator can weaken the trough and strengthen the peak. At the
same time, the open operation can suppress the positive pulse
of the signal and extract the negative pulse, as well as the
closed operation is the opposite [27], [40]. Combined with
the filtering characteristics of the four basic morphological
operators, it can form a better operator to extract the charac-
teristic information of electromagnetic transient weak signal
from strong background noise. In addition to ensuring that the
shape of the transient electromagnetic signal is not damaged,
the closed operation and expansion operation are calculated
to enhance the retention of positive pulses and the suppression
of negative pulses. And then, the negative pulse retained in the
transient signal is corrected through the cascade of corrosion
operation. The constructed operators FCDE and FDCE are
defined as follows [18]:

FCDE ( f ) = f · g+ ⊕ g+ (1)

FDCE ( f ) = f ⊕ g+ · g+ (2)

Similarly, the open operation and corrosion operation are
cascaded to enhance the retention of negative pulses and the
suppression of positive pulses. Then the retained positive
pulses in the transient signal are modified through the cascade
of expansion operation. The constructed operators FEOD and
FOED are defined as follows:

FEOD (f ) = f2g− ◦ g− (3)

FOED (f ) = f ◦ g−2g− (4)

In Eq. (1)-(4), g+ and g− are represent SEs, which slide
in the signal like a mobile filtering window to check its
interaction and extract specific features.
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III. MULTI-SCALE COMBINED DIFFERENCE PRODUCT
MORPHOLOGICAL FILTERING METHOD
A. DEFINITION OF MCDPMF
The SEs constructed in this paper are as follows:

g+ = minAa{g1, g2, · · · gl−1, gl}

g− = −minAa{g1, g2, · · · gl−1, gl} (5)

In Eq. (5), g+ and g− are used to extract the rising
and falling edge of the transient electromagnetic signal
respectively.minAa represents the minimum amplitude of the
signal when the number of structural layers is a, l represents
the length of SEs, and satisfies this equation l = 2l−alg [15].
lg is the length of a when g is equal to 1. The underlined
samples in g+ and g− indicate the origin of the g.

In order to enhance the ability to extract transient electro-
magnetic signals under strong noise, based on the filtering
characteristics of operators, such as the FCDE , FDCE , FEOD
and FOED, a combined difference product morphological
filter (CDPMF) is proposed firstly, which uses the form of
combined difference products of four types of operators to
compensate performance deficiencies of various operators
and achieve effective extraction of weak signals. When the
number of structural layers is a, the definition of Pag is as
follows:

Pag+ = (FaCDE − F
a
EOD)(x)× (FaDCE − F

a
OED)(x)

Pag− = −(F
a
EOD − F

a
CDE )(x)× (FaOED − F

a
DCE )(x) (6)

In Eq. (6), P0 represents the original signal. Since
FCDE |FDCE ≥ FEOD|FOED, so Pag+ ≥ 0 and Pag− ≤ 0.

Pag+ and Pag− correspond to the rising edge and falling edge

of the signal respectively, namely the polarity of the transient
signals. The definition of CDPMF is as follows:

CDPMF = [(FCDE − FOED) /2 · (FDCE − FEOD) /2] (f )

− [(FEOD − FCDE ) /2 · (FOED − FDCE ) /2] (f )

(7)

In combination with Eq. (6), Eq. (7) can be written as:

CDPMF =
[
P a
g+/4

]
(f )+

[
P a
g−/4

]
(f ) (8)

In this paper, multi-structure layers are used to perform
morphological operations on signals, combined with Eq. (8)
to construct a multi-scale combined difference product mor-
phological filter (MCDPMF), which is defined as follows:

MCDPMF =



[
P a1
g+/4

]
(f )+

[
P a1
g−/4

]
(f ) = f1[

P a2
g+/4

]
(f1)+

[
P a2
g−/4

]
(f1) = f2

...[
P ai
g+/4

]
(fi−1)+

[
P ai
g−/4

]
(fi−1) = fi

(9)

where f is the original transient electromagnetic signal,
f1 · · · fi is the signal filtering effect under different a, a1 · · · ai
is the number of layers in different structures, Pa1g · · ·P

ai
g

is the combined difference product morphological operator

under different resolutions. The MCDPMF filter constructed
in this paper can effectively take the anti-noise performance
and the ability to maintain the details of the electromagnetic
signal into account, overcoming the limitation of the filtering
ability of a single morphological filter operator. It can also
suppress the steady-state component of the target signal,
enhance the transient component, and realize the suppression
of abnormal frequency points and signal extraction of elec-
tromagnetic signals in a strong noise environment.

B. SELECTION PRINCIPLE OF SEs OPERATOR
Transient electromagnetic weak signal has complex fre-
quency components and high steepness, and the weak pulse
characteristics under strong noise make it highly nonlinear.
This article combines Eq. (5) to design scalable, multi-origin,
multi-scale SEs to analyze the signal. Transient signals in
small-scale SEs can better extract details and retain steep
transient non-stationary high-frequency signals in low SNR
environments. Large-scale SEs can better filter out interfer-
ence and noise and obtain the contour characteristics of the
signal, which makes up for the denoising ability of small-
scale SEs [37]. Combined with signal characteristics, a new
operator of the sinusoidal structure element is designed in this
paper. The shape of the operator is shown in Fig.1:

FIGURE 1. The SEs operator designed in this paper.

As shown in Fig.1, L is the length of SEs, and minAa is
the lowest amplitude of the positive pulse of the transient
electromagnetic signal when the number of structural layers
is a. −minAa is the lowest amplitude of the negative pulse of
the signal. The SEs operator constructed in this paper has the
same shape and amplitude under different conditions of a, but
the difference is the length. With the increase of a, the pro-
cessing window of each layer of structural element operator
decreases, and the distinction of signal characteristics will be
more obvious.

C. SELECTION PRINCIPLE OF STRUCTURAL LAYERS IN
MCDPMF
In this paper, kurtosis’s strong anti-interference ability in
characterizing transient pulse signals and remarkable advan-
tage [37], combined with SNR to form characteristic coef-
ficients (kx − SNR) to optimize the number of structural
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layers a. kx indicates the peak value of the probability density
distribution of the signal at the mean value. Assuming that the
sampled value of the signal is n, its kurtosis can be expressed
as:

kx =
1
n

∑n
i=1 (xi − x)

4

( 1n
∑n

i=1 (xi − x)
2)2
− 3 (10)

where xi represents the ith value of the sampled signal and x
is the average value of the sampled signal. If kx is positive,
it means that the sampled signal has a super-Gaussian distri-
bution, with a clear upward or downward trend, and means it
is a spike signal. If kx is negative, it means that the sampling
signal distribution is relatively gentle. That is to say, it is a
sub-Gaussian distribution, and there is no spike or impulse.

Calculate the root mean square (RMS) of the electromag-
netic signal, expressed as:

Vrms =

√
1
τ

∫ t0+τ

t0
V 2 (t) dt (11)

In Eq. (11), τ is the average sampling time. Signals with
different SNR are set through the RMS value of the original
signal s(n) and noise signal x(n). The mixed signal is x(n) =
s(n)+ g−noise(n), and the SNR value is expressed as:

SNR [dB] = 20 lg
x(n)rms
s(n)rms

(12)

The random simulation was conducted for x(n) and
g−noise(n) for 10 times, in order to obtain the change of kx−
SNR (−10dB-30dB) within a in the range of 1-6, as shown in
Fig.2-Fig.3:

As Fig.2-Fig.3 shows, when SNR ranges from 10dB to
30dB, the kurtosis eigenvalues of x(n) and g−noise(n) are
highly distinguished, but as SNR decreases, the kurtosis
eigenvalues of x(n) gradually approach to g−noise(n). The
kx − SNR of the simulated mixed noise signal has good
stability; the maximum value is 0.2434, the minimum value
is−0.41, and the mean value is 0. As the number of structure
layers a is increased, the distinction between the kurtosis
characteristics of the transient electromagnetic signal and the
noise increases. However, as a increases, the scale of SEs
will decrease, so that the denoising effect will be affected.
Therefore, the number of structural layers a needs to be set
reasonably.

In order to judge the extraction effect of abnormal signals
at different SNR, HML indicators are constructed based on
P a
g+ and P a

g− , which is defined as:

HML =
∣∣∣V (P a

g+

)
/V

(
P a
g−

)∣∣∣ (13)

In Eq. (13), V (P a
g+ ) is the amplitude of the rising edge sig-

nal extracted under different a, andV (P a
g− ) is the amplitude of

the falling edge signal. The physical meaning of HML is the
extraction effect of MCDPMF on transient electromagnetic
signals under different a. And the HML value is positively
correlated with the extraction effect. This article comprehen-
sively considers the performance of a, the length of SEs and

FIGURE 2. Changes of kx −SNR under different structural layers (a = 1-3).

HML value under different SNR. The relationship curve is
shown in Fig.4:

In what follows, the relationship between a and SEs are
explained in Fig.4. A high a corresponds to a small-scale
SEs, which is limited to the conflict between the SEs scale
in extracting detailed signal features and denoising effects.
The choice of a can be adaptively optimized by combining
HML indicators.

IV. SIMULATION TEST RESULTS
To further more explore the method of this paper, we used
three SNR ratio’s simulation signal (5dB, 0dB, and −5dB)
to illustrate the effectiveness of the MCDPMF algorithm
for extracting weak transient electromagnetic signals. The
frequency range of the transient electromagnetic signal
is 1-1000Hz, and the signal to be detected is simulated by
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FIGURE 3. Changes of kx −SNR under different structural layers (a = 4-6).

using a double exponential attenuated oscillation pulse:

y1 (t) = 1.2 sin (2π f1t)+ 1.1 cos (2π f2t) (14)

y2 (t) = 4e−100 mod (t,1/f0) sin (400π t) (15)

y (t) = y1 (t)+ y2 (t)+ δ (t) (16)

In Eq. (14), where y1(t) contains two interfering frequen-
cies, and the f1 and f2 are 30 Hz and 40 Hz. In Eq. (15),
y2(t) is an exponentially decaying oscillation signal with
a frequency of 16 Hz, which is used to simulate weak
transient electromagnetic signals. In Eq. (16), δ (t) is the
added mixed noise, which includes the wide-spectrum white
Gaussian noise, which is used to simulate the background
thermal noise and random background environmental noise
of the test system, as well as the periodic narrowband inter-
ference noise of analog broadcasting and communication.
The simulated signal is shown in Fig.5, and it can be seen

FIGURE 4. The relationship between a, SEs and HML indicators in the
MCDPMF algorithm.

that the transient electromagnetic signal is overwhelmed by
interference frequencies and noise signals, and the original
signal cannot be distinguished in the time domain.

FIGURE 5. Simulation of transient electromagnetic weak signal,
(a) Noiseless original signal (b) SNR = 5dB (c) SNR = 0dB (d) SNR = −5dB.

The spectrum and envelope spectrum analysis results of
the transient electromagnetic signal with SNR of −5dB are
shown in Fig.6. Due to the influence of strong noise and inter-
ference, the low-frequency electromagnetic signal cannot be
extracted, and only the frequency of the interfering signal
can be seen. Therefore, it is challenging to extract transient
electromagnetic signals under strong noise background using
spectrum and envelope spectrum analysis.

The MCDPMF algorithm proposed in this paper extracts
weak signals y(t) under the three SNR conditions which
mentioned in Fig.5. In MCDPMF, the layers of multi-scale
structure a has a great influence on the performance of
electromagnetic transient signal detection in strong noise
environment. In this chapter, we will further discuss the
effect of transient electromagnetic signal extraction and pulse
detection results under different SNR in the test results, and
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FIGURE 6. Spectrum and envelope spectrum analysis of y (t) under −5dB.

combined with the adaptive selection of structural layers a
and kx − SNR. The calculation results of HML value of
simulation results under multi-structure layers are listed in
Table 1:

TABLE 1. HML value of simulation results (SNR = 5dB, 0dB, −5dB) under
the multi-structure layers a of the MCDPMF.

As can be seen from Table 1, the MCDPMF has the best
HML value when a = 4, which means that the algorithm
proposed in this paper shows good performance in transient
signal detection in different SNR situations. At the same time,
the results in Table 1 verify the effectiveness of the structural
layer selection method proposed in Section 2.

Taking the test results of the structural layer of MCDPMF
is four (a= 4), Fig.7 shows the change of characteristic coef-
ficient of simulation results (SNR = 5dB, 0dB and −5dB),
and the kx−SNR values under three different SNR aremarked
in the Fig.7.

As can be seen from Fig.7, we can find that MCDPMF
has good discrimination under three SNR conditions, which
further proves the effectiveness of the method proposed in
this paper in extracting electromagnetic transient signals in
low SNR and strong interference electromagnetic environ-
ment. Fig.8 respectively show the signal extraction effect
after filtering.

Analysis of Fig.8 shows that when the weak transient
electromagnetic signal is under 5dB, 0dB, and−5dBworking

FIGURE 7. The change of kx − SNR in simulation results when a = 4.
(SNR = 5dB, 0dB and −5dB).

conditions, through theMCDPMF, the signal is firstly filtered
in the background of strong noise, and the polarity of theweak
signal is judged by accurately extracting the pulse features of
the rising and falling edge of the signal, the results are shown
in Fig.8(b) respectively; Secondly, compared with Fig.8(a),
the result as shown in Fig.8(c), we can get that the weak signal
extraction is realized in a low SNR environment, while the
added interference frequency (f1, f2) and mixed noise δ (t) are
successfully suppressed. Synthesize the above discussion, the
results show thatMCDPMF can effectively extract weak tran-
sient electromagnetic signals in a strong noise environment.

V. EXPERIMENT AND DISCUSSION
An experimental was conducted to evaluate whether
MCDPMF could extract and recognize transient signal in
strong noise electromagnetic environment. During the exper-
iment, based on the NI PXIE-5162 acquisition device and the
analog radiation source device, the 80Hz transient discharge
signal was injected into the power cable. The current caliper
(ROHDE&SCHWARZ EZ-17) conjunction with the 30dB
preamplifier (LANGER PA303N), was used to collect the
transient electromagnetic signal at the sampling frequency
of 3GHz. This paper uses a set of data of 0.1 s, and the
data’s time domain and frequency domain graphs are shown
in Fig.9. The transient electromagnetic signal is difficult to
detect because of its short duration, strong noise, and complex
frequency components. Fig.9(a) shows that the time domain
signal is submerged in the background noises. In addition,
it is difficult to directly obtain the frequency component of
the target transient signal in the frequency domain, as shown
in Fig.9(b). The MCDPMF algorithm proposed in this paper
is used to suppress the noise and extract the pulse component
of the measured transient signal.

The extraction results of transient signals by theMCDPMF
algorithm under different structural layers (a= 1-6) as shown
in Fig.10. Combined with Fig.10, HML values used to evalu-
ate the extraction effect of transient signals under different a,
the results as listed in Table 2. It can be seen that when a= 4,
the HML value is 0.68828, which is the best transient signal
extraction effect.
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FIGURE 8. SNR = 5dB, SNR = 0dB, SNR = −5dB, transient
electromagnetic signal y (t) extraction effect. (a) Original signal with
interference frequency and mixed noise under three different SNR
working station(The three (a)’s represent: SNR = 5dB, 0dB, −5dB). (b) The
polarity of the weak signal, including ascending and descending edge of
transient signal(The three (b)’s represent: SNR = 5dB, 0dB, −5dB). (c) The
weak signal extraction result by MCDPMF(The three (c)’s represent:
SNR = 5dB, 0dB, −5dB).

TABLE 2. The HML value of MCDPMF under a = 1-6.

The filtering and extraction effect of experimental data
through the MCDPMF algorithm as shown in Fig.11.

FIGURE 9. The experimental data. (a) Time-domain diagram (b) FFT
spectrum.

FIGURE 10. Extraction effect of the transient signal by MCDPMF under
different structural layers (a = 1-6). (a) a = 1 (b) a = 2 (c) a = 3 (d) a = 4
(e) a = 5 (f) a = 6.

Fig.11(a) and (b) show the positive and negative pulse
waveform of the experimental data signal, that is, the polarity
(the rising and falling edge) of the signal. Fig.11(c) shows
the extraction effect of the transient electromagnetic signals
in the time domain. Combined with the effect of signal recon-
struction and polarity characteristics, the signal’s position
information can also be obtained. The results of the spec-
trum analysis of the filtered signal are shown in Fig.11(d).
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FIGURE 11. Transient signal extraction results based on MCDPMF
(a) positive pulse (b) negative pulse (c) signal extraction result in time
domain (d) FFT spectrum analysis.

Meanwhile, the frequency information of the transient signal
(f = 80Hz) and its harmonic signal (2f , 3f , 4f ) can be
presented. The experimental results show that the transient
signal extracted by MCDPMF has apparent resolution and a
good suppression effect on interference and strong noise.

To further verify the effectiveness and general applicability
of the proposed method, the transient weak signal extraction
experiment is carried out with AVG, EMD, MG, OCCO, and
MCDPMF; the experimental data is the same as above. The
test results are shown in Fig.12.

The statistical domain’s dimensionless features (Kurto-
sis, Skewness, PeakFacter, and ImpulseFacter) were used to
compare the extraction effects. The Kurtosis represented the
degree of steepness and slowness of the extracted signal,
in other words, the magnitude of the peak value. Skewness
represents the skew of the extracted transient pulse signal
structure, that is the accuracy of structure extraction. Peak-
Facter and ImpulseFacter are used to detect whether the
signal has a transient pulse. The extraction results of the five
methods corresponding to the calculation results of the above
four dimensionless features are shown in Table 3.

According to the analysis of the results listed in Table 3, the
MCDPMF proposed in this article is significantly better than

FIGURE 12. The effect of five methods for extracting transient signal.
(a) AVG (b) EMD (c) MG (d) OCCO (e) MCDPMF.

the other four methods in Kurtosis, Skewness, PeakFacter,
and ImpulseFacter indicators. The results prove that the algo-
rithm proposed in this paper is the most accurate method in
extracting weak transient electromagnetic signals, followed
by EMD, OCCO, AVG, and MG.

TABLE 3. Four indicators calculation results.

VI. CONCLUSION
The focus of this paper is to solve the problems of unknown
structure and poor recognition effect of transient signal in
low SNR and strong noise electromagnetic environment, and
proposed a multi-scale combined difference product mor-
phological filtering method (MCDPMF) based on improved
basic morphological operators. Through the adaptive opti-
mization of structural layers a by characteristic parameters
and combined with multi-origin and scalable SEs, MCDPMF
is constructed to suppress noise interference and extract tran-
sient weak signals. The simulation and experimental analysis
results show that the proposed method is effective, it can give
consideration to signal feature retention and noise suppres-
sion, and has a good capability of transient electromagnetic
weak signal extraction. Compared with other filtering meth-
ods, the superiority ofMCDPMF is verified. Themethod pro-
posed in this article can be regarded as a problem of extracting
weak periodic transient signals from measurement signals
with strong background noise. Therefore, it can be applied to
mechanical bearing fault diagnosis, late weak signal analysis
of magnetotelluric, weak vibration signal extraction, and
other fields.
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