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ABSTRACT A depth map helps robots and autonomous vehicles (AVs) visualize the three-dimensional
world to navigate and localize neighboring obstacles. However, it is difficult to develop a deep learning
model that can estimate the depth map from a single image in real-time. This study proposes a fast
monocular depth estimation model named FastMDE by optimizing the deep convolutional neural network
according to the encoder-decoder architecture. The decoder needs to obtain partial and semantic feature
maps from the encoding phase to improve the depth estimation accuracy. Therefore, we designed FastMDE
with two effective strategies. The first one involved redesigning the skip connection with the features of
the squeeze-excitation module to obtain partial and semantic feature maps of the encoding phase. The
second strategy involved redesigning the decoder by using the fusion dense block to permit the usage of
high-resolution features that were learned earlier in the network before upsampling. The proposed FastMDE
model utilizes only 4.1 M parameters, which is much lesser than the parameters utilized by state-of-art
models. Thus, FastDME has a higher accuracy and lower latency than previous models. This study also
demonstrates thatMDE can leverage deep neural networks in real-time (i.e., 30 fps) with the Linux embedded
board Nvidia Jetson Xavier NX. The model can facilitate the development and applications with superior
performances and easy deployment on an embedded platform.

INDEX TERMS Efficient CNN, deep neural network, depth map, supervised learning, self-supervised
learning.

I. INTRODUCTION
Depth map prediction from a single image is a fundamental
aspect of several applications that involve three-dimensional
(3D) visualizations of the real world. It can be deployed in
multiple applications, such as robotics, autonomous vehicles,
and drones [1], [2]. It assists robots in building good simul-
taneous localization and mapping (SLAM) for autonomous
obstacle avoidance [3], [4]. However, existing depth sensors,
such as Light Detection and Ranging (LiDAR), structured-
light sensors, etc., are typically bulky, heavy, and consume a
lot of power. This makes them unsuitable for small robotic
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platforms. Thus, the development of a depth estimation tech-
nique by using a monocular camera is being explored due to
its compact size, low cost, and low power consumption.

Researchers have recently been tried to address this prob-
lem by performing monocular depth estimation (MDE)
through deep learning. Studies [5]–[7] used the encoder-
decoder as the backbone of the architecture. The encoder
is commonly used in complex networks that were designed
for object detection and recognition problems, such as
VGG-16 [8], ResNet [9], andDenseNet [10], due to their high
expressive power and accuracy. For instance, Alhashim and
Wonka [11] used transfer learning andDenseNet-169 for high
quality depth estimation. Lee et al. [12] used DenseNet-161
with local planar guidance to extract dense encoding features.
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FIGURE 1. MDE on KITTI datasets. The results of the current method were
compared with those of Monodepth2 [5]. The current method can
produce images with higher quality and sharpness than those of
Monodepth2 [5], despite using 3.5 times fewer parameters than the
latter. The image resolution in the current study is 1024× 320.

Godard et al. [5] adopted ResNet-18 for the encoder network
architecture. However, such complex and deep convolutional
neural network (DCNN) architectures, which require over
14 M parameters, lead to high complexity and high latency.
Therefore, it is very difficult to deploy these models in
real-time industrial applications because they have limited
hardware resources on embedded platforms. It is essential
to develop an efficient convolutional neural network (CNN)
model that can run in real-time on embedded devices.

Previous studies on real-time MDE have adopted net-
work pruning techniques to reduce the size of the model.
Wofk et al. [13] used MobileNet [14] for the encoding
phase and network pruning processes in their model. They
obtained fast depth estimation by using the Nvidia Jet-
son TX2 at 178 fps on a GPU and 27 fps on a CPU
with an input image resolution of 224 × 224. However,
the model proposed in [13] has low accuracy and sup-
ports low-resolution input images. Thus, researchers have
adopted reinforcement learning to design high-efficiency
model architecture. Shaw et al. [15] proposed a fast-semantic
segmentation model named SqueezeNAS. This study utilized
reinforcement learning to develop the most optimum net-
work architecture for segmentation tasks. They only utilized
1.8 M parameters and achieved high accuracy. Several stud-
ies [16]–[19] reported high performances by optimizing the
hyper-parameters of the neural network architecture. These
studies revealed that the computer could adopt the neural
architecture search technique to design neural network archi-
tectures automatically. However, this approach requires a lot
of GPU computational resources and hundreds to thousands

of computational days to obtain the optimal neural network.
Thus, this study demonstrates a high-efficiency neural net-
work architecture by accounting for properties that improve
the depth prediction results. Since the depth estimation prob-
lem requires pixel-based information, the model needs the
semantic features and spatial information of the object to
predict its boundaries at a high resolution. Semantic feature
maps are appropriate for semantic segmentation tasks and can
be used to produce boundaries between different objects. Spa-
tial information can help visualize the boundaries of objects,
thereby enhancing the depth map estimation.

An analysis to infer high-quality depth estimation is con-
ducted to develop a lightweight model for MDE with high
accuracy.

• The deep layers in the encoder of the DCNN contain
additional channels to extract high-level features from
the input image, thereby ensuring that the semantic fea-
tures are relatively detailed. Therefore, a network that
can capture the high-level features in the deep layers
from the encoder and merge them into the features
within the decoder is needed. This helps the decoder lay-
ers construct a highly detailed semantic features output.

• Abilinear interpolation or interpolates the nearest neigh-
bor at a scale factor of 2 is usually used in upsampling of
the decoder. These two methods generate smooth edges
or pixelated, interpolated images with stair-step arti-
fact [20]. Therefore, upsampling an image with blurred
or noisy edges makes it difficult for the model to esti-
mate the edge information. Thus, the model must predict
a sharp edge at a high resolution before it undergoes
upsampling.’’

Thus, the DCNN architecture is redesigned in this study to
achieve high accuracy and low latency for MDE. Our main
contributions are summarized below.

• A FastDME architecture that can perform better than
state-of-the-art methods while using 3.5 times fewer
weights than Monodepth2 [5] and HR-depth [7] is pro-
posed in this study. A comparison between the depth
map estimation of the current method and Monodepth2
is shown in Fig. 1. The results demonstrate that the
FastDME architecture can predict the depth map at a
higher quality with sharper edges than the state-of-art
methods.

• The skip connection is redesigned, and the squeeze-
excitation (SE) block is used to extract important fea-
tures of the encoding phase and is referred to as eSE.
Thus, the decoder contains more details on the spatial
and semantic feature maps.

• The dense connection in the decoder part is redesigned,
namely fDense, to easily learn the high-resolution fea-
tures that are obtained from the skip connection and
encoder features to produce highly-detailed edge infor-
mation before the upsampling process. This allows the
model to predict sharper edges at higher accuracy.’’
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• The TensorRT enginemodel, which is easily deployed in
the Nvidia Linux embedded board (Tested with Nvidia
Xavier NX), is then proposed.

The remaining sections of this manuscript are organized as
follows. Section II discusses studies related to the proposed
model. Section III introduces the proposed FastDME, which
includes the novel skip connection with an SE block and
a unique fusion dense module. The training specifications
are also described in this Section. Section IV compares the
results of the FastMDE technique with those of a few state-
of-art methods. Section V discusses the ablation studies to
analyze the performance improvement realized by the Fast-
DME model. An ablative analysis is performed on different
architectural components introduced with the baseline model
Monodepth2 [5]. Section VI concludes this study.

II. RELATED STUDIES
This section describes studies related to the deep learning
methods used for MDE, such as supervised learning and
unsupervised learning. This is followed by a discussion on
the existing lightweight MDE networks.

A. THE MONOCULAR DEPTH ESTIMATION APPROACH
1) SUPERVISED LEARNING
MDE is an auto-encoder problem that feeds an input image
and permits it to be transformed according to multiple rea-
sonable depths. Earlier studies were based on supervised
learning, wherein the model was trained by applying a ground
truth depth for the calculation loss. The first supervised learn-
ing method [21] was trained on the RGB-D dataset. The
network designed in [21] can predict the depth map in two
states. The first state has a globally coarse depth, whereas
the second state has a locally fine depth to generate pixel-
by-pixel depth values. This local prediction assists the model
in generating the depth map in great detail. Researchers later
developed new network architecture to improve the model’s
accuracy such that the model was comparable to a depth
sensor. Zhang et al. [22] proposed a hard-mining network
that adopted a similar approach to that of [21]. The study
used intra-scale and inter-scale refinement sub-networks to
accurately localize and refine the hard-mining regions. This
assisted the model in improving the performance of MDE in
hard-regions where it is difficult to predict the depth value.
Lee et al. [12] used atrous spatial pyramid pooling to extract
contextual information and local planar guidance for every
scale of the decoding phase. Bhat et al. [23] is the current
state-of-art method for depth estimated based on supervised
learning. This study introduces an adaptive bin-width estima-
tor block that divides the depth into bins whose center value is
estimated adaptively per image. It then calculates the depth by
using a linear combination of the bin center values. However,
all supervised learning methods required the ground truth
depth value, as discussed above. It is difficult and expensive
to generate this value. Further, the readings are sparse and
flawed, despite using an expensive depth sensor (e.g., the

inability of the sensor to capture the depth information of
a moving object). The lack of a dataset of ground truth
values results in a poor generalization performance, which
leads to biased predictions. As a result, researchers began to
explore self-supervised learning (i.e., unsupervised learning)
for MDE.

2) UNSUPERVISED LEARNING
The unsupervised learning models for MDE can be trained
by multiple monocular images. The input can be a sequence
of monocular images or stereo image pairs. Unsupervised
learning uses the photometric reprojection error between the
corresponding pixels of multiple input images to generate an
output depth image. Stereo image pairs were initially used for
training unsupervised learning models [6], [24]–[26]. These
models used the left and right images of the same scene to
compute the disparity map by calculating the displacement
between the corresponding pixels of these two images. Sev-
eral studies [5], [27]–[32] proposed unsupervised learning
models that used sequences of images. The depth map pre-
diction was based on the output of two DCNNs, namely the
pose estimation network (PoseNet) and the depth estimation
network (DepthNet). PoseNet can regress the transformation
between adjacent frames, which is used for the reconstruction
of the target image. DepthNet predicts the depth map accord-
ing to the output of PoseNet (additional details are included
in Section III). Their studies allow the model to be trained
entirely with monocular image sequences. Although the pose
network and depth network are used simultaneously during
the training process, they can operate separately during the
testing process. Monodepth2 [5] introduced a loss function
to calculate the minimum photometric error instead of cal-
culating the average error, which was a technique used in
a previous study [33]. This improves the sharpness of the
occlusion boundary, which significantly increases the accu-
racy of the model. As a result, Monodepth2 became a widely
used baseline. Guizilini et al. [32] aimed to further improve
the MDE performance by developing a pre-trained network
with semantic image segmentation tasks to guide the network
learning process. [34] proposed a 3D packing and unpacking
network to preserve the spatial information in images and
low-level features. This study demonstrates that the standard
max pooling and bilinear upsampling techniques are not
good enough to preserve semantic and spatial information
for depth estimation in detail. In addition, the model uses
pack and unpack blocks with 3D convolution. As a result, the
number of parameters is greatly increased, thereby making
it impossible for it to be deployed in embedded devices
to operate in real-time. These two studies also demonstrate
that abundant semantic and spatial information is important
to obtain sharp images and improve the accuracy of depth
estimation. Jiang et al. [35] predicted the ego-motion through
optical flow, which permitted large, open sources, such as
YouTube videos, to be leveraged without labels. This study
thus demonstrates the application of unsupervised learning
to predict depth from raw videos. The pre-trained model
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with semantic segmentation tasks is also applied for depth
estimation.

The aforementioned studies use very expensive DCNN
architecture to generate spatial and semantic feature maps for
estimating the depth with high accuracy. Our design obtains
these features with a lightweight DCNN architecture and
successfully estimates the depth map with sharp edges.

B. LIGHTWEIGHT MONOCULAR DEPTH ESTIMATION
NETWORKS
The proposed model must be optimized to carry out a
real-time estimation of the depth in embedded systems
and make MDE viable for industrial applications with lim-
ited computational resources. Wofk et al. [13] proposed a
lightweight architecture that is based on the Jetson TX2 board
in real-time. The total number of parameters used by the net-
work is equal to 1.34 M after pruning. Elkerdawy et al. [36]
reported that a lightweight monocular depth model could be
developed from a complex pre-trained model by using prun-
ing methods. Their baseline model was trained according to
Monodepth2 [5]. Although such network architectures have
few parameters, their performances are also relatively poor.
Lyu et al. [7] developed a lightweight MDE by teaching the
lightweight network with a high-performance network. How-
ever, this lightweight network also reported a lower accuracy
than that of the original network. Despite using lightweight
model architectures, the depth estimation networks proposed
in [7], [13], [36] have low accuracy. This study addresses
these problems by developing a lightweight DCNNwith high
accuracy for depth map prediction.

III. METHODOLOGY
This section describes the proposed CNN architecture for fast
MDE with high resolution, followed by the training method
and implementation of the model.

A. MODEL ARCHITECTURE
Zhang et al. [37] reported that high-level feature maps of
the encoder contain more semantic features than low-level
feature maps. However, the upsampling procedure followed
by the bilinear interpolation in the decoder causes the model
to generate a low-resolution dense output with large gradi-
ent regions. Therefore, the following strategies have been
adopted to extract a high-resolution performance. The skip
connection is developed, and the important features of the
encoder are identified and merged with those of the decoder.
Second, the decoding phase is redesigned to preserve features
of the encoder in maximum detail before upsampling.

1) ENCODING PHASE
Several CNN architectures, such as SqueezeNet [38],
MobileNet [14], MobiletNetV2 [39], and MobileNetV3 [40],
were analyzed in this study. These networks were designed
for object classification and did not require complex com-
putations. Therefore, they can be easily deployed in embed-
ded systems and edge devices in real-time. The depth

estimation problem depends on the pixel information, so the
encoder phase needs to extract semantic features and spatial
information of the object as much as possible. More-
over, MobileNetV2 is a more effective feature extrac-
tor for pixel-based tasks than other networks. Thus, the
lightweight MobileNetV2 [39] is selected for the design of
the encoder. We also used the transfer learning technique
with MobileNetV2. Since it is difficult to get a model trained
from scratch to converge, our model was trained with initial
weights that were pre-trained with large datasets obtained
from ImageNet [41]. Therefore, the channels of the encoder
are similar to those of the originalMobileNetV2model. Thus,
we had 16, 24, 32, 64, and 160 channels at 1/2, 1/4, 1/8, 1/16,
at 1/32 scales, respectively.

2) DECODING PHASE
The semantic features from the encoder are leveraged dur-
ing the decoding phase to infer a high-quality depth map.
We focus on the design of the skip connection to utilize addi-
tional semantic information from the encoding phase. The
decoder is redesigned according to the following modules.

a: eSE MODULE
The representation of semantic layers in deep neural networks
increases with the increasing depth of the layers. Let X ei+1
denote high-level encoder feature maps at scales of 1

2(n+1)
from the original resolution,X ei represents the encoder feature
maps at scales of 1

2n from the original resolution, where n is
a scale factor such that n ∈ [1, 4]. The skip connection is
uniquely designed by combining high-level encoder features
X ei+1 and encoder features X ei with the SE block, which is
called the eSE module, as shown in Fig. 2, to improve the
accuracy of the predicted depth map. Based on the method-
ologies adopted by previous studies [7], [42], [43], we used
the SE module for channel attention, which is essentially a
detector response map of the corresponding filter. The pro-
posed eSE module squeezes the high-level encoder features
X ei+1 and encoder features X ei according to global average
pooling to generate channel information. The fully connected
neural network is then used to determine and activate the
important channels with relatively highweights.We also used
the 1× 1 convolution to fuse the feature maps. The SE block
was used to estimate the important features of the encoding
phase to concatenate them with the features of the skip con-
nection and merge them with the features within the decoder.

Our proposed eSE has two advantages. The first one
involved reducing the semantic and resolution gap of encoder
and decoder features. The second advantage involved fusing
the channels to obtain high-quality textural information of the
image. Notably, our eSE module takes two continuous layers
from the encoder, and focuses on the fusion the channel of
these layers. Therefore, our eSE module can help FastMDE
reduce the number of parameters from 4.2M to 4.1M, when
compared with that using the SE module, and the accuracy of
themodel also be improved. The proposedmodel architecture
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FIGURE 2. The eSE module used to extract encoder features. The module
concatenates c© two layers of the encoder and estimates the importance
channels of the input layers by using a fully connected (FC), followed by
the fusion of the feature maps by using a convolution of 1× 1.

is shown in Fig. 3. The output of the encoder node X ei is equal
to xei , the output of the decoder node X

d
i is equal to xdi , and

xi denotes the output of the central node Xi. Consider a single
image Iinput that is supplied as an input to the network. The
stack of the feature maps is calculated as shown below.

xei =

{
E(Iinput ), if i = 1,
E(xei−1), if i > 1.

(1)

xi = eSE(xei ,U (xei+1)), ∀i ∈ [1, 4]. (2)

xdi =

{
D(xi, xei ,U (xei+1)), if i = 4,
D(xi, xei ,U (xdi+1)), if 0 < i < 4.

(3)

E(·) represents a feature extraction block, which is similar
to the MobileNetV2 [39] block at every half scale of input.
eSE(·) is the squeeze-excitation block for both features from
the encoder xi and xi+1. U (·) represents an upsampling block
that uses the nearest neighbor interpolation operation with
double scaling of the input features.

b: FUSION DENSE BLOCK (FDENSE)
The deep convolutional layers are concatenated with the
previous subsequent layers channel-wise in the dense block.
Thus, the layer l(i) contains the feature maps of the previ-
ous layers ( i.e., l0, l1, . . . , l(i−1)). Therefore, each layer in
the dense block gains additional feature maps due to the
‘‘collective knowledge’’ gained by the previous layers. The
dense block operation is not used to summate the output
feature maps and incoming feature maps; instead, they are
concatenated. The equation is then rewritten as follows.

xl = Fl([x0, x1, . . . , xl−1]). (4)

Herein, l = 4 layers with a growth rate of k = 32 for
each layer. Dense block can alleviate the vanishing-gradient

problem, strengthen feature propagation, and encourage fea-
ture reuse [10]. Since the feature maps are concatenated,
the output channel dimension of the dense block increases
k times for every layer. Therefore, the output channel of a
dense block with an input channel of k0 can be calculated
by kl = k0 + k × (l − 1). The number of parameters
is further reduced by redesigning the dense block through
the addition of the convolutional with the 1 × 1 kernel to
fuse the channels with the output channel of the dense block
remain as input channel k0. The fusion channels are used to
obtain high-quality features and also to reduce the number
of parameters of the network. We used the fDense block on
the basis of the techniques adopted by [44] and [45]. This
allows the higher resolution features learned previously in the
network to be used before upsampling, as shown in Fig. 3.

c: dSE MODULE
The SE block is also used in the decoding phase to improve
the accuracy and is referred to as dSE to simplify the pro-
cess. The input channel of the disparity convolution block
needs to be re-weighted before it predicts the depth map.
Thus, the dSE is also applied before the disparity convo-
lution block. [42] demonstrated that the SE blocks provide
significant performance improvements in existing models,
such as ResNet [9]. Since the SE module uses an inexpensive
channel-wise scaling operation, the model requires relatively
few additional computational resources. However, the accu-
racy of the SE-ResNet-50 model is similar to that of the
deep ResNet-101 network. Thus, we utilize the SE block to
enhance the accuracy of the monocular depth prediction.

B. PROBLEM FORMULATION
The approach used in this study was based on a
self-supervised learning technique with a sequence of input
images. The main idea involved estimation of the appearance
of a target image from another image’s viewpoint. Therefore,
a sequence of images was needed as input for the training net-
work. Further, an additional network to estimate the camera
pose from a sequence of images, alongwith a depth prediction
network, is required, as described in [6], [28]. Thus, the
model architecture includes two separate networks, which
are PoseNet andDepthNet. The proposed approach calculates
the loss by trying to minimize the photometric reprojection
error of the image sequences and predict the depth map for
the target image Dt . Let consider the sequences of images
It and It−1. The PoseNet and DepthNet are trained to predict
Tt→t−1 andDt , respectively. These are used to establish the It ′
projection relationship between the sequences of the images
It and It−1. The loss is equal to the difference between the
real image It and the reconstructed image It ′ . The per-pixel
minimum photometric loss procedure is followed to handle
occlusion, as shown below.

Lpe = min
t ′

pe (It , It ′ 〈proj(Dt ,Tt→t−1,K )〉) . (5)

pe represents the photometric reconstruction error, and K is
the camera intrinsic matrix. According to [5], [6], [46] pe can
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TABLE 1. Summary of our FastMDE network architecture for self-supervised monocular depth estimation. U(·) refers to upsampling, and c© refers to the
concatenated feature maps. We use the disparity convolution block at each node dSE, the input channel of this convolution block is the output channel of
the dSE, which is one channel. The disparity convolution block includes a convolution of 3× 3 with the sigmoid activation function.

FIGURE 3. The FastDME model used for monocular depth estimation. At every half scale of input has six main
components, namely eSE block, dSE block, fusion dense block (fDense), upsample block, convolution 3× 3 block, and
disparity convolutional block. The architecture can be expressed as equations (1), (2), (3), where xe

i is the output of
encoder node Xe

i , xd
i is the output of encoder node Xd

i , and xi is the output of the central node Xi .
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be calculated by using the structural similarity index measure
(SSIM ) [47], with over a 3 × 3 pixel window and addition
L1 regulation:

pe(It , It ′ ) =
α

2
(1− SSIM (It , It ′))+ (1− α) ‖ It − It ′ ‖1 .

(6)

The disparities between a texture-less edge and the low gra-
dient regions of the image are difficult to detect. This was
overcome by using the term edge-aware smoothness [6].

Lsmooth =

∣∣∣∣∂Dt∂x
∣∣∣∣× e−∣∣∣ ∂It∂x ∣∣∣ + ∣∣∣∣∂Dt∂y

∣∣∣∣× e−∣∣∣ ∂It∂y ∣∣∣, (7)

where It denotes the target image andDt represents the depth
map estimation from the depth network. The final training
loss function is a combination of the photometric reprojection
error and smooth loss, as shown below.

Ltotal =
1
s

s∑
i=1

(
L ipe + λ× L

i
smooth

)
, (8)

where s = 4 represents the number of scales of the decoding
phase, and λ = 10−3 is the weight of the edge-aware smooth-
ness error term.

C. IMPLEMENTATION DETAILS
This section contains additional details on network architec-
tures, training specifications, and the datasets that were used
to train the FastMDE model.

1) PoseNet
The architecture of the PoseNet model is described in [5].
It is built on ResNet-18. Since the network only has two input
frames, the channel at the first-level convolution changes
from 3 to 6. The PoseNet network can estimate the six degrees
of freedom (DoF) of the camera pose relative to a scene. The
first three dimensions represent the translation vectors, and
the last three dimensions represent the Euler angles.

2) DepthNet
The DepthNet model uses the standard MobileNetV2 [39] as
its encoder. The details of the architecture proposed in this
study are listed in Table 1. The disparity map output of each
scale is used to calculate the loss during training. The output
scale is similar to that of the input image for comparison
purposes.

3) DATASET
The KITTI dataset [48], which is most widely used for depth
evaluation, is used in this study. The data split was based
on [49], and the static frame removal procedure was per-
formed according to [28]. The model was trained, validated,
and evaluated with 39810, 4424, and 697 images, respec-
tively. All images have the same intrinsic properties. The
principal point of the camera is fixed at the image center. The
focal length is equal to the average of the focal lengths in
the KITTI dataset. The transformation between the two stereo

frames is treated as a purely horizontal translation of fixed
length for stereo training.

4) IMPLEMENTATION
An open-source PyTorch library is used to train the models in
this study. The detail hyper parameter is set at 20 epochs with
a learning rate of 10−4 for the first 15 epochs, followed by
a reduction to 10−5 for the remaining 5 epochs. The Adam
optimizer [50] is used for training with exponential decay
rates of β1 = 0.9 and β2 = 0.999. The batch size is set
to 8. Input images with a resolution of 640× 192 are trained
on a single GTX 2080 GPU. The training process required
24 hours for completion. However, due to the limitedmemory
of theGPU, imageswith a resolution of 1024×320 are trained
on three GPUs for 10 hours. Data parallelism techniques are
used to decompose the datasets into subsets. These subsets are
used in batches on different GPUs through the same model.

5) TensorRT
This is built on the open-source TensorRT engine, which
was developed by Nvidia to accelerate the deep learning
performance of NVIDIA GPUs. It can be easily deployed on
Linux embedded systems that support TensorRT. The open
neural network Exchange (ONNX) [51] is used to convert the
PyTorch model into the TensorRT engine. The inference time
of the TensorRT engine is approximately 30 milliseconds.
This study also makes it possible for users to utilize TensorRT
to easily develop applications.

IV. RESULTS
A. EVALUATION KITTI DATASET
An analysis of the MDE performance based on the KITTI
dataset was performed by using the evaluation metrics
described in [21]. These error metrics are defined as:

• Absolute relative difference (abs rel): 1
n

∑n
p
|yp−ŷp|

y ;

• Squared relative difference (sq rel): 1
n

∑n
p
(yp−ŷp)2

y ;

• RMSE:
√

1
n

∑n
p
(
yp − ŷp

)2;
• RMSE log:

√
1
n

∑n
p
(
log yp − log ŷp

)2;
• Threshold accuracy (δi): % of yp s.t. max(

yp
ŷp
,
ŷp
yp
) = δ <

threshold for threshold = 1.25, 1.252, 1.253;

where yp is a pixel of ground trust depth image y, ŷp is a pixel
of predicted depth image, n is the total number of pixels of
depth image.

The results of different variants of the model were com-
pared. The variants were trained according to different
self-supervision techniques, namely monocular video only
(M) and monocular and stereo (MS). The results obtained
from our models are compared with those of state-of-art
models and other unsupervised learning methods. The eval-
uation results are shown in Table 2. The results demon-
strate that the most lightweight model is the PyD-Net [52]
model with 1.9 M parameters. Similarly, the second-most
lightweight model is the Lite-HR-Depth model [7]. However,
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TABLE 2. Comparison between the results of state-of-art techniques and the proposed technique, based on self-supervised learning methods and
the KITTI dataset. Relatively low values of metric evaluation indices, such as absolute relative difference (Abs Rel), squared relative difference (Sq Rel),
linear root-mean-square error (RMSE), log root-mean-square error(RMSE log), are desirable. However, accuracy evaluating indices, such as threshold
δ < 1.25, δ < 1.252, δ < 1.253, must be as high as possible.

these networks have poor accuracies. The accuracy of the
proposed network architecture is similar to that of the state-
of-art HR-depth model and outperforms a recent model [34]
with 128.29 M parameters. In addition, our network uses
3.5 times fewer parameters than the HR-depth model (Num-
ber of parameters used by theHR-depthmodel and the current
model are 14.62 M and 4.1 M, respectively).

Fig. 4 shows a qualitative comparison between the MDE
performances of the proposed FastMDE model and the other
state-of-art methods. The current model can predict edges
with higher quality and more sharpness than those predicted
by the Monodepth2 model [5]. The current model’s perfor-
mance is comparable to that of the recently developed state-
of-art HR-depth [7] model architecture while utilizing fewer
parameters than the latter. Although semantic and spatial
feature maps cannot be captured easily through small DCNN
architectures, these two feature maps are well-captured well
with the proposed model.

B. EVALUATION Make3D DATASET
Table 3 provides the reliable estimation results of our pro-
posed model on the Make3D dataset [53]. We evaluate our
model on the 134 images (collected using 3D scanner) of
Make3D with a center crop of 2×1 ratio. Therefore, we crop
the original images of the Make3D dataset to 1704×852 and
then resize them to 640× 192, and finally pass them through
the network. From the table, our proposed FastMDE model
outperforms all the compared methods that use monocular
supervision. such asMonodepth andMonodepth2. Moreover,
our estimated depth results are shown in Fig. 5. It is shown
that our method reliably shows depth maps with clear image
in complicated boundaries of various objects.

C. EVALUATION ON REAL IMAGES
To evaluate that our model architecture, FastMDE, can
achieve good stability and generalization, we test our model

TABLE 3. Quantitative results of depth estimation on Make3D dataset.
All methods were trained on KITTI using monocular supervision then
evaluate on Make3D dataset.

with images captured by a hand-held phone camera. The
size of an original image captured by a phone camera is
2048 × 1536. We crop the captured images to 2048 × 640,
then resize it to 1024×320, andmake no image enhancement.
Our estimated depth results are shown in Fig. 6. The results
show that our model achieves a strong generalization on the
real scenes captured by mobile phones.

V. ABLATION STUDIES
A. ADVANCE OF SKIP CONNECTION WITH eSE BLOCK
AND dSE BLOCK
The eSE module and skip connection are redesigned to cap-
ture the maximum number of important features from the
encoding. The selected features belong to two output layers
X ei ,X

e
i+1 from the encoder part. The eSE re-weighs the impor-

tant channels and then alleviates the channels by using the
standard convolution 1×1 kernel, thus the eSE module helps
not only reduce the number of parameters but also improve
the performance of the network, which is even better than
that of the SE block as shown in the Table 4. Moreover,
it is difficult to fuse the features with large semantic gap
between the encoder and decode. Therefore, the eSE skip
connection is used to generate more intermediate semantic
features from encoder to effectively reduce the semantic gap,
as shown in the Fig. V-A. With more semantic information,
we can significantly improve the depth map estimation. The
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FIGURE 4. Comparisons between the results of the proposed technique and state-of-art methods based on the KITTI Eigen Split. The HR-depth
method used an input image resolution of 1280×384, whereas the Monodepth2 and the proposed model used an input image resolution of 1024×320.

FIGURE 5. Comparisons between the results of the proposed technique
and Monodepth2 method based on the Make3D dataset. The input
resolution uses 640× 192 for both of models.

TABLE 4. eSE and SE studies. Results for different model variants with
eSE module and SE module. We trained two models with fDense block
and the hyper-parameters were set the same of two models.

dSE block is applied in the decoder section to re-weigh
the important features before generating the depth predic-
tion map. The influence of the eSE + dSE blocks with the
skip connection is shown in Table 6. The model accuracy
improved from 0.114 to 0.109 times the absolute relative
difference evaluation metrics by using the eSE+ dSE blocks.

B. ADVANCE OF fDense BLOCK CONNECTION
The redesigned dense block connection allows the model to
capture additional semantic information. The fDense block
connection reuses the featuremaps of the previous layers. The
features learned in the previous layers are passed forward and
removed. The need to learn redundant features encourages
the learning of a different set of features. This permits the

TABLE 5. fDense and Dense studies. Results for different model variants
with fDense module and Dense module. We trained two models with eSE
block and the hyper-parameters were set the same of two models.

TABLE 6. Ablation studies. Results of different model variants obtained
through monocular training on KITTI datasets at a low-resolution input of
(640× 192) on the Eigen split. Monodepth2 is used as the baseline model
in this comparison. The influence of the fDense connection in the
decoding phase without the encoder SE and decoder SE modules and the
influence of the encoder SE and decoder SE modules without a fDense
connection (eSE + dSE) are compared.

application of the high-resolution features that were learned
earlier in the network in the upsampling process. Therefore,
it improves the accuracy of the model and helps predict sharp
edges. The model can produce high-resolution feature maps,
as shown in Fig. 7. The model with a fDense connection,
as shown in the right panel, can easily capture an image’s tex-
tural information, despite it having a low resolution. To eval-
uate our fDense block, we apply the original dense block to
eSE + dSE block and compare it with our fDense block.
As shown in the Table 5, our fDense module can reduce the
number of parameters from 4.8 M to 4.1 M. Interestingly,
the accuracies (i.e., abs rel and sq rel) achieved by fDense
are higher than those of the original dense block. The results
of the ablation studies are shown in Table 6. Although the
application of the fDense connection in the decoder increases
the number of parameters from 3.3 M to 4.1 M, the fDense
connection significantly improves the accuracy from 0.114 to
0.109 times the absolute relative difference evaluation metric.

VOLUME 10, 2022 16119



T.-T. Dao et al.: FastMDE: Fast CNN Architecture for Monocular Depth Estimation at High Resolution

FIGURE 6. Our model achieves good qualitative results on real images.
a) the input image taken by iPhone 7 plus, b) the depth estimation of
Monodepth2, c) the depth estimation of FastMDE (images were captured
at Pusan National University, Yangsan campus, Republic of Korea).

Despite the application of a single module in a system
based on two effective modules, the proposed model outper-
forms the baselineMonodepth2while using fewer parameters
than the latter, as shown in Table 6.

C. TensorRT
TensorRT is a software development kit (SDK) developed
by Nvidia that is used to formulate a high-performance deep
learning model. We used the TensorRT SDK to build the
model engine in this study. It can be easily deployed in Nvidia
Linux development kits (tested with Nvidia Xavier NX). The
model is converted from the Pytorch model to ONNX and
then built with the TensorRT engine. Since the TensorRT
engine does not support reflection padding from the ONNX
model, we changed it to zero padding. The weights from the
reflection pad model are used, followed by fine tuning at a

FIGURE 7. Illustration of the advance of the fDense block connection
for monocular depth estimation. The left panel depicts the first channel
map with the fDense connection, and the right panel depicts the first
channel map without the fDense connection. The fDense connection
ensures that the sharp edges are detected with high resolution. Further,
the textural information of the image is well captured, even at low
resolutions 12× 40.

FIGURE 8. Illustration of the advance of the skip connection with eSE
block for monocular depth estimation. Left side depicts feature maps in
FastMDE and right side depicts feature maps in Monodepth2.

TABLE 7. TensorRT studies. Results for different model variants with
reflection padding and zero padding. The reflection padding model was
based on the ONNX runtime, while the zeros padding model used
TensorRT engine.

learning rate of 10−5 for five epochs to obtain the accurate
weights of the zeros padding model. The result is reduced
due to the influence of zero padding, as shown in Table 7.

To show our model architecture, FastMDE, can achieve
higher speed than state-of-arts models, we build the TensorRT
model engine for various depth estimation algorithms. Then,
we compare the speed of various model architectures by
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TABLE 8. The runtime on an NVIDIA Jetson Xavier NX GPU for various
depth estimation algorithms. Runtimes are measured by using TensorRT
engine.

using CUDA event function in Pytorch package, as shown
in Table 8. The results show that the speed of our model
outperform all the other methods.

VI. CONCLUSION
A lightweight convolutional network architecture named
FastMDE was developed in this study by applying a novel
skip connection with features of the eSEmodule, dSEmodule
and the fDense block. The network utilized self-supervised
learning for fast MDE at high-resolution. The eSE block
was redesigned according to an analysis of the properties
of the encoder and decoder sections to enhance the quality
of depth map prediction, assist the model in identifying the
important features of the encoder and decoder, and utilize the
fDense connection to capture those features in great detail.
Our eSE and fDense modules can totally reduce the param-
eters of FastMDE from 5.4M to 4.1M, when compared to
the original SE and dense modules. The number of trainable
parameters required for the proposed network architecture is
3.5 times lesser than that of the HR-depth model, despite
maintaining a similar accuracy. We have also provided the
TensorRT engine to easily deploy our model in Nvidia Linux
embedded boards that support the TensorRT engine. Notably,
our model can run in real-time ∼ 33 fps with an input image
resolution of 640× 192. Deploying the proposed model into
the autonomous drone is our goal for future work.
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