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ABSTRACT Solar energy can be a clean and renewable alternative to traditional fuels, which enables its
wide application in our life and the industry. However, some defects inevitably occur in the solar cells during
production, transportation, and installation, which will reduce the power generation efficiency. In this paper,
we propose a ResNet-based micro-crack detection method to detect the micro-cracks on polycrystalline
solar cells. Specifically, a novel feature fusion model is introduced to aggregate the low-level features and
deep semantically strong features by self-attention mechanism to obtain accurate geometry information. This
method boosts the detection accuracy to 99.11%, which significantly surpasses other counterparts, e.g., some
state-of-the-art deep neural networks, by a large margin. Since it is difficult for other methods to precisely
detect other defect types apart from micro-cracks, we further propose a transfer learning method based on
MK-MMD to guide the training process of defect detector with another pre-trained micro-crack detector.
With the help of transfer learning, the accuracy of solar cell defect detection increases by 11.6%.

INDEX TERMS Image classification, deep learning, transfer learning, machine learning.

I. INTRODUCTION
In recent years, the practical application of new energy

Cooled

sources, such as solar energy has been attracted much atten- e
tion. Photovoltaic power generation utilizes solar energy to |

. . . . IR Filt
generate electricity and has been widely used in all aspects ¢

of life [1]. The operation of photovoltaic power generation Luminescence ELimages
is inseparable from solar cell panels. However, solar cells
may get various defects due to external forces or aging during
transportation, installation, and utilization. This will weaken
the power generation effect of the cells and even make the
cells fail to generate electricity, reducing the entire efficiency
of the photovoltaic power generation system. Therefore, it is FIGURE 1. The process of obtaining EL images.

necessary to check the battery board promptly to prevent the

defect problems of solar cells.

Electroluminescence (EL) has been widely used in the  Si-CCD cameras capture these infrared lights and output
detection of defects in photovoltaic system components, sensed images. The defective parts of the cells cannot be
especially solar cells, due to the high-resolution images it activated normally, so they appear as black in the sensed
can produce. The acquisition process of EL images is shown  images. Therefore, it is possible to determine whether the

Polycrystalline Solar Cells

in Fig. 1. During this process, the solar cell emits infrared cells contain defects by detecting the EL images.
light due to being activated by the voltage. Then cooled As shown in Fig. 2(a)(b), Solar cells can mainly be divided
into two categories which are polycrystalline and monocrys-
The associate editor coordinating the review of this manuscript and talline. Among them, because of the presence of impurities
approving it for publication was Ioannis Schizas . in the polycrystalline solar cell, there will be dark spots in
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(a) Polycrystalline

(c) Material Defect

(e) Micro-crack

(f) Electrically Insulated Parts

FIGURE 2. The image examples of polycrystalline cells, monocrystalline
cells and the possible defects of the cells.

the obtained EL image, which will affect defect detection.
Therefore, the defect detection of the polycrystalline cell is
more difficult compared with the monocrystalline cell.

As shown in Fig. 2, the defects of solar cells contain many
types, including material defects and micro-cracks [2], [3].
Wherein material defects such as finger interruption gener-
ally will not affect the life span and efficiency of the battery.
However, the micro-cracks will become more and more seri-
ous over time, thereby affecting the power generation effect
of solar cells.

The defect detection process is mainly completed by man-
ual identification before the era of machine learning, so that
the detection efficiency is inevitably limited. Recently, many
researchers begin to adopt machine learning methods for the
detection of solar cell defects, such as SVM, AdaBoost and
so on [3]. With the continuous development of deep learning
and convolutional neural networks [3], more and more studies
tend to use deep learning methods for defect detection of solar
cells. However, most of these methods use conventional CNN
networks to extract features from images for two-class clas-
sification. That is, only the feature outputs of networks’ last
layer are used for the classification of images. Considering
that defect features such as micro-cracks are contained in the
low-level features of the image, many useful features from
the middle layers of the deep networks are ignored.

To solve this problem, we propose a ResNet-based
method for detecting the micro-cracks of polycrystalline
cells. In our method, we combine feature fusion module with
ResNet50 backbone and use the fused features to perform

16270

classification. We aim to make full use of both the low-level
and high-level information in the network for classification.
This method leads to significant improvements on the poly-
crystalline micro-crack dataset that we collected from indus-
trial production lines. However, in industrial scenarios, the
defects of polycrystalline cells are diverse. The effects of the
detection methods we propose will also be affected when
targeting other defect datasets. Considering this, we conduct
some analyses between different defect datasets of poly-
crystalline solar cells. The source domain is polycrystalline
micro-crack data, and the target domain is various poly-
crystalline defects. The obtained transfer method adapts the
output features of the training models corresponding to the
two domains, which makes the micro-crack detection model
guide the training process of the polycrystalline defect detec-
tion task. To summarize, the main contributions of this work
are as follows:

o We propose a micro-crack detection method for poly-
crystalline solar cells, including image preprocessing,
feature extraction, feature fusion module, and image
classification network.

« Referring to the mainstream method of transfer learning,
we develop an algorithm that can be utilized when trans-
ferring from the micro-crack detection task of polycrys-
talline cells to the polycrystalline defect detection task.

Based on the collected polycrystalline EL images includ-

ing micro-cracked images, we created a polycrystalline
micro-crack dataset. Experiments conducted on this dataset
show that the micro-crack detection method based on deep
learning and feature fusion can obtain satisfactory detection
results. After that, based on the micro-crack detection model
obtained in the previous step, we conducted transfer learning
experiments on the polycrystalline defect dataset obtained
from the network. The results showed that the transfer learn-
ing method we propose can effectively improve the effect of
the defect detection task.

Il. RELATED WORKS

A. IMAGE CLASSIFICATION

The purpose of the image classification task is to assign a
corresponding label to an image from a specific label set, that
is, to identify the category of the image.

Traditional image classification methods include the pro-
cess of feature extraction, classification, and so on. Through
feature extraction, a large amount of local description infor-
mation which is robust and not affected by noise such as
light can be extracted. The main methods of feature extrac-
tion include Scale-Invariant Feature Transform (SIFT) [4],
Speeded Up Robust Features (SURF) [5], Histogram of Ori-
ented Gradient (HOG) [6], Local Binary Pattern (LBP) [7]
and so on. Besides, some works propose a combination of
multiple extraction methods used in the feature extraction
process to prevent the loss of useful information. A vec-
tor with fixed-dimension can be obtained through feature
encoding [8] after feature extraction and fed into the classi-
fier for classification. The classifiers mainly used for image
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FIGURE 3. The pipeline of the micro-crack detection model for polycrystalline cells, which contains image preprocessing, feature fusion module, and

ResNet50 architecture.

classification include K-Nearest Neighbor (KNN) [9], Sup-
port Vector Machine (SVM), Random Forest (RF) [10] and
various ensemble methods.

With the development of deep learning, convolutional neu-
ral networks (CNN) are gradually applied to image classifica-
tion. The pioneering deep network used for large-scale image
classification which is named AlexNet starts the era of CNN.
The CNN models generally used for classification include
convolutional layers, fully connected layers, softmax multi-
class classifiers, and multi-class cross-entropy loss functions,
etc., which are continuously trained to achieve image classi-
fication effects.

B. DEFECT DETECTION

The methods for defects detection are generally categorized
into Photoluminescence (PL) [11], [12] and Electrolumines-
cence (EL). Since some defects in solar cells only display
under EL imaging of photovoltaic modules, most current
methods [13], [14] use EL for solar cells’ defect detection.
Table 1 summarizes relevant literature and methods.

In [15], a Fourier image reconstruction method is pro-
posed to detect defects in EL images of solar cells. However,
the shape assumption makes defects detection with different
shapes more difficult. Therefore, [16] proposes to utilize
anisotropic diffusion filtering and shape analysis to detect
defects in solar cells. This method produces a better detection
effect on the micro-cracks, but the detection performance on
other defects is weaker. Besides, [17] proposes a detection
method for finger interruption, which mainly uses binary
clustering of candidate region features. In addition, methods
using CNN for defect detection have gradually emerged in
recent years. Reference [3] proposes a CNN-based network
for defect classification, and compares it with prior traditional
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TABLE 1. The summary of relevant defect detection methods for solar
cells.

Method Image Type Defect Type

Line-
Fourier Image Reconstruction [15] te-or
Bar-shaped Defects

Ani ic Diffusion Filteri
nisotropic Di usm.n iltering Micro-crack
Image Segmentation [16]

EL

Binary Clustering [17] Finger Interruption

Feat Extracti
eature Extraction All Defects

Deep Learning [3]

classification methods, proving the superior performance of
CNN for defects detection.

C. TRANSFER LEARNING

Transfer learning (TL) refers to the transfer of knowledge
learned from one domain (source domain) to another domain
(target domain) to enable the model to achieve better results
in the target domain. According to the specific domains and
tasks in transfer learning, transfer learning can be divided
into three types: Inductive, Transductive, and Unsupervised
Transfer Learning [18]. Our proposed framework belongs
to Inductive Transfer Learning, in which the target domain
contains labels, and the ground truth labels can be used to
train the target model while transfer learning.

The inductive transfer learning can also be categorized
into Instance-based TL, Feature-representation-transfer,
Parameter-transfer, and Relational-knowledge-transfer [18].
TrAdaBoost [19] belongs to Instance-based TL, which
obtains the target model by adjusting the weight of
the source domain label and target domain label, using
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instance re-weighting and importance sampling. Feature-
representation-transfer is a widely studied transfer learning
method that can decrease classification and regression errors
by reducing the difference between the source domain and the
target domain. Fine-tuning commonly used in model training
belongs to parameter-based transfer learning, which improves
the detection level of the target model by sharing parameters
between the source domain and target domain. In addition,
Relational-knowledge-transfer transfers the similarity rela-
tions between the source and target domain.

lll. METHODS

Our proposed framework, which is illustrated in Fig. 3, can
be composed of two important parts. We first perform an
effective micro-crack detection method for polycrystalline
cells, which can classify the cells as two categories (whether
micro-cracks exist) in Section III-A. In Section III-B, a train-
ing method of defect detection model of polycrystalline cells
based on transfer learning is proposed.

A. MICRO-CRACK DETECTION

As a common type of defect in polycrystalline cells, micro-
cracks will affect the power generation efficiency of the cell
to a certain extent. Therefore, the detection of micro-cracks
is critical in the practical application of polycrystalline cells.
According to whether it contains cracks, we can classify poly-
crystalline cells into normal and micro-cracked types, which
can be represented by 0 and 1, respectively. As a result, the
micro-crack detection problem of polycrystalline cells can be
converted into an image binary classification problem. In this
part, we propose a deep learning-based polycrystalline micro-
crack detection method, which uses a deep convolutional
neural network as the backbone and uses the fused network
features to perform binary classification operations.

1) DATA AUGMENTATION

In practical industrial situations, the cells with micro-cracks
are only a minority of all cells. In our industrial polycrystal
cell micro-crack dataset, the number of non-cracked cells is
about 24 times larger than that of micro-cracked batteries.
Considering that the micro-crack represents the local features
of the image, the commonly used image processing methods
such as cropping and affine transformation are not applicable
here. Therefore, we choose the flip method for data augmen-
tation. The whole flip process for each image contains 3 steps,
which are:

« Flip Horizontal
« Flip Vertical
« Flip Horizontal + Flip Vertical

After these flips, we can get 4 images from the original one.

2) IMAGE PREPROCESSING

a: FOURIER FILTERING

As shown in Fig. 2(a), there are busbars in the polycrys-
talline cells which are similar to micro-cracks. Therefore, the
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(a) Original Image

(c) Fourier Filtering

(b) Spectrogram

(d) Filtered Image

(e) Original LBP (f) Filtered LBP

FIGURE 4. An example of image preprocessing.

busbars will cause a lot of noise interference to the detection
of micro-cracks, which should be removed as much as possi-
ble before image classification.

Here we choose Fourier transform [20] to conduct image
filtering to remove the busbars from the original images of
polycrystalline cells as much as possible. For an M x N
grayscale image f(x,y), the Fourier transform formula for
converting it from the time domain to frequency domain is
shown in Eq. (1), and the Fourier inversion formula is shown
in Eq. (2).

M—1N-1
Fuv)= ) ) flx,yye 2re/inii M
x=0 y=0
f(x y) = LMZ_I NZ_I F(u v)ej2n(ux/M+vy/N) )
’ MN x=0 y=0 ’

As shown in Fig. 4, the entire Fourier filtering process can
be mainly divided into three steps:
o Transforming the image Fig. 4(a) from the time domain
to frequency domain to obtain the spectrogram Fig. 4(b).
o Performing the filtering operation in the frequency
domain as shown in Fig. 4(c).
o Converting the filtered spectrogram back to the time
domain to get the image Fig. 4(d).
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FIGURE 5. Example of LBP feature extraction process.

After trying various filters, we got the following filter:

_ 0 (u,v)eSu,v)
Hu,v) = I (u,v) ¢ Su,v) )

Su, vy ={ue(m—120,m—-2)U (m+ 2, m+ 125),
vem—4,n+4)}
Uue(m—4,m+4),
vem—120,n—-2)Um+2,n+ 125} &)

m and n represent half of the width and height of the image
respectively.

This filter can keep other data of the polycrystalline
images from being lost, especially information such as irreg-
ular lines like micro-cracks, under the premise of achiev-
ing the goal of removing the busbars in our observations.
And we also find that the use of this Fourier filter can
reduce the influence of dark spots inside the polycrys-
talline cells on the micro-crack detection while removing the
busbars.

b: LOCAL BINARY PATTERN

LBP is the operator used to describe the local texture char-
acteristics of an image. In the images after Fourier fil-
tering, the components with obvious line shapes are basi-
cally only possible hidden cracks. Therefore, refer to related
works [21]-[24], we extract the LBP feature of the image
to highlight the texture. This enables the possible line-like
micro-cracks to become more obvious, which is beneficial to
the detection of micro-cracks.

The neighborhood radius of LBP for calculating is set to 1,
and the number of pixels sampled is 8. The final sampling
points selected by LBP operator are shown in Fig. 5. The
corresponding images obtained after calculating the LBP
feature are shown in Fig. 4(e) and Fig. 4(f).

3) BACKBONE FOR CLASSIFICATION

After preprocessing, the images are fed into a ResNet50 [25]
network for feature extraction. The structure of the ResNet50
is shown in Fig. 3. Table 2 and Fig. 6 show more details
of the network composition. Based on the original network,
the ResNet50 used in this work changes the output number
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TABLE 2. The architecture of used ResNet50 (The pictures are resized to
224 x 224 x 3).

Output Feature Size
Layer Name Layer Structure
(HxW x(C)

conv, 7 X 7,64, stride=2

Stagel 112 x 112 x 64

maxpool,3 X 3, stride=2, padding=1

[ 1x1,64 ]

Stage2 conv, 3 x 3,64 X 3, stride=1 56 X 56 x 256
| 1x 1,256 |
[ 1x1,128 ]

Stage3 conv, 3 x 3,128 X 4, stride=1 28 x 28 x 512
| 1x1,512 |

1x 1,256
Stage4 conv, 3 x 3,256 X 6, stride=1| 14 x 14 x 1024
1x1,1024 |

[ 1x1,512 ]

Stage5 conv, 3 x 3,512 X 6, stride=1 7 X T x 2048
| 1x1,2048 |

R average pool
Classification 1x1x2
2-d fc

Stagel
Output

Conv
1x1, 64, stride=1

\7
BatchNorm

ReLU

v

Conv
3x3, 64, stride=1
\2
BatchNorm

ReLU

v

Conv
1x1, 256, stride=1

2
BatchNorm

v

Downsample

ReLU

v

Stage3

FIGURE 6. The details of Stage2 in ResNet50.

of the fully connected (FC) layer to 2, so for each image,
a corresponding array F' = [Fy, F1] can be output, in which
there are two elements.
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Self-attention
Feed-forward
network
Downsampling
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Self-attention
Feed-forward
stag e4 network
Downsampling
Self-attention
Stage5 Feed-forward
network
Downsampling

Classification

FIGURE 7. The detailed architecture of feature fusion module.

In addition, we add the softmax layer at the end of
ResNet50, the softmax calculation formula is

efi

Si :fsoflmax(Fi) = m’

&)

where i can be 0 and 1, Sp and S; respectively represent
the possibility that this image belongs to category 0 and
category 1.

4) FEATURE FUSION MODULE

It is intuitive that the stripes in the polycrystalline solar
cell image contain rich discriminative information that is
beneficial for defects detection. The features of the deepest
layer in the network are semantically strong but lacks precise
low-level information. Low-level features are usually deemed
rich in containing geometric patterns and stripes, which is
contrary to high-level features. Inspired by this, we propose
a feature fusion module to fuse as much as possible low-level
information to enhance the defects detection ability of the
network.

Unlike some previous works integrate multi-scale fea-
tures by convolutions, we propose to facilitate multi-scale
feature fusion by attention mechanism in this paper. The
detailed architecture of feature fusion module is illustrated
in Fig. 7. We first resize the features of the prior stage
by downsampling operation, which is a convolution layer
with kernel size of 3 and stride of 2 in our implementation.
Then we adopt attention mechanism to fuse the downsampled
low-level feature and features at the higher level. We model
the relationships among all spatial positions in the features
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to get precise and accurate low-level information by a self-
attention layer. To be consistent with the transformer architec-
ture, we insert another feed-forward network into the bottom
of the self-attention layer to enhance the feature semantics.
A residual connection is added in the self-attention layer and
feed-forward network to ease optimization. We insert three
feature fusion modules before Stage 3, Stage 4 and Stage
5 to construct a bottom-up pathway which is parallel to the
backbone.

5) CROSS ENTROPY LOSS FUNCTION

Since this is a relatively simple binary classification task,
we choose a typical Cross-Entropy (CE) loss function as the
calculation method of the loss value here. The formula of the
loss function is

Lee =) —(Yirue 10g(S1) + (1 = yirue) 10g(S0)).  (6)

where y;, represents the ground truth label of this image,
which is likely to be 1 or 0.

B. DEFECT DETECTION BASED ON TRANSFER LEARNING
In industrial scenarios, the specific conditions and possible
defects of different batches of cells are different. In the previ-
ous section, we propose the training method of a micro-crack
detection model for the collected polycrystalline cell dataset
from the industrial scene. In this batch of cells, the defects
of the battery are mainly micro-cracks, so the data used
in training is relatively regular, only containing two types:
without and with micro-cracks. As a result, without using
other auxiliary designs, the convergence effect of the model
has been well.

However, when the types of defects contained in the dataset
increase, or the dataset has less data, the model obtained by
only using the method proposed in the above section will
have a poor detection effect on defect detection and cannot be
truly applied to actual industrial scenarios. Therefore, in this
section, we propose a defect detection model training method
based on transfer learning. With the help of the micro-crack
detection model obtained in the previous part, knowledge
transfer is carried out through transfer learning, so that the
effect of detection can be improved.

1) FINE-TUNE

As the most basic transfer learning method, fine-tuning has
been widely used in the training process of deep learning
models. The most commonly used pre-trained model is the
one trained on ImageNet [26]. But for the defect dataset, the
images contained in ImageNet have a certain gap with those
in it. So our intuition is to consider using the model obtained
on a more similar dataset as a pre-trained model to get better
fine-tune effects.

In the previous part, we have obtained a detection model
for polycrystalline cell micro-crack based on the industrial
dataset. Therefore, we consider using the model obtained
previously as the pre-trained model, only to replace the old
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FC layer of the micro-crack detection model with a new one.
Experiments have proved that using this type of model as
the pre-trained model can get better results than using those
trained on ImageNet.

2) MODEL DETAILS

Referring to the previous work related to transfer learn-
ing, we use a transfer learning model to obtain a better
defect detection model by learning the output of the trained
micro-crack detection model. Here, Dy = {(x}, )},

denotes the source domain, where ng is the total amount
of source domain data got from the micro-crack dataset.
Besides, the target domain is obtained from the defect dataset,
notated as Dy = {(xl ) Vi )}l |» Where nr is the number of
target domain data. P and Q represent the probability distri-
bution of the source domain and target domain respectively.

a: DAN AND MK-MMD

In the representative work [27] of transfer learning, Deep
domain confusion (DDC) is proposed, which uses the results
obtained from the 7th layer of AlexNet to calculate the Maxi-
mum Mean Discrepancy (MMD) distance, and optimizes this
value to reduce the distance between the source domain and
the target domain. Deep Adaptation Network (DAN) [28]
further improves based on DDC, adapts to the multiple layers
of the deep convolutional network. By reducing the multiple
kernel variant of MMD (MK-MMD) distance between the
source domain and target domain among more layers, DAN
can obtain better transfer results than DDC.

MMD is widely used in transfer learning tasks to measure
the distance between the source and target domains mapped
to the reproducing kernel Hilbert space (RKHS) space. Let
F represent a function set in the sample space, MMD can be
calculated as

ns

pr— Zk(x xf)

MMDIF,p,q] =

VOLUME 10, 2022

ns,nr
Dk, x))
-

nr

T
T_l)Zk(x x; NERG),

nsnT

nT (n

where k is the kernel function. MK-MMD is the multiple
kernel variant of MMD, so when calculating MK-MMD,
we only need to change the kernel function in the above MMD
formula to a convex combination of multiple kernel functions,
which means

nj
k(x1,x2) =Y Bukm(x1, x2), B = 0.

ni
sty Bu=1.
m=1 m=1

®)

In the above equation, k;,(-, -) denotes the kernel function
selected for calculation, ni represents the number of kernel
functions, and B,, is the corresponding weight for each kernel
function added up.

b: TRANSFER LEARNING TRAINING METHOD

As shown in Fig. 8, the training method of transfer learning
includes the optimization of MK-MMD distance between
the source domain and the target domain and the distance
between prediction results and the ground truth labels in the
target domain.

The initial parameters of the target network are obtained
by those of source network trained in the source domain.
During the training process, MK-MMD distances between
the source domain and the target domain are calculated by the
outputs of the bottlenecks and the final FC layer in ResNet50.
There are 5 layers picked for distance calculation in total. Let
Dg = {xl l} and DIT = {xl 1} respectively represent the
target domam and source domain of the /th picked layer. The
corresponding distributions are respectively p; and g;. Then
MK-MMD distance of layer [ is

gD, Dy) = MMDIF, py. q1. ©)
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TABLE 3. Details of used datasets.

Dataset [ w/ defect (1) | w/o defect (0) | sum
Micro-crack Dataset 392 9402 9794
Defect Dataset 402 920 1322

Therefore, according to the MK-MMD distance calcula-
tion method, the loss value corresponding to all layers can be
obtained as

L
Lma =Y _ g (D, DY), (10)
=1

where L represents the total number of the picked layers,
which is 5 in this work. The overall loss of the training process
is

Lrr = Lcg + aLyma, (11

where Lcg represents Cross Entropy loss function for binary
classification in the target domain, considering the prediction
results can be optimized according to the ground truth labels.
Besides, « is hyperparameters, which means the weight of
Lyma in the fina loss, being set to 0.25 normally.

IV. EXPERIMENTS

In order to prove the effectiveness of the micro-crack detec-
tion model and the transfer learning model, we conduct
a series of experiments on the collected polycrystalline
micro-crack dataset and the polycrystalline defect dataset
obtained from the network. The following show the basic con-
figurations of the experiments and the corresponding results.

A. DATASET

The dataset prepared for micro-crack detection contains the
collected polycrystalline images from industrial assembly
lines. These images are segmented from the EL images of
the entire polycrystalline cell panels, which are all grayscale
images. The size of each image is 240 x 240. In these cell
images, there may be micro-crack defects. Therefore, accord-
ing to whether the images contain micro-cracks, we divide
them into two types: with micro-cracks (micro-cracked) and
without micro-cracks (normal). The classification result of
this dataset is shown in Table 3. An overview of the dataset
is shown in Fig. 9. In addition, it can be seen that the number
of cell images without micro-cracks is much larger than that
of cells with micro-cracks, as a result, we should enrich the
data of images with micro-cracks before training.

Also, we find a solar cell defect dataset from the
Internet [29] and select the polycrystalline cell part of it to
perform transfer learning experiments. The quantity of the
dataset is shown in Table 3.

B. EXPERIMENTAL SETTING

Except for the model based on transfer learning, the deep
networks of other detection models are all pretrained on
ImageNet. The main deep convolutional neural network used
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TABLE 4. Confusion matrix.

Actual Class
w/ defect (1) | w/o defect (0)
w/ defect (1) TP FP
w/o defect (0) FN TN

Predicted Class

is ResNet50, and the number of output channels of the FC
layer is changed to 2 to better suit the binary classification.
In all experiments in this work, we use mini-batch stochastic
gradient descent (SGD) with a learning rate of 0.005 and
momentum of 0.9 for training.

C. EVALUATION METRICS
The detection models in this work are essentially classifica-
tion models for polycrystalline cells, so here we introduce the
confusion matrix, which is shown in Table 4, as the calcula-
tion basis for the model evaluation metrics. From Table 4,
True Positive (TP) represents the predicted result and the
actual class are both 1, which refers to cells with defects
(micro-cracks as for micro-crack dataset). The concepts of
True Negative (TN), False Positive (FP), and False Nega-
tive (FN) are similar.

With the help of the confusion matrix, we can get the
calculation methods of accuracy (ACC), precision, and recall,
which are

TP + TN
ACC = , (12)
TP+ TN + FP + FN
. TP
Precision = ———, (13)
TP + FP
TP
Recall = ——, (14
TP + FN

The values of precision and recall in the results are hoped
to be as large as possible. However, because of the inter-
action between these two values, we need to make some
sacrifices here. To find the balance point, we introduce F1
score [30], which can consider both precision and recall.
When it increases, both precision and recall will increase. The
formula for calculating the F1 score is

1 B 27TP
" 2TP+FP+FN’

Fl= (15)

1 1
Precision + Recall

Since this work is concerned with binary classification,
we further introduce the evaluation metric Area Under Curve
(AUC), which means the area under the receiver operating
characteristic (ROC) curve. In the ROC curve, the abscissa is
False Positive Rate (FPR), and the ordinate is True Positive
Rate (TPR). FPR and TPR can be calculated as

FP
FPR= ———, (16)
FP+ TN
TP
TPR = —— (17)
TP + FN

Considering the characteristics of the binary classification
problem and the imbalance problem between two classes,
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Micro-cracks

(0)
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Micro-cracks

(1)

.

FIGURE 9. The overview of the used dataset. The upper part of the figure shows the polycrystalline cells without defects, while the lower part contains

the micro-cracked cells (the micro-cracks are marked with the red frames).

TABLE 5. Splitting strategy for micro-crack dataset.

| train | valid | sum

w/ micro-cracks (1) | 1304 | 264 | 1568
w/o micro-cracks (0) | 8436 | 966 | 9402
sum 9740 | 1230 | 10970

we finally select ACC, Precision, Recall, F1 score, and AUC
as the evaluation metrics in the experiments of this work.

D. EXPERIMENTAL RESULTS OF MICRO-CRACK
DETECTION

Experiments are carried out on the industrial micro-crack
dataset to prove the importance of image preprocessing in
the proposed method and the effectiveness of this method.
All experiments in this part are trained for 10 epochs. This
micro-crack dataset is divided into two parts, train and valid,
after data augmentation, as shown in Table 5. The model is
trained on train and tested on valid.

1) INFLUENCE OF IMAGE PREPROCESSING

In this section, our goal is to prove that image preprocessing
helps to improve the final detection results. We conduct a
series of experiments on the basic ResNet50 without feature
fusion.
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TABLE 6. Performance of proposed micro-crack detection model with
and without image preprocessing (with data augmentation).

ACC | Precision | Recall F1 AUC
70.57% | 25.00% | 18.56% | 0.2130 | 0.5167
w/ Fourier Filtering 78.05% | 33.33% | 2.27% |0.0426 | 0.5052

w/ LBP 97.24% | 100.00% | 87.12% | 0.9312 | 0.9356

w/ Fourier Filtering+LBP | 98.29% | 100.00% | 92.05% | 0.9586 | 0.9602

w/o preprocessing

Table 6 shows the gap between the detection effects
obtained with and without image preprocessing. It can be
seen from Table 6 that the addition of image preprocessing
can improve the detection of the model under various eval-
uation metrics, respectively increasing ACC, F1 score, and
AUC by 27.72%, 0.7456, and 0.4435. Also, the two main
subcomponents of image preprocessing Fourier Filtering and
LBP extraction are helpful to improve the effectiveness of the
model more or less.

In addition, as shown in Table 7, we also try other filtering
methods and edge feature extraction methods to find the best
options for image preprocessing. From the evaluation results
in Table 7 and Fig. 10 which shows the filtered images, we can
find that Fourier filtering has the best effect, outperforming
other methods including Mean Blur, Median Blur, and Gaus-
sian Blur. Similarly, after comparing the results of different
edge feature extraction methods shown in Table 7 and Fig. 10,
we find using the LBP feature for detection is the best choice,
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TABLE 7. Performance of proposed micro-crack detection model with different image preprocessing methods.

Filter Edge Feature Extraction Metrics
Mean Median Gaussian Fourier | LBP Canny Sobel Prewitt Laplacian| ACC  Precision Recall F1 AUC
V 76.26% 30.56%  8.33% 0.1310 0.5158
. i/ 71.30% 26.20% 18.56% 0.2173 0.5214
w/ Filter
y 75.37% 34.65% 16.67% 0.2251 0.5404
{ 78.05% 33.33% 2.27% 0.0511 0.5117
a 97.24% 100.00% 87.12% 0.9312 0.9356
V 7431% 21.74%  7.58% 0.1124 0.5006
w/ Edge Extraction 95.69% 100.00% 79.92% 0.8884 0.8996
y 78.86% 100.00% 1.52% 0.0299 0.5076
V 94.96% 94.96% 100.00% 0.8670 0.8826
w/o preprocessing 70.57% 25.00% 18.56% 0.2130 0.5167
w/ preprocessing a a 98.29% 100.00% 92.05% 0.9586 0.9602
Mean Filter Median Filter Gaussian Filter Fourier Filter

LBP

Prewitt Laplacian

FIGURE 10. The image processing results of different filters and edge feature extraction methods.

TABLE 8. Performance of proposed micro-crack detection model with
and without data augmentation (with image preprocessing).

ACC | Precision | Recall F1 AUC
w/o data augmentation | 93.74% | 81.48% | 91.67% |0.8627 | 0.9299
w/ data augmentation | 98.29% | 100.00% | 92.05% | 0.9586 | 0.9602

increasing ACC, F1 score, and AUC by 26.67%, 0.7182, and
0.4189. Compared with other extracted features, it is obvious
that LBP is more likely to highlight the line-like micro-cracks
in polycrystalline cells.

2) INFLUENCE OF DATA AUGMENTATION

It can be seen from Table 3 that the used dataset is unbalanced,
so we propose to use image flipping for data augmenta-
tion in Section III-Al. In the previous experiments above,
the dataset we use is one after data augmentation. In this
section, we conduct related experiments based on image pre-
processing, which proves that data augmentation is necessary
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and can greatly improve the effectiveness of the proposed
micro-crack detection model. The results of the experiments
are shown in Table 8, which shows that data augmentation
can increase ACC, F1 score, and AUC by 4.55%, 0.0959, and
0.0303 respectively.

3) INFLUENCE OF FEATURE FUSION

The above experiments are all implemented based on the
basic ResNet50. In this section, we add feature fusion to the
original network to make full use of the shallow features of
the network, and conduct related experiments to verify the
effectiveness of feature fusion on the detection results.

The results of the experiments about feature fusion are
shown in Table 9. The first column of the table represents
the features used in the following classification, and the num-
bers in it represent the output features of the corresponding
stages. It can be seen from Table 9 that using the fusion
features obtained by fusing the outputs of the four stages
for micro-crack detection can get a better detection effect.
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TABLE 9. Performance of proposed micro-crack detection model with
and without data augmentation (with image preprocessing).

Classification-used Feature | ACC | Precision | Recall F1 AUC
5(w/o feature fusion) 98.29% | 100.00% | 92.05% | 0.9586 | 0.9602
2+5 98.53% | 97.67% | 95.45% | 0.9655|0.9742

3+5 98.94% | 98.83% | 96.21% | 0.9750 | 0.9795

445 98.37% | 98.80% | 93.56% | 0.9611 | 0.9663

2+3+5 98.37% | 99.19% | 93.18% | 0.9609 | 0.9649

2+445 99.02% | 98.84% | 96.59% | 0.9770 | 0.9814

3+4+5 98.46% | 99.60% | 93.18% |0.9628 | 0.9654
2+43+4+5 99.11% | 98.84% |96.97% | 0.9790 | 0.9833

After adding the feature fusion module, ACC, F1 score, and
AUC can be increased by 0.82%, 0.0204, and 0.0231 on the
basis of using the basic ResNet50 for detection.

4) COMPARISONS WITH OTHER CLASSIFIERS

Keeping the same image preprocessing method, we try
other commonly used machine learning methods to detect
micro-cracks of polycrystalline cells. For each method, we try
to get the configurations that gave the best detection results.
The methods used and the corresponding parameters are as
follows:

« KNN: We attempt to use one of the simplest classifica-
tion algorithms, the k-Nearest Neighbors (KNN) algo-
rithm, to classify polycrystalline images, keeping the
number of neighbors as 5 and the leaf size as 30.

o GaussianNB: Gaussian Naive Bayes (GaussianNB),
which belongs to Naive Bayes algorithms, is also
attempted.

e SVM: For the Support Vector Machine (SVM) algo-
rithm, we set the penalty coefficient C to 3, and keep
the others as default.

o DT: As a traditional classification method, Decision
Tree (DT) is tried here. A classification and regression
tree (CART) is built to classify the cells.

o RF: Combining Decision Tree with ensemble learning,
we can get Random Forest (RF). Here, we set the number
of decision trees in the forest to 100.

o GBDT: We set the number of estimators to 100, learning
rate to 0.08, max depth to 9 when using Gradient Boost-
ing Decision Tree (GBDT).

o AdaBoost: As a boosting method, AdaBoost combines
the weak classifiers to get a strong classifier. The weak
classifier we use is Decision Tree, the number of itera-
tions is set to 50.

o CatBoost: We also try another boosting method pro-
posed in recent years named CatBoost. According to
experience, we let the loss function type be Logloss,
learning rate be 0.01, iterations be 100000, and depth
be 5.

o« MLP: To build Multi-Layer Perceptron (MLP), also
called Artificial Neural Network, we set two hidden
layers which have 100 and 50 neurons respectively.
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TABLE 10. Results of detection using different methods.

ACC  Precision Recall F1 AUC

KNN 96.18% 100.00% 82.20% 0.9022 0.9435
GaussianNB ~ 93.41% 100.00% 69.32% 0.8188 0.9371
SVM 93.58% 100.00% 70.08% 0.8241 0.9650
DT 90.33% 93.98% 58.71% 0.7226 0.7884
RF 83.25% 100.00% 21,97% 0.3602 0.9500
GBDT 92.28% 99.42% 64.39% 0.7816 0.9695
AdaBoost 95.37% 97.710% 80.30% 0.8815 0.9676
Catboost 96.10% 100.00% 81.82% 0.9000 0.9796
MLP 97.64% 100.00% 89.02% 0.9419 0.9574
VGG-16 94.07% 94.07% 95.05% 0.8240 0.8631
GoogleNet 95.93% 99.54% 81.44% 0.8953 0.9067
ViT-small 81.06% 100.00% 11,74% 0.2102 0.5587
ViT-base 91.86% 89.05% 70.83% 0.7890 0.8423
MLP-Mixer-base 84.23% 100.00% 26.52% 0.4192 0.6326
Ours 99.11% 98.84% 96.97% 0.9790 0.9833

When training the network, the learning rate is 0.005,
the optimizer is SGD.

o VGG-16/GoogleNet: The VGG-16 [31] and GoogleNet
[32] we use for detection are the standard networks from
torchvision, while the category number of classifiers is
changed to 2. The training optimizer is SGD with a
learning rate of 0.005.

o ViT-small/ViT-base/MLP-Mixer-base: The patch size of
used ViT [33] and MLP-Mixer [34] is 16 x 16. The
depth of these three models is 12. The used optimization
methods are consistent with the original article.

Table 10 shows the classification effect of the above meth-
ods. It can be seen that the MLP can get the best result
among the proposed learning methods, which is a simple
feedforward neural network containing two hidden layers.
However, compared with our proposed ResNet-based micro-
crack classifier, the traditional classification methods like
MLP still have certain gaps considering that deep neural net-
work ResNet has stronger feature extraction and recognition
ability.

E. EXPERIMENTAL RESULTS OF TRANSFER LEARNING
Further experiments on the effectiveness of the transfer learn-
ing method are conducted. The source domain of these exper-
iments is composed of the industrial micro-crack dataset, and
the target domain is the defect dataset. Similar to the previous
part, we divided the data into train set and valid set after
aligning these two datasets. The optimizer in experiments of
this part is SGD with a learning rate of 0.005. The results are
recorded after the models are trained for 100 epochs.

Table 11 shows the results of transfer learning, including
the detection effects of models obtained by fine-tune and
MK-MMD-based transfer learning method. It can be found
that compared with the ResNet-based classification model
directly training on defect dataset, the evaluation metrics
of the model obtained using fine-tune have some increase.
Besides, since the image type of both the micro-crack dataset
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TABLE 11. Defect detection results of methods with and without transfer
learning on defect dataset.

ACC | Precision | Recall F1 AUC

w/o transfer learning | 72.00% | 54.55% | 40.00% | 0.4615 | 0.6286
FINE-TUNE
ImageNet 77.60% | 69.39% | 48.57% | 0.5484 | 0.6838

micro-crack dataset | 79.20% | 73.47% | 51.43% | 0.5806 | 0.7029

TRANSFER LEARNING WITH MK-MMD
81.60% | 87.18% | 45.33% |0.5965 | 0.7124
83.60% | 94.74% | 48.00% | 0.6372 | 0.7343

single layer
multiple layers

—— w/o transfer learning

—m— Finetune-ImageNet

1.0 —&— Finetune-Micro-cracked dataset
—— TL-single layer

—— TL-multiple layers

0.8 1

0.6

CELoss

0.4

0.2

0.0

S e
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Epoch

FIGURE 11. The loss graph of the transfer learning experiments.

and defect dataset is polycrystalline cells, the parameters of
the model based on the micro-crack dataset are more suitable
for defect detection. As a result, the effect of fine-tune with
the help of the micro-crack dataset is better than that with the
aid of ImageNet, with ACC, F1 score, and AUC increase of
7.20%, 0.1191, and 0.0838.

In addition, we conduct single-layer and multi-layer MK-
MMD related experiments. The results in Table 11 report that
compared to only performing the optimization of MK-MMD
distance after the FC layer output of the source domain and
the target domain, optimizing the output of multiple layers
can better reduce the distance between the source and target
domains, to improve the model training effect of the target
domain.

Fig. 11 shows the changes of Cross-Entropy losses
between predictions and true labels in the first 20 epochs of
the experiments mention in Table 11. From the change trends
of losses in 20 epochs, we can tell that transfer learning plays
a great role in promoting the convergence of the loss.

To find the most suitable hyper-parameter « in (11),
we conduct a series of experiments about « based on
multi-level transfer learning. As shown in Table 12, when
« is set to 0.25, ACC, F1 score, and AUC can achieve the
best results.

As shown Fig. 12 and Fig. 13, we further carry out
visualization experiments. The heat maps in the figures are
calculated from the output features of the last convolutional
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TABLE 12. Defect detection results of methods with different
hyper-parameter o.

Recall F1 AUC
50.67% | 0.6230 | 0.7276
48.00% | 0.6372 | 0.7343
48.00% | 0.6315|0.7314
48.00% | 0.6000 | 0.7286
46.67% | 0.6097 | 0.7190

ot ACC
0.1 | 81.60%
0.25 | 83.60%
0.5 | 83.20%
0.75 | 82.80%

1 | 82.00%

Precision
80.85%
94.74%
92.31%
90.00%
87.50%

FIGURE 12. The heat maps of the features obtained from the micro-crack
detection model. For example, the images in the left upper quadrant of
the figure is classified as class 1, whose ground truth label is also 1.

Original Without With
Images Transfer Learning Transfer Learning
Predicted Label Predicted Label
T : 2~ T T T T ~
IA ‘ 2 e / EW ’ AN
FA‘ ’ :\' { 0 ) ’ 2 0
& |
S —

Label 0

. i

FIGURE 13. The heat maps of the features obtained from the defect
detection model trained with and without transfer learning. Their
predicted results are shown in the nearby boxes. The green ones mean
the corresponding images are correctly classified, and the red ones mean
the predicted results are wrong.

layer in the network. The features of images got from ResNet
are activated in different regions, and the redder parts in the
heat map have the higher activation degree.

It can be seen in Fig. 12 that the pictures with the large
activated areas are more likely to be classified as 1. On the
contrary, the picture with less activated parts is classified as 0.
Besides, there is a trend that the heat maps of class 0 pictures
are similar.
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Fig. 13 clearly shows that transfer learning improves the
feature activation effect of the network, to improve the detec-
tion effect. With transfer learning, the activated areas of the
heat maps obtained by features of class 0 images become
smaller and more similar to each other to a certain extent.
And the activated areas of images that should be classified as
class 1 become larger, of which the positions are closer to the
defects.

V. CONCLUSION

This paper proposes a ResNet-based micro-crack detection
method for polycrystalline solar cells. This method contains
image preprocessing and a backbone network. The image pre-
processing includes data augmentation, Fourier Filtering, and
LBP extraction. After image preprocessing, the busbars of the
polycrystalline cells can be removed, and the micro-cracked
part can be enhanced. The backbone network is ResNet50,
which is used for feature extraction and final classifica-
tion operations. For the industrial micro-crack dataset, this
method can achieve a detection accuracy of 98.29%.

In industrial scenarios, in addition to hidden cracks, poly-
crystalline solar cells have other defect forms, and training
defect detection networks from scratch often fails to achieve
good results. We propose a transfer learning method based
on the micro-crack detection network, using fine-tune and
the obtained micro-crack detection model to guide the defect
detection. This method can significantly improve the effect
of defect detection.

As for future work, we propose to focus on defect detection
of polycrystalline cells based on one-shot learning and online
learning, which aims to solve the difficulties of initial dataset
acquisition. Besides, we observe the performance of current
deep networks can be further improved by some tricks, e.g.,
knowledge distillation.
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