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ABSTRACT The automotive industry is transitioning towards intelligent, connected, and autonomous
vehicles to avoid traffic congestion, conflicts, and collisions with increased driver safety. Connected
and autonomous vehicles (CAV) must be aware of their surroundings and act as per their environment.
Communication infrastructure can be vital in transmitting necessary information to peers and receiving
critical information for timely decisions. This article provides a comprehensive review of the topic, covering
the aspects of enabling wireless technologies and sensor fusion. The article reviews data acquisition using
various sensing devices such as RADAR (Radio Detection and Ranging), LiDAR (Light Detection and
Ranging), cameras, and multi-modal sensor fusion of the acquired data after signal processing. Thereafter,
it reviews the communication and networking infrastructure for intra- and inter-vehicle communication and
related technologies. For each of these themes, research challenges and future directions have been identified.

INDEX TERMS Sensor fusion, inter-vehicle communication, intra-vehicle communication, environment
sensing, road safety, Internet of Vehicles, connected and autonomous vehicles, 5G networks.

I. INTRODUCTION
The field of vehicular communication and intelligent trans-
portation systems (ITS) has been progressing fast since the
last decade. The rapid growth in ITS revolves around the
manufacturing of autonomous and semi-autonomous vehi-
cles with the capability of passenger safety, elimination
of roadside accidents, optimal path planning, user comfort
with enhanced travel experience, and use of information
technology to connect with media and social networks. The
5G communication infrastructure enables ITS multiple com-
munication paradigms, namely vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), infrastructure-to-vehicle
(I2V), vehicle-to-road (V2R), vehicle-to-personal (V2P), and
vehicle-to-sensors (V2S). With increased intelligence, con-
trol, and communication-enabled navigation, environment
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sensing and run-time decision-making capabilities, the tra-
ditional vehicles transform into autonomous vehicles (AV) or
self-driving vehicles. The AVs have less energy consumption,
reduced carbon emissions, and optimized routing resulting
in greener urban mobility. In recent years, advancements
in communications, controls, and embedded systems have
changed the perception of a typical conventional car. The
AVs are sensory platforms capable of absorbing information
from the environment (and from other cars in its vicinity)
and disbursing this information to drivers and infrastructure
to assist safe navigation, environment-friendly commute, and
overall traffic management. The next step in this evolution
is in the offing: the Internet of Connected and autonomous
vehicles (CAV) or internet of vehicles (IoVs) [1]–[3]. IoV is
a framework that emphasizes layered architecture, protocol
stack, network model, challenges, and future aspects. Due to
increased demand for higher data rates and lower latency, the
computation for CAV is brought closer to these vehicles in
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the so-called vehicular fogs [4] which serves as an instan-
taneous internet cloud for vehicles. The concept of the IoV
is pioneered by Google that used communications, storage,
intelligence, and learning capabilities of CAV to anticipate
the customers’ intentions.

A complete CAV system is a complex combination of
different technologies, sensors, actuators, algorithms, and
high-performance computer systems [5]. The hardware sys-
tem of a typical autonomous car includes Radio Detec-
tion and Ranging (RADAR), Light Detection and Ranging
(LiDAR), cameras, a digital signal processor, an application-
specific integrated circuit (ASIC), or a field-programmable
gate array (FPGA) chip for computational tasks and other
complementary sensors. The main idea behind the working
of CAV is straightforward; CAV uses different sensors that
can detect and can track all the objects in the surroundings;
the vehicle then reacts according to the received input. These
tasks, i.e., environment sensing and actuation based on the
sensed information, are quite complex and encapsulate many
diverse domains.

A RADAR in an autonomous car detects other objects’ dis-
tance, direction, and speed through radio waves. A RADAR
continuously emits radio waves which are reflected back to
the source after hitting objects. RADAR is inexpensive, and
it is also capable of performing well in extreme weather con-
ditions. LiDAR is a laser sensor that emits laser beams that are
reflected back to the photo-detector after hitting the objects
in the environment. These sensors provide highly detailed
geographical data in a three-dimensional (3D) map of the
surroundings and have a higher resolution than RADAR
because they use light instead of radio waves. However,
LiDAR is much more expensive than RADAR sensors and
cannot perform accurately in extreme weather conditions.
Detailed information of the car’s surroundings is determined
through the data processed by cameras and computer vision
software. Cameras are helpful in training machine learn-
ing (ML) models. Tesla’s autopilot cars have eight cameras
for object detection in 360 degrees. Like LiDAR, cameras
cannot perform well in extreme weather, such as storms or
dense fog. CAVs also have ultrasonic sensors which emit
high-frequency sound waves. The receiver calculates the dis-
tance by estimating the round trip time [5].

Ultrasonic sensors have been used as parking sensors for
a very long time in automobiles. They have a smaller range
but are ideal for detecting objects at low speeds. CAVs also
have inertial measurement unit (IMU) sensors capable of
measuring the car’s velocity. Moreover, microphone sensors
in an autonomous vehicle help the autonomous car listen to
nearby audio, such as emergency sirens. A global positioning
system (GPS) is also included in an autonomous vehicle
for navigation purposes. The primary function of this sensor
is to track the vehicle’s movement and find out its global
position. A high-performance computer is also included in the
hardware system of CAV to interface hardware components
and sensors with software and process all the sensory data in
real-time.

According to the transportation department of the United
States, CAV cooperates with each other and their surround-
ings in three different ways, namely vehicle to vehicle inter-
action, vehicle to infrastructure interaction (V2I), and vehicle
to pedestrian (V2P) interaction. V2V interaction allowsCAVs
to exchange valuable information like their current positions,
route congestion, obstacles, and hazards on roads. Vehicle to
infrastructure interaction (V2I) is how autonomous vehicles
communicate with the infrastructure, such as an intelligent
parking system to arrange parking space before even reaching
there. Vehicle to pedestrian interaction (V2P) is how CAV
knows the position of pedestrians on the side of the road. This
communication actually happens between an autonomous car
and a smart device such as a smartphone or a smartwatch
of the pedestrian. Through GPS, these devices know their
positions and can exchange information on position with
CAV. In this way, the safety of the passengers and vehicles can
improve significantly. Various types of autonomous vehicles
that may hit the road in the near future are shown in Fig. 1.

A. BRIEF HISTORY OF CAV
CAV are also called driver-less vehicles. Researchers have
been working on this concept since 1920s. General Motor
organized an exhibition in 1939 named as New York world’s
fair to show the world its vision of how the world in the
future will look like with CAVs on the road. They showed
the concept of an automated intelligent highway system with
connected vehicles. This was the first time that a vision of
autonomous vehicles was showcased by Norman Bel Ged-
des [6]. The first autonomous car hit the road few years
later where it guided by radio-controlled electromagnetic
fields generated with magnetized metal spikes embedded in
the roadway. There was slow and gradual progress in this
area since then. In the year 2004, DARPA USA started to
organize yearly competitions for the development of CAVs
known as DARPA grand challenge. In DARPA challenge,
students from well known universities were encouraged to
develop CAV for a safer and environment-friendly future.
DARPA challenge received great response from students and
automobile industry. In another round of the Grand Challenge
held on On October 8, 2005 in California/Nevada state line
the winner developed a robot that was developed for high-
speed desert driving without manual intervention. The state
of the art artificial intelligence and machine learning tech-
nology was used in the vehicular robot’s software system [7].
The focus of this challenge was for military applications
of autonomous vehicles. However, it created huge interest
in big companies like Tesla, Google, General Motors, Ford
and others who made huge investments in developing CAVs.
In 2014, Tesla showed the world its first ever autopilot
car. The Tesla autopilot had features like it could accelerate,
steer or brake automatically within its lane, auto park, cruise
control, auto lane change.

In 2015, Google tested its autonomous car, Firefly on
public roads. This car did not use a steering wheel or pedals
and was designed to work under 25 miles per hour and was
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FIGURE 1. Autonomous vehicles.

discontinued shortly after its introduction. In 2016, Google
introduced Waymo which launched Chrysler Pacifica hybrid
minivans in 2017. This vehicle was built with fully integrated
hardware design. In the same year, many other giants in the
autonomous vehicle industry introduced their autonomous
flagship vehicles in the market. For example Audi introduced
their A8 sedan, General Motor introduced super cruise and
Volvo launched their drive-me autonomous vehicle. In 2018,
Nvidia collaborated with Volkswagen for CAV of next gen-
eration. They introduced a smart chip named as ‘‘Xavier’’
which had artificial intelligence capabilities for CAV. A lot
of progress has been made since then over traditional vehicles
on the road and companies like Tesla and Google are working
really hard to bring CAV on the public road with advanced
technological features in the near future.

Accidents on the roads mostly occur due to common
human mistakes such as mobile phone or other distractions,
driver drowsiness and tiredness [8]. Machines don’t feel
fatigue and don’t get distracted by things like mobile phone
while driving and hence these cars don’t make careless mis-
takes while driving. Traffic congestion can be reduced using
cooperative communication by sharing position, speed and
information about routes. More importantly, CAVs can help
increase human productivity by converting time on the road
to useful time. CAVs can play a vital role in the mobility
of children, elderly and disabled people. Almost all of the
autonomous vehicles are hybrid or electric vehicles and they
consume less fuel compared to traditional cars because of
optimal route planning. CAVs can also communicate with

parking lots to find empty slot and can self-park to save
precious human time.

B. LEVELS OF AUTOMATION IN AN AUTONOMOUS
VEHICLE
According to society of automotive engineers (SAE), there
are a total of six levels of automation [9], [10]. First level, L0,
is the baseline case with no automation in the car. A Human
driver performs all the tasks like steering, accelerating, brak-
ing etc. Second level, L1, is the lowest level of automation.
Although most of the tasks are still performed by a human
but some automation features are present like adaptive cruise
control where the car can be kept at a safe distance from
the car in front and in the same lane. This level of automa-
tion is also known as driver assistance level. Third level of
automation, L2, is known as hands off automation. At this
level the driver has the main control and performs most of
the driving tasks but there are some features like cruise con-
trol, advance driver assistance system, automatic accelerat-
ing/decelerating in some circumstances etc. The human driver
must pay attention to the environment and take the control
from the vehicle any time. This level of automation is also
known as partial driving automation and Tesla’s autopilot car
qualify as L2. Fourth level of automation according to SAE
is L3 automation (eyes off automation). Levels of automa-
tion according to SAE J3016 standard are shown in Fig. 2.
Vehicles in this level are able to do some tasks automatically
in some circumstances that otherwise a human driver would
perform. At this level, vehicles have the capability to detect
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FIGURE 2. Levels of Automation according to SAE J3016.

the environment or surroundings and can perform informed
tasks. However, a human assistance is still required at this
level of automation. This level of automation is also known as
conditional automation. Fifth level of automation according
to SAE is L4 also called mind off automation. At this level,
a vehicle is capable of performing all the driving tasks and
monitor the environment. The cars still have a steering wheel,
gear shift and brake pedal but the vehicles at this level are able
to do most of the driving tasks by themselves. But, a human
driver still has the option to take control of the driving tasks
at this level. This level of automation is also known as high
automation. The sixth level of automation is L5 or body off
automation. The vehicles can perform all the driving tasks
by themselves without any human assistance. The vehicles
are fully automated and prepared to handle all the scenarios
that can arise in the drive. These cars don’t have steering
wheel, gear shifts and brake pedals. These cars require zero
human assistance to perform all the driving tasks. This level
of automation is also known as full automation.

C. ARCHITECTURE OF CAV
These levels of automation in CAVs are made possible
through a robust and ever evolving architecture. The fun-
damental component for this architecture is an Electronic
Control Unit (ECU) which integrates computing power with
sensor and/or actuators to enable various functionalities.
These functionalities include vehicles kinematics (Steering
control, throttle and braking), power-train (Engine and bat-
tery), user electronics (Air Conditioning, Power windows
and mirrors), infotainment (Radio, Navigation), autonomous
driving system (Camera, radar, Lidar) and vehicle connectiv-
ity (V2X) as shown in the Fig. 3.
The ECUs for any particular functionality get connected

using connectivity cables and protocols to a central gate-
way, acting as backbone of entire communication network.
Autonomous driving functionality is dependant upon Percep-
tion, Localization, Fusion, Driving Policy.

D. SCOPE OF THIS PAPER
This survey aims to provide a comprehensive view of state-
of-the-art technology, practices, and future trends of the CAV

in the area of enabling wireless technologies and sensor
fusion. Our main scope remains the CAVs in V2V and V2X
domain, radars and sensor fusion. We believe that this multi-
dimensional study of CAVs in this domain will provide
industry researchers and stakeholders a better insight into the
recent and emerging trends leading to optimal design and
deployment strategies.

The remaining sections are organized as follows. Section II
presents an in-depth treatment of state-of-the-art wireless
communication and networking technologies that are shaping
and realizing the cooperation and coordination among CAVs,
vehicular cloud computing, and making the internet of vehi-
cles a reality. Section III provides a comprehensive review on
sensors used in CAV for data acquisition, signal processing
for advanced driver assistance systems, and various sensor
fusion techniques. Section IV provides some of the futures
challenges and research directions related to enabling 5G
and 6G wireless technologies and sensor data fusion. Finally,
Section V concludes the paper.

II. COMMUNICATION AND NETWORKING IN CAV
At this point, we have developed a basic understanding of
CAV and how these vehicles work. This section will focus
on the various networking and communication protocols
deployed in these vehicles. The networking and communica-
tion protocols within the vehicle can be divided into two cate-
gories, namely intra-vehicle and inter-vehicle communication
as mentioned in [11]. We will discuss intra-vehicle communi-
cation briefly before discussing inter-vehicle communication
since it is the foundation for IoV.

A. INTRA-VEHICLE COMMUNICATION AND NETWORKING
Intra-vehicle networking and communication is the backbone
of autonomous vehicular operation since it realizes the gath-
ering of information from the sensor. This sensor information
is used in controlling various actuators within the vehicle.
Intra-vehicle networking and communication can be realized
using both wired as well as wireless technology. We first
describe the intra-vehicle networking protocols before focus-
ing on the communication protocols deployed to support
communication within a vehicle.

Both wired and wireless interconnections are present
in today’s autonomous cars to exchange information and
respond to control various electronic components. Both
point-to-point, as well as data buses, are employed for these
interconnections. Data buses substantially reduce the amount
of cabling needed for point-to-point communication. The
common communication technologies deployed in CAV are
Controller Area Network (CAN) [12], [13], Local Intercon-
nect Network (LIN) [14], FlexRay [15], Media Oriented
System Transport (MOST) [16] and Ethernet [17]. A brief
comparison of these technologies is presented in Table 3.

In addition to the wired technologies, several wireless
interconnections are also used to reduce the complex-
ity associated with wired interconnections. The wireless
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FIGURE 3. CAV Architecture.

communication standards adopted in CAV include; Blue-
tooth, Zigbee, Ultra WideBand (UWB), and WiFi.

Both academia and industry are simultaneously leading
efforts for sustainable communication within an autonomous
vehicle. Although the industry prefers already developed
standards including CAN, LIN, FlexRay, and MOST, the
academia favors Ethernet, mainly based on its ability to con-
nect with the internet. The industry is led by ‘‘Tesla Model
S/X/3’’ and ‘‘Audi A-8 D5’’ whereas academia-based efforts
are being led by ‘‘Talos’’ and ‘‘Little Ben’’ from Cambridge
and Pennsylvania teams respectively [11].

B. INTER-VEHICLE COMMUNICATION AND NETWORKING
Inter-vehicle networking and communication techniques like
intra-vehicle networking and communication constitute an
important part of the perception, planning, and interaction
of CAV. The communication between multiple vehicles can
be achieved using vehicular ad-hoc networks (VANETs),
which is the application of traditional MANET (mobile ad-
hoc network) [11], [18], [19]. The ad-hoc mesh network is
formed in amanner where nodes are not only vehicles but also
infrastructure entities. Moreover, these mobile devices are
equipped with wireless modules. The key differences include
road dependent distribution of vehicle nodes and their high
computing/storage capability [20], [21].

1) VANETs
The communication between the entities of VANETs can
be broadly categorized into V2V, V2I and V2X(Vehicle-
to-Everything) [22], [23]. The term V2X encompasses all
types of communications involving vehicles, which either fall

in V2V and V2I categories or involve communication with
other entities like V2P. The interaction between the multiple
connected entities consists of information exchange through
the adoption of suitable communication protocols [24]. The
aim of the communication between entities is to assist in
solving the core transport problems like traffic congestion
and accidents [25], [26]. In the following, we discuss these
categories briefly.

Vehicle-To-Vehicle or inter-vehicle communication deals
with wireless data transmissions between motor vehicles.
The primary purpose of this communication is to exchange
necessary information about positioning, traffic congestion,
accidents, and speed limits [27], [28]. The vehicles which
take part in communication can either form a fully connected
mesh topology or a partially connected mesh topology [29].
In the fully connected mesh network, nodes can exchange
messages and information with neighboring nodes to which
they are directly connected, whereas a partially connected
mesh network utilizes one of the different paths available to
reach the destination [30]. Timely communication regarding
scenarios like accident risk warning, driver’s sleep detection,
an obstacle in the lane, or vehicle malfunction can lead to
preventive actions such as emergency braking as well as
warning through further communication with other vehicles
in the vicinity.

Vehicle-To-Infrastructure is the communication between
vehicle to infrastructure, which allows the vehicles to inter-
act with the road infrastructure. The roadside infrastructure
includes traffic lights and cameras, lane markers, street sig-
nage as well as parking meters [31], [32]. Similar to V2V,
the V2I wireless communication is adhoc in nature which
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TABLE 1. Intra-Vehicle technologies.

enables nodes to send and receive messages regarding traffic
supervision, and its safety management [33]. The Vehicle-To-
Infrastructure system can be divided into the sparse roadside-
to-vehicle communication system, also known as hotspots
only service e.g. at parking or gas stations, and the ubiquitous
roadside-to-vehicle communication system that ensures cov-
erage throughout the road to all mobile vehicles [19]. The use
cases of V2I include the exchange of information regarding
road conditions, weather conditions, roadside construction,
traffic lights malfunction, sharp curves, accidents, road con-
gestion, and availability of parking spaces [1]. The use of
all the traffic information enables the system to set different
speed limits allowing the vehicles to maximize fuel efficiency
as well as control the traffic flow. V2I technology can be
utilized to manage the traffic lights for emergency vehicles
like ambulances, fire brigades, and police cars. V2I also
enables the vehicle to cloud (V2C) communication which
encompasses cloud services of all varieties for the vehicles.
A connected and autonomous vehicular network covering a
broader spectrum is shown in Fig. 4. V2V and V2I are also
referred to as cooperative ITS (C-ITS).

Vehicle-To-Everything (V2X) communication allows the
vehicle to communicate with other entities for driving
smoothly and safely with minimum power consumption [34],
[35]. The (V2X) entities include pedestrians (V2P) [36],
communication network (V2N) [37], devices (V2D) [38] and
the Grid (V2G) [39]. The basic aim of V2P communication is
to protect Vulnerable Road Users (VRU) [40]. VRUs includes
pedestrians, cyclists, and motorcyclists. The development of
a warning system is necessary due to the unavailability of
separate lanes for VRUs at most places. A pedestrian warning
system is also inevitable due pedestrians distraction caused
by earphones and smartphones usage. Recently, to sup-
port the possible and efficient communication mechanisms
between vehicles and pedestrians, a Pedestrian Collision
Warning (PCW) has been developed [41]. The PCW system
can use wireless modules included in mobile phones, such as
Wi-Fi, Bluetooth, and Near Field Communication (NFC).

V2V, V2I, and V2X have varying requirements from a
communication perspective. Thus various wireless commu-
nication standards are utilized depending upon requirement
based upon range, data rate, power and ease of deployment.
Bluetooth, BLE, UWB, and Zigbee standards are deployed
due to their low power requirements and short-range com-
munication. Wi-Fi-based on IEEE 802.11 family of standards
along with Dedicated Short Range Communication (DSRC)

are deployed for V2I based scenarios. These given vehicular
networks access to the internet. Lastly, WiMAX and LTE-V
are deployed for long-range connectivity, especially in the
V2I scenario.

C. VANET TECHNOLOGIES
In VANET, vehicles use numerous wireless access technolo-
gies to communicate with other vehicles, infrastructure, and
conventional networks. The autonomous vehicle can transmit
and receive real-time data (Audio/Video) as well as warnings
and situation-related information. The selection of a wireless
technology being deployed depends upon several factors,
including range, sensor type, communication model, and
topology, as well as the use case. The wireless technologies
used in autonomous vehicles can be conveniently grouped
into three categories based on their range i.e., short, medium-
and long-range technologies. The Table 2, Table 3 and Table 4
summarize the main design principles, technical features,
and protocols of some key technologies that fall into short,
medium- and long-range categories respectively.

D. RESEARCH THRUSTS IN COMMUNICATION DOMAIN
FOR CAV
A subset of the most relevant research thrusts in the commu-
nication domain regarding CAV are listed below.

1) ROUTING PROTOCOLS
In order to realize a sustainable and scalable growth of CAV
a lot of research effort is being conducted in routing data
traffic to address the dynamic needs of the CAV network.
A comprehensive study of the available protocol and their
various classification is done in [42]. CAV routing is faced
with multiple challenges, including dynamic topology, link
disruption, scalability, and security. Based on the various
use cases of CAV networks, the routing protocols can be
classified based on position, topology, cluster, geocast, and
broadcast-based routing [11].

Position-based routing protocols utilize vehicle’s location
information estimated from the regularly transmitted bea-
cons. Position-based routing does not require global routing
from source to destination. Examples of this routing include
Greedy Perimeter Stateless Routing (GPSR) [43], Anchor-
based Street and Traffic-Aware Routing (A-STAR) [44]
and Vehicle-Assisted Data Delivery (VADD) [45]. However,
topology-based routing is classified into preactive, reactive,
or hybrid. Preactive routing stores the routing information for
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FIGURE 4. Wireless Communication and Networking for CAV.

all the connected AVs, which requires high network band-
width [46]. In comparison, reactive routing protocols only
initiate route discovery when it is required resulting in larger
latency associatedwith route finding. Hybrid routing involves
both preactive and reactive routing methods to achieve a
trade-off between latency and bandwidth requirements. Some
example of topology-based routing are Dynamic destination
Sequenced Distance Vector (DSDV) [47], Dynamic Source
Routing (DSR) [48] and Ad-hoc On-demand Distance Vector
(AODV) [49].

Cluster-based routing groups together AV that have sim-
ilar characteristics such as speed and direction. Within a
cluster, cluster heads are responsible for routing hence mak-
ing this routing strategy very scalable both in terms of
bandwidth requirement and routing latency. Examples of
these include Cluster-Based Vehicular Ad-hoc NETwork
(CBVANET) [50], and Adhoc On-demand Distance Vector
for Clustering maintenance in VANETs (AODV-CV) [51].

Geocast based routing is a multicast routing protocol that
forwards a message only to a subset of AVs based on their
geographical location. Lastly, the broadcast-based routing
protocol can be considered brute force routing approaches
where messages are broadcasted to every other AVs and for
larger network message collisions and eventually broadcast
storms are created.

This section highlighted the routing protocols being
adapted and devised for CAVs.

2) CONGESTION AVOIDANCE
The exchange of safetymessages among vehicles can result in
reducing the number of road traffic accidents and increasing
traffic efficiency. These safety messages are both periodic or
based on emergency beacons, but in both these cases, they
must adhere to reliability and scalability constraints. As the
vehicular network grows, the frequency of safety messages
increases substantially, and hence these safety messages are

controlled through a congestion control protocol. One such
protocol is presented in IEEE DSRC wireless access sys-
tem, which supports efficient congestion control for vehicu-
lar safety communication. Congestion control protocols help
in the effective delivery of time-critical safety messages in
vehicular networks. Many studies have been carried out to
validate and evaluate the performance of congestion control
techniques.

3) SOFTWARE DEFINED NETWORKING
Software Defined Networks (SDN) is a virtualization archi-
tecture and design framework, reducing management com-
plexity for CAV networks. It is usually based on OpenFlow,
a flexible network traffic controller which separates the con-
trol plane from the data plane, thus making the network
more intelligent. SDN, with its ability to deploy independent
centralized controllers, processing entities, traffic forward-
ing, and programmability, makes the network more flexible.
A great deal of research has been done on SDN for CAV
deployment. Firstly, [52] propose a new architecture inte-
grating Edge Computing with SDN, yielding flexible and
effective resource management and utilization, improving
the performance communication among autonomous vehi-
cles. Another SDN for vehicular network architecture is
proposed in [53], reducing traffic aggregation and delays.
Similarly, [54] presents a centralized SDN network controller
for autonomous vehicles that can create clusters dynamically
depending upon the real-time road conditions.

4) BIG DATA IN VEHICULAR NETWORKING
CAV naturally depends on cellular networks to provide wide
area coverage. Additionally, in small dense cells, commu-
nication cost and vehicle connectivity are made economi-
cally viable using cellular networks. Also, with increasing
sensors being equipped on modern vehicles, massive data is
generated. This massive data traffic in vehicular networks
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TABLE 2. Short range inter-vehicle technologies.

TABLE 3. Medium range inter-vehicle technologies.

TABLE 4. Long range inter-vehicle technologies.

has ushered Big Data in VANETs. With Big Data, vehicles
are now being equipped with even more powerful processing
units and large storage devices, evolving the VANETs into
IoV since each vehicle can now be considered a computer
and storage center with connectivity with other vehicles. [55]
classifies such an IoV capable of big data support into four
distinct phases, namely Acquisition (both inter-vehicle and
intra-vehicle), Transmission, Storage and lastly, Computing.

5) MACHINE LEARNING IN CAV
Machine learning, a data-driven intelligence tool, is being
widely employed to solve complex and dynamic problems
associated with communication and connectivity in CAV.
ML has been a focus of various research thrusts in CAV.
We try to highlight some of the key areas where AI has been
deployed to enhance performance for CAV. [56] presents edge
computing enhanced through the use of deep learning. The
presented results highlight that an edge analytics architecture
with deep learning algorithms can make the intelligent trans-
port system reliable and safer. Another dimension employing
deep learning is at the network traffic controller. [57] summa-
rize architectures and algorithms designed for network traffic
controllers using deep learning. Deep learning also has the
potential to address message routing for autonomous vehicles
networks. [58] present the deep learning scenario for packet
processing and transfer. Authors in another work [59], present
machine learning at the physical layer to address handover
between sub-6 GHz and mm-Wave integrated CAVs.

A very recent and comprehensive survey [60] presents the
machine learning application in vehicular networks. Authors
have highlighted works starting from channel estimation for

orthogonal frequency multiplexing OFDM-based transmis-
sion. Works involving supervised learning for both OFDM
equalization are presented. In addition to this, machine
learning-based beamforming, advances in cognitive radios
through machine learning, and application of machine learn-
ing in non-orthogonal multiple access are also discussed.
In addition to physical layer applications, [60] also summa-
rizes works involving reinforcement learning-based predic-
tion and intelligent decision in resource allocation. On the
networking side, vehicle mobility prediction to improve
mobile routing and network traffic flow prediction-based
routing are also discussed through the application of machine
learning.

E. USE CASES ENABLED THROUGH COMMUNICATION
Communication in AV plays an integral part in various
applications. The following list of applications/use cases are
enabled by utilizing the communication and networking pro-
tocols that are discussed in the previous section.

1) INTERSECTION MANAGEMENT
CAV has the ability to improve traffic flow through collision
avoidance and intelligent management of intersections. [61]
provides a survey of various centralized and decentralized
approaches that have been proposed in the literature to
address the coordination of vehicles. Centralized approaches
include schemes that require global reservation or optimiza-
tion of one parameter, whereas decentralized approaches
create a vehicle control policy on the information received
from the other vehicles. One centralized work is mentioned
in [62], where V2X-enabled CAV scheduling is carried out
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at unsignaled intersections. This work creates a collision-free
model by dividing the intersection area into basic schedul-
ing units. A distributed intersection management protocol
is discussed in [63]. In this work, the authors present a
Distributed Intersection Management Protocol (DIMP) for
VANETs. DIMP enables vehicles to exchange messages to
decide the order for crossing intersections based on real-time
traffic conditions. Traffic coming from a different direction
is grouped together, and a group leader is elected who is
involved in negotiating a safe and timely passage through the
intersection.

2) PLATOONING
Platooning, which is also referred to as cooperative adaptive
cruise control (CACC), is an integral part of the futuristic,
intelligent transportation system. Platooning is a method for
increasing road efficiency by grouping vehicles together,
where the distance between vehicles is decreased. Vehicles
within a platoon accelerate or brake simultaneously. Platoon-
ing is enables in modern vehicles by sharing information or
a warning to the driver of a hazardous road situation using
either a decentralized or cooperative approach. The Decen-
tralized approach involves decentralized environmental noti-
fication message (DENM), whereas the cooperative approach
involves sharing the kinematic state of other vehicles using
cooperative awarenessmessage (CAM) asmentioned in [64].
Multiple works highlighting different platooning aspects
have been conducted to enhance knowledge and move closer
to practical implementations of CACC/platooning. Although
platooning/CACC are used interchangeably, some subtle dif-
ferences exist between CACC and platooning, which are
summarized as follows.

CACC is an inbuilt function of the vehicle that is built on
top of the adaptive cruise control (ACC) function. CACC is
based on kinematic data directly transmitted between consec-
utive vehicles, which can be either the preceding or following
vehicle. In CACC, multiple vehicles equipped with CACC
align together to form a caravan/platoon; however, each vehi-
cle within such a platoon is solely responsible for its own
maneuvering.

In contrast, in platooning, multiple vehicles sharing a com-
mon destination form a platoon, led by a platoon leader.
Unlike CACC, in this platooning, the platoon leader is
given the mandate to coordinate with platoon members
for platoon maneuvering, which can include platoon join-
ing/leaving/speed. Platoon leaders can also make a decision
for individual members in certain situations. The platoon
leader is also responsible for observing the driving environ-
ment not only for itself but for the whole platoon. CACC is
considered as the enabling technology for platooning.

Various studies have been conducted to model the behavior
of platoons. [65] uses control theory (spring mass damper
system) to depict the behavior of vehicles within platoons.
In another work [66], model predictive control is used
for enhancing traffic performance by enabling cooperation
among vehicles in the platoon. Also, within a platoon, various

scenarios are researched like in [67] authors target the catch-
up strategy (i.e., the upstream vehicles accelerate to catch up
with the leading vehicles) and a slow-down strategy (i.e., the
leading vehicle decelerate so that the upstream vehicle can
catch up and platoon with them). [68] studies the behavior
of platoon in the presence of speed limit fluctuations. Lastly,
we mention work [69] where various communication proto-
cols are compared for platooning.

3) TRAFFIC AWARENESS (Right OF WAY)
Among the various messages mentioned in CAV, Cooperative
Awareness Messages (CAMs) are one of the key messages
required for traffic awareness. CAM is a high-frequency
periodic message which is broadcasted by every vehicle to
its neighbors. CAM includes information regarding vehi-
cle kinematic (position, time, direction, and acceleration),
vehicle attributes (like length, width, type, and role in the
platoon), vehicle movement data (like historical path and pre-
dicted path), vehicle type (e.g., emergency, bus, maintenance
vehicle).

CAM message related work include [70] and [71]. In [70],
authors present a real-time multi-vehicle motion plan-
ning (MVMP) algorithm for the emergency vehicle clearance
task. They have broken down this task into two phases. The
first phase involves the emergency vehicle joining a platoon
of CAV. In the second phase, the emergency vehicle is made
the platoon leader by all other vehicles in the platoon by
acting cooperatively. However, in [71], the proposed scheme
involves both the roadside unit (RSU) and the intelligent traf-
fic management system (ITMS) to communicate and devise
a smooth transit path for the emergency vehicle.

[72] deploys cooperative rating and machine learning to
detect reckless driving behaviors in CAVs. This machine
learning is carried out through a cooperative driving perfor-
mance rating (CDPR) mechanism by integrating the compu-
tation capabilities of neighbor vehicles and a cloud server.
The system is able to detect and alert users regarding reckless
driving hence providing traffic awareness and preventing
collisions.

4) POSITIONING AND LOCALIZATION
Vehicle positioning and localization are essential for various
location-based services, including the safety of the vehicle.
This is also an essential part of CAV, where the vehicle is
expected to be able to sense the environment and navigate
the surroundings without any sort of human input. Local-
ization for CAV can either be achieved through real-time
kinematic (RTK) technology. It is based on GPS, which pro-
vides centimeter-level accuracy. But this accuracy drops sig-
nificantly in the presence of structures, hence blocking GPS
satellite transmission. In such localization scenarios, dead
reckoning is used, where GPS signal is fused with onboard
Inertial Measurement Unit which gives the centimeter-level
accuracy when GPS signal is lost for a short duration. [73]
covers some possible localization techniques being consid-
ered in the perspective of CAV. These include GPS, Map
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matching, Cellular based, Dead reckoning, and even Finger-
printing methods. Work presented in [74] reduces the errors
associated infused (dead reckoning) localization scenarios.
Another technique presented in [75] achieves accuracy in
localization using Cooperative Localization (CL) technique,
which is used to improve GPS accuracy. CL is made pos-
sible due to V2X communication, allowing the vehicles
to share location information among themselves. Typically,
GPS information is used along with relative distance or angle
to neighboring vehicles from LiDAR.

III. MULTI-MODAL SENSOR DATA FUSION
An autonomous vehicle can sense its surroundings, and
it can also navigate without any human assistance. Typi-
cally, an autonomous vehicle has five essential components:
computer vision, sensor fusion, localization, path planning,
and control. Through computer vision using camera images,
CAVs figure out the surrounding environment. Sensor fusion
allows the vehicle to process and incorporate data from other
sensors like RADAR and laser to understand the environment
better. Furthermore, CAVs use localization and path planning
algorithms to determine their position and the most suitable
path towards the destination. The final step is the actuation
based on the decisions, i.e., turning the steering wheel, accel-
eration, and application of brakes automatically to follow the
trajectory [76].

A connected vehicle with various onboard sensors needs
to have an accurate and reliable self-localization. RADAR
is the most robust sensing device against changing light
and weather conditions. Werber et al. [77] proposed self-
localization by RADAR landmarks. The landmarks are the
known prominent parts of the road recognizable by the global
pose. This approach is better than the conventional satellite-
based approach [78] which is prone to changing weather
conditions. However, the resolution is a challenge for such
systems.

Several performance parameters are expected in an auto-
motive RADAR apart from the detected range for example,
range/velocity precision, range/angular resolution, and the
angular width [79]. It should have several features that can
make an overall system robust and operative. These features
include automatic cruise control, collision warning, emer-
gency braking, parking slot measurement, pre-crash sensing,
blind-spot detection, and lane change assistance [80], [81].
All of these features demand an interference-free environ-
ment which is also an areawith a lot of research potential [82].

A robust automotive system is safe, environment-
friendly, and economical [83]. There are extremely strin-
gent requirements for reliability and reaction time for a
connected vehicle with collision avoidance and automated
drivingmechanisms [84]. These requirements are not as harsh
for vehicles having conventional automatic cruise control
systems [85]. Typically, such vehicles have a maximum
range of 200 meters with a range resolution of less than
1-meter and canmaintain a velocity resolution of 2500meters
per hour [86]. The advantage of continuous waveform lies

in its low computation time and ability to achieve higher
bandwidth [86], [87] [88], [89].

The applicability of modern automotive vehicles in the
desired form is most dependent on the development of robust
and intelligent sensors that are well-integrated [90]. The inte-
gration of sensors holds a key as different kinds of sensors
are mounted on the same platform. The sensor’s accuracy
and speed in an integrated system according to varying envi-
ronmental conditions are of great significance to the future
development of the automotive industry. The gradual deploy-
ment of 5G mobile networks has also aided the develop-
ment of such platforms. The data collected by each sensor
installed on the vehicle are processed in a perception block
that converts this collected raw data into an understandable
information [91].

RADAR sensors have low precision than cameras in the
human interpretation of the measured data [92]. Moreover,
cameras need training data and a machine learning model
to predict and classify the target of interest [93]. Artificial
Intelligence (AI)-based algorithms can covert the RADAR
sensor data to valuable images, which require fusion of infor-
mation collected by all sensors mounted on the vehicular
platform [94]. In [95], investigators proposed a Conditional
Multi-Generator Generative Adversarial Network that pro-
duces sensors fusion-based high-quality images of detected
targets.

In order to cater to various types of autonomous functions
in vehicles, mapping and tracking of stationary and moving
objects is required. Therefore, tracking and mapping esti-
mates from sensor measurements from RADAR, laser, and
camera are used together with the standard proprioceptive
sensors present in a car [96]. The accuracy and robustness of
the estimates increase by fusing information from different
types of sensors. [97].

Multi-modal sensor fusion assists drivers by providing
timely precautions in a way that the overall experience of
driving gets improved and the probability of accident gets
lower [98]. Also, such a system gives a sense of autonomy
to the electronic system of the vehicle to reduce the accidents
caused by human errors and hence overcoming the associated
hazards [99], [100].

Simultaneous localization and mapping (SLAM) algo-
rithms use fused information to update target maps and keeps
track of object’s location [101], [102]. Over the last few years,
SLAM algorithms are increasingly being used in a variety of
RADAR-based automotive vehicles [103], [104] [105].

Fig. 5 shows different categories of sensor fusion found
applied to autonomous and connected vehicles. These include
classic, centralized, decentralized, hybrid, deep learning-
based, and Kalman filter-based approaches [106]. The
probability-based methods, like Bayesian analysis, statis-
tics, recursive operators, fall into classical sensor fusion
approaches. In the centralized fusion process, raw data is
fused from each sensor and processes the joint information
by centralized processing. In contrast, decentralized fusion
is more suitable for non-orthogonal sensors, but it has high
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FIGURE 5. Categories of Sensor Fusion.

FIGURE 6. Vehicular Sensors.

data volume [107]. The hybrid fusion technique is a mix-
ture of these two techniques. The deep learning-based cate-
gory involves convolution, or recurrent neural network-based
approaches [108]. Kalman filter-based approaches are used
for fine tracking of identified objects [109].

A. SENSOR FUSION
The automation industry is striving to deploy fully equipped
automated vehicles within the next few years. These vehicles
will significantly rely on sensor data for safe navigation on
the roads. In recent times, sensors such as vision, RADAR,
LiDAR, and ultrasonic are most popular. Unlike the assisted
driving case, fully automated driving vehicles have to stay
functional in any situation that demands a lot from the inte-
gration of sensors which constitute an overall system [110].
An autonomous vehicle finds out about its environment is
through its sensors. Sensors must have the option to make
both a cognitive and locational perspective of the surround-
ings so that the vehicle can make choices in real-time.

There are two kinds of sensors utilized in an autonomous
vehicle: exteroceptive and proprioceptive. Exteroceptive sen-
sors are utilized for environment sensing and for separation of
objects, while Proprioceptive sensors are utilized for various
measurement purposes [111]. Fig. 6a and Fig. 6b show the
sensors that fall into each category.

1) INFORMATION FUSION FRAME-WORKS
Sensor uncertainties are created not only by the impre-
cision and noise in measurements, but also by ambigui-
ties and inconsistencies in the environment, as well as
the inability to discern between them. To mitigate these
impacts, data fusion algorithms should be able to take
advantage of duplicate data. Sensor fusion algorithms and
methodologies have been widely researched in recent years
and are now well-established in the literature. However,
due to the trans-disciplinary and diverse nature of algo-
rithms, it is a difficult and time-consuming task. The algo-
rithms are usually divided into two categories: traditional
sensor fusion algorithms and deep learning sensor fusion
algorithms. The traditional algorithms use statistical meth-
ods, probabilistic methods, and hence rely on ideas of
probability.

Data fusion is a heterogeneous field that spans several
disciplines, making it difficult to classify it clearly and pre-
cisely. The following factors can be used to categorise the
approaches and techniques used:

1) Paying attention to the relationships between the data
sources used for input.

2) Based on the categories of input/output data and their
nature.

3) Using the data’s abstraction level as a guide.
4) Based on the various stages of data fusion
5) The architecture type: (a) centralised, (b) decentralised,

or (c) distributed, depending on the architecture type

Information fusion typically addresses three levels of
abstraction: (1) measurements, (2) characteristics, and
(3) decisions. Other possible classifications of data fusion
based on the abstraction levels and for combining sen-
sory input from distinct sensing modalities are high-level
fusion (HLF), low-level fusion (LLF), and mid-level fusion
(MLF) [112]. In low-level fusion, the raw data are directly
provided as an input to the data fusion process, which provide
more accurate data (a lower signal-to-noise ratio) than the
individual sources. In mid-level fusion, the qualities or fea-
tures (shape, texture, and position) are combined to produce
features that can be used for other purposes. Because the
HLF techniques are less difficult than the LLF and MLF
approaches, they are frequently used. HLF, on the other hand,
provides insufficient information because classifications with
a lower confidence value are disregarded if there are multiple
overlapping obstacles [113].
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FIGURE 7. Information Fusion Frameworks.

FIGURE 8. RADAR Chart for comparison of various sensors.

There are a variety of different frame-works of data fusion
having its own characteristics, capabilities and limitations.
The block diagram in Fig. 7 shows each of those frame-works
as used in connected vehicles.

a: PROBABILISTIC FRAMEWORK
The probability density function is used in probabilistic
fusion approaches to express sensor data uncertainty. We can
arrive at a posterior probability by combining prior and obser-
vational data for the problem of decision-making or estima-
tion. In probabilistic framework, usually Bayesian approach
is used [114]. This is however considered incapable of
addressing other data imperfections.

b: EVIDENTIAL FRAMEWORK
In evidential framework, the probability mass is used to
further characterize data using belief and plausibility, and
the Dempsters’ combination rule is used to fuse the data.
Although it allows for the fusion of ambiguous and uncertain
data, it does not address other aspects of data imprecision,
therefore is ineffective when combining significantly contra-
dicting data [115].

c: FUZZY BASED FRAMEWORK
Another theoretical reasoning technique for dealing with
imperfect data is fuzzy set theory. It introduces a new concept

called partial set membership, which allows for imperfect
reasoning. In fuzzy reasoning based framework, intuitive
approach is used to deal with ambiguous data. It allows for the
processing of partial data, which is typical in under-informed
environments and therefore in the fusion community, it is not
widely used or well understood [116].

d: ROUGH SET THEORETIC BASED FRAMEWORK
In rough set theoretic based approach, exact approximation
is used with bounds adjusted with classical set theory oper-
ators to deal with ambiguous data. It does not necessitate
any preliminary or supplementary information; nevertheless,
it does necessitate an adequate level of data granularity [117].
Rough set theory has been infrequently applied to data fusion
challenges since it is a relatively new theory that is not widely
known within the fusion community.

e: HYBRIDIZATION BASED FRAMEWORK
The primary principle behind hybrid fusion algorithms is that
distinct fusion methods, such as fuzzy reasoning, evidential,
and probabilistic fusion should not compete because they
approach data fusion from separate (but potentially comple-
mentary) perspectives. The hybridization based framework
aims to provide a more complete treatment of faulty data
and is deployed in a complementary rather than competitive
manner. This comes with an extra computational cost due to
ad hoc generalization of one fusion framework to encompass
another [118].

Sensor Fusion includes the fusion of different sensors
information to enhance vehicles perception, thereby creating
a dependable system [119]. The vehicle is commonly fur-
nished with a suite of sensors that give explicit data about its
environmental factors. One thing common to all these sensors
is their involvement in perceiving the same scenario. Hence,
by combining the acquired information from these sensors,
an accurate output is attained.

Multiple sensors having different technologies must be
combined in order to add diversity and reliability to an
overall system [120]. Individual sensors have their limita-
tions for providing necessary information about the vehicle
surroundings for performing safety functions. Fig. 8 shows
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FIGURE 9. Sensor Fusion and Tracking Snapshot-A.

FIGURE 10. Sensor Fusion and Tracking Snapshot-B.

a RADAR-chart (also known as spider chart) for various
onboard sensors that are used in connected vehicles [121].
The performance metric of each sensor is rated from one to
five, where five shows the best capability corresponding to
each performance metric.

A complete model of the environment can be generated
with adequate confidence by combining the input from var-
ious sensors for enabling Advance driver assistance sys-
tem(ADAS) features or automated driving functions. It also
overcomes the weaknesses of the individual sensors and out-
puts a robust system [122].
Forward collision warning (FCW) is a mechanism that pro-
vides accurate and reliable information as warnings to the
driver before an expected collision. For this, vision and
RADAR sensors are installed in the vehicles. In order to
increase the probability of accurate warnings and mini-
mize the probability of false warnings, sensor fusion is
required [123]. The outputs of the various sensors present
in the CAVs are recorded. The essential sensors in CAV are
a) Vision sensors: which provide lists of observed objects
with their classification and information about lane bound-
aries, b) RADAR sensor: which operates in medium and
long-rangemodes; and provided lists of unclassified observed
objects, c) Inertial Measurement Unit sensor, that reports
the speed and turn-rate of the vehicle and d) video cam-
era, which records a video clip of the scene in front
of the car.

To provide a forward-collision warning, multi-modal sen-
sor fusion gets a list of tracks, i.e., estimated positions
and velocities of the objects in front of the car, issuing
warnings based on the tracks and FCW criteria. With the
emerging interest in autonomous vehicles, several software
algorithms have been developed for performance investi-
gations. For engineers and scientists working in academia,
MATLAB provides the most convenient solution. Fig. 9 and
Fig. 10 show two snapshots of sensor fusion based col-
lision warning system using MATLAB application. These
MATLAB tools record the video and identify the correspond-
ing type of vehicle and pedestrians in its vicinity. It uses
a phased array, computer vision, and navigation toolboxes
of MATLAB.

B. FREQUENCY-MODULATED CONTINUOUS
WAVE (FMCW) RADARs IN ADAS
Advanced driver assistance system (ADAS) is defined as a
combination of intelligent components such as object detec-
tion and tracking systems used to protect drivers and road
users. The significance of ADAS is to measure the distance
between the vehicle and the detected object. It helps predict
object location in the lane, avoid accidents, and improves road
safety. Traditionally, the automotive industry used infrared
ranging and LiDAR. In the modern-day world, a wide range
of RADARs are used in cars that assist a driver for a high-
quality driving experience. Research and development for
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fully autonomous vehicles are on the rise in the automotive
sector.

Most of the sensors can performwell under normal weather
conditions [124], however when it comes to hostile weather
conditions, it is the RADAR that provides a robust solution
for detection [125]. RADAR sensors also have some limi-
tations regarding the classification process as an automotive
RADAR cannot identify and classify a signboard. However,
LiDARs are good at mapping its vicinity [126], though this
solution also has drawbacks that primarily include LiDAR
performance under low contrasts and difficult angles [127].
For such cases, AI-based features turn out to be most use-
ful [128], [129] [130].

Owing to cheap FMCW RADARs available in the market
and the competition between various vendors, the cost of
automotive RADARs has considerably reduced over the last
few years [131]. A typical FMCW RADAR costs around
50-220 US dollars depending upon the application in terms
of range as it also dictates power and hence the involved
electronic circuitry [132] [133]. On the other hand, LiDAR
sensors are a little expensive than RADAR sensors. However,
their price is also on the fall owing to the growing interest of
the automotive industry [134].

The FMCW RADARs have gained huge attention over the
last decade in the automotive sector. They are not only very
cheap but also offer much better resolution as compared to
other RADARs. Moreover, the modulation is simpler, and
it offers high average power [135]. FMCW RADARs can
be operated at much higher frequencies without having the
related tradeoffs that are encountered in traditional Doppler
RADARs [136]. Therefore, research and development in this
sector are in high demand throughout the globe. The ease
of designing has also caught the attention of researchers in
academia that can make use of software-defined systems to
prototype for the industry [137]. In [138], a low-cost 24 GHz
FMCW RADAR is designed with a single transmitter and
receiver antenna array. A Gunn Voltage Controlled Oscilla-
tor (VCO) and the MMIC (a driver amplifier) are combined
to act as a transmitter for the FMCW RADAR. The Rat race,
which is the hybrid mixer acts as a receiver for the FMCW
RADAR. Another FMCWRADAR system with an operating
frequency of 24GHz is designed and implemented by using
FPGA and the Digital Signal Processing (DSP) unit [139].
A different method is proposed by [140], in which Mul-
tiple Input and Multiple Output (MIMO) FMCW RADAR
is developed by using the combined frequency-shift keying
linear FMCW (FSK-LFMCW) waveforms. This RADAR
system is very suitable for providing the high angular resolu-
tion and for detecting multiple targets with the low sampling
rate of the FMCW RADAR [141]. The proposed method for
FMCWRADAR has some limitations with regards to MIMO
systems as each signal acts as a noise for all others transmitted
and received signals which caused the low signal to noise
ratio (SNR), and that is a fundamental issue in these FMCW
RADAR systems [142].

C. CHALLENGES AND ISSUES IN SENSOR FUSION
Multisensory data fusion is a technology that allows you
to combine data from multiple sources to create a cohe-
sive image. Data fusion systems are currently commonly
employed in a variety of fields, including sensor networks,
robotics, video and image processing, and connected vehicu-
lar systems [143]. As low-level fusion becomes increasingly
well-established and mature, research on high-level fusion
tasks is becoming more prominent. As connected vehicles
are equipped with a lot of sensors of different types, a sensor
fusion based approach is of immense importance. The data
collected by sensors is always subject to some degree of
imprecision and uncertainty in themeasurements. Data fusion
techniques should be able to properly articulate such flaws
and leverage data redundancy to mitigate their impact. There
are a variety of challenges that make data fusion difficult.
The majority of these challenges are caused by the data to
be fused, the imperfection and diversity of sensor technolo-
gies, and the nature of the application environment. While
several of these issues have been identified and extensively
researched, no single data fusion technique is capable of
addressing all of them. The literature’s variousmethodologies
focus on a subset of these challenges to tackle, which is
dictated by the application at hand [92].

There are several challenges for vehicle navigation sys-
tems, such as the uncertainties posed by the system and mea-
surements models. Recent developments in vehicular sensors
and their fusion involving artificial intelligence provide a new
potential to tackle these challenges. By using AI and big data
processing, vehicle navigation provides more accurate posi-
tioning results and helps the researchers resolve the problem
of performance enhancement in several scenarios.
• Data Anomaly and Perception Challenge:
In order to achieve high angular resolution, multiple
receivers are employed in modern-day RADARs. This is
also required for accurate tracking and mapping of the
vehicles in close proximity. This also requires careful
calibration of various sensors. In extrinsic calibration,
the camera location in a three-dimensional scene is spec-
ified, which maps the object’s coordinates to the camera
coordinates. In intrinsic calibration, for accurate range,
velocity, and angle of arrival, the parameters (focal
length and the optical center of the lens) are specified.
RADAR systems play a vital role in sensing for
autonomous vehicles and help in target detection, veloc-
ity precision, tracking precision, and parameter esti-
mation. In Linear FCMW RADAR, signal linearity is
the most critical parameter. Four individual sensors are
mounted behind the front bumper instead of a single
RADAR. The azimuth angle should be significant, and
there should be a small range to avoid collision and pre-
crash warning. Time synchronization between individ-
ual sensors is needed to avoid interference situations
between RADAR sensors. Four individual chirps pro-
vide sufficient redundancy in multi-target and extended
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target control to suppress the ghost target [144]. Differ-
ent sensors in an autonomous car are shown in Fig. 11.

FIGURE 11. Different sensors in a autonomous Car [145].

• Interference and Security Issues:
Estimating the amplitude and frequency of the interfer-
ence signal to recover the original signal as well as the
interference elimination with high computational com-
plexity is very important. In [146], a target is detected
without defining an adaptive threshold. The recurrent
neural network is implied with the gated recurrent unit
for processing sequence data to remove the interference.
Most RADARs operate in the same frequency band in
the case of multiple RADAR sensors, thereby reducing
the risk of interference which can become very problem-
atic. [147] analyses automotive RADAR interference
and propose counter-interference techniques.
RADAR systems are considered as key components for
today’s ADAS for features like adaptive cruise control
and emergency brake assistance. It has been shown
in [148] that interference between different FMCW
RADAR systems leads to an increased noise floor. This
can lead to poor detection efficiency, especially those
with a small RADAR cross-section (RCS) like pedes-
trians. In [149], a novel concept is proposed to miti-
gate interference in FMCW RADAR transceivers using
digital signal processing. Multiple sequences of FMCW
chirps in the frequency domain are taken into account to
cancel the interference effect. The object information in
the RADAR image is retained by suppressing the noise
and the associated interference. In [150], a prototype of
the close vehicle warning system (CVWS) for bicyclists
is introduced. For cost-effectiveness, a cell phone is used
as a Human User Interface (HID). Bluetooth protocol is
used for communication between a RADAR system and
a mobile phone. The RADAR works at a frequency of
24.1 GHz with 180 MHz bandwidth, and it is intended
to detect cars behind a bicyclist.

• Signal-to-Image Encoding and internet of things (IoT)
based Sensor Fusion:
Most of the sensors can perform well under normal
weather conditions [124], however in hostile weather

conditions; it is the RADAR that provides a robust solu-
tion concerning detection [125]. RADAR sensors also
have some limitations when regarding the classification
process as it is difficult for an automotive RADAR to
identify and classify small objects like signboards. For
such tasks, other sensors and AI-based features process-
ing turn out to be most useful [128], [129] [130].
Applications of IoT as a whole can be seen every-
where in the modern-day world. It relies on a range of
IoT devices that gives out a massive amount of digital
information. It also helps the system make agile, per-
ceptive, and reliable decisions quickly and efficiently.
There are also hazards associated with deploying so
many IoT devices that make an overall system vulnera-
ble to cyber and other attacks. Hackers are developing
various IoT-focused malware that can inject false or
compromised information. Blockchain is used to facil-
itate secure sharing of Internet of Energy (IoE) datasets;
however it has associated disadvantages of complex-
ity and energy consumption [151]. Various signal to
image encoding approaches are being developed e.g.
in [152]–[155]. The neural network’s edge in image and
data processing has paved the way towards adaption to
additional sensor and sensor fusion. By including multi-
modal sensor data in the sensor fusion, the research
community aims to obtain more reliable results for the
various tasks involved in environmental perception for
CAVs [152].
Several open problems are challenging to scientists and
researchers working in the area of connected vehicles.
The investigations regarding the robustness of neural
fusion techniques against spatial and temporal miscal-
ibration of the sensors needs to be gauged. The applica-
tion of fusion to 3D object detection is another direction
that needs further in-depth analysis. In addition to this,
removal of clutter from the fused data is an area that
would require multi-dimensional research and develop-
ment hence enabling an increase in the performance of
connected autonomous vehicles.
The increase in the complexity is one of the most crit-
ical issues that is faced during the fusion process of a
large number of sensors as it compromises the smooth
integration of multiple data sets into a consistent, accu-
rate, and useful representation – that is, to perform data
fusion [156]. Fig. 12 shows the block diagram for a
connected advanced driver-assisted sensor fusion sys-
tem where data from sensors can be seen as fused in the
sensor fusion block, which also takes input via digital
maps and communication protocols. Machine learning-
based algorithms are applied to this fused data, which
eventually gives control to an autonomous system.

D. DIGITAL SIGNAL PROCESSING OF SENSOR DATA
Over the last two decades, many standards with regards
to frequency allocation have been developed by the reg-
ulatory bodies dealing with the automotive sector [157].

VOLUME 10, 2022 14657



F. A. Butt et al.: On Integration of Enabling Wireless Technologies and Sensor Fusion for Next-Generation CAV

FIGURE 12. Connected ADAS Sensor Fusion.

TABLE 5. Automotive RADARs frequency band.

The frequency range of 76-77 GHz is regulated for the auto-
motive RADARs, whereas 24 GHz is dedicated for short-
range ultra-wideband RADARs [158]. In the last few years,
cars with short-range sensors typically operated in the fre-
quency range of 77-81 GHz. Moreover, in the last few years,
dual-use of this frequency band has been considered for joint
communication and RADAR purposes [159]. Research and
development in the area of AI-aided communication-based
automotive RADARs have been on a high over the last few
years for different target ranges [160]. Table 5 shows the
RADAR types and the corresponding frequency ranges, and
the band. Fig. 13 shows different car sensors at different
positions in a connected vehicle.

1) RADAR SIGNAL PROCESSING
In terms of waveforms, typically a pulsed RADAR is used
for a wide range of applications. Most high-powered mil-
itary RADARs are operated with different pulse repetition
frequencies which are dependent on various other factors.
A continuous-wave Doppler RADAR is used mostly on high-
ways for speed detection, but such a RADAR cannot find
the range as it does not have a reference to which a distance
can be calculated. However, with the emergence of FMCW
RADARs that can measure speed and range at a much lower
cost, frequency modulated continuous wave RADARs are
being employed in different applications, including military
and commercial ones [161].

Short-range RADARs are best suited for assisted car park-
ing and edge detections where typically the RADAR target is
at a distance of less than 2 meters [162]. Mid-range RADARs
are typically employed for ranges of less than 30 meters,

TABLE 6. Approximate Coverage of different automotive RADAR sensors.

whereas long-range RADARs usually operate in the domain
of 30-150 meters [80]. Fig. 14 shows the classification of
mm-Wave automotive RADARs in terms of range and appli-
cations. Table 6 shows the approximate coverage of these
sensors in terms of range and azimuth angle. Following are
a few of the RADAR-related parameters that are specifically
considered for connected vehicles.
• Frequency Estimation:
High frequency resolution estimation in automotive
RADARs have been described in [163] - [164]. Conven-
tional automotive RADAR processing has been shown
and pointed out using cases in which it is bound to
fail. A flexible framework is presented for computa-
tionally efficient high-resolution frequency estimation
as an enhancement to conventional RADAR processing.
Real data from a series production automotive RADAR
sensor have been presented to show the effectiveness of
the presented approaches.

• Direction of Arrival and CFAR (Constant False Alarm
Rate): Parameter estimation strategy has been pro-
posed in [136] for various information MIMO vehicle
RADARs that comprises of two phases. The primary
stage is a three-dimensional CFAR discovery method
followed by a subsequent stage is an ESPRIT (Esti-
mation of Signal Parameters via Rational Invariance)-
based direction of arrival (DOA) estimation strategy that
embraces time–recurrence and performs DOA estima-
tion. It offers better performance than traditional MIMO
RADARs [136].
Normally CFAR and Neyman-Pearson are com-
pared in literature for various reasons [165]. In the
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FIGURE 13. Range of different sensors connected to a vehicle.

FIGURE 14. Classification of mm-Wave Automotive RADARs in terms of Range and Applications.

Neyman-Pearson framework, the probability of detec-
tion is maximized subject to a constraint. As a constraint,
the false-alarm probability should not exceed a specified
threshold. The noise variance is estimated that effects the
false-alarm probability. If the noise variance is altered,
the threshold to maintain a constant false-alarm rate is
adjusted. Adaptive procedures are implemented using
constant false-alarm rate detectors.

• RCS Estimation and Guardrail RADAR-Returns:
Road guardrails present a distinctive corner case chal-
lenge to car RADAR sensors because of their huge RCS
that can prompt bogus targets alarms. In [166], investi-
gators show how guardrails canmuddle essential targets,
such as people on foot and close by fixed vehicles.
An epic guardrail framework for high-person on-foot
thickness zones is proposed. Further RCS decrease of
this plan is accomplished through a proposed diffrac-
tion alleviation strategy. Reenactments utilizing this pro-
posed guardrail framework foresee more than a 25-dB
decrease in guardrail RCS. Results from this paper show
that guardrails with low RCS improve the visibility of
adjacent stationary targets, and thus have the potential

to reduce accidents and possibly save lives.
In [167], authors introduce a method of calculating the
RCS of any arbitrary complex target at near field range
using computational electromagnetic methods.

2) LiDAR AND CAMERA SIGNAL PROCESSING
All the strict requirements for a robust operation of an
autonomous vehicle cannot be met using a single sensor.
A single sensor fails to produce a detailed picture of the
vicinity, especially in adverse weather conditions. In most
cases, more than one sensor is required, and that scenario
requires integration. Although the study of LiDARs in con-
nected vehicles has been on a rise over the past decade due
to features like 3D mapping of surroundings, however, it still
needs to overcome many open challenges like greater cost,
size, and weight. Apart from that, computational cost and
latency are the other factors that need serious attention.

Camera-based systems are pivotal in the safety aspect of
advanced driver assistance systems as they are deployed in
park assist, front-back, and viewing of the surroundings.
There is the involvement of image signal processing on raw
data in such systems. Image signal processing applies a series
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of algorithms on raw images to provide an understandable
view to the user [168].

A mathematical function approximates a waveform with
parameters that translates into variables of interest. In [169],
altimeter position is approximated by the mean of a Gaussian
distribution law which is widely used in the processing of
the LiDAR waveforms. Moreover, heuristics methods have
also been used like in [170], but these methods do not give
satisfactory results owing to mixed peak problems. In [171],
statistical method is used in frequency-modulated multifunc-
tion LiDAR for signal processing. In addition, deconvolution
methods are also used for high precision in LiDAR signal
processing [172].

In all of the signal processing mechanisms, disorder and
sparseness of the LiDAR data limit the accuracy of the 3d
perception algorithms [173]. This requires upsampling of the
sparse and irregular data by depth completion. Here, amethod
based on LiDAR-camera fusion turns out to be extremely
useful as it produces high-resolution depth images [174].

There is a lot of room available for research and develop-
ment in the area of LiDAR-camera fusion, especially tech-
niques and algorithms for the transformation of 2D features
to 3D space are being explored [175]. The amalgamation of
deep learning algorithms in traditional LiDAR feature extrac-
tion is being studied greatly [176]. Optimization of features
extracted from fused data is also a hot topic of research
for scientists and engineers working in this domain [177].
Adding geometric information to fused data is another open
problem that needs attention.

3) ULTRASONIC, GPS, GNSS SENSOR SIGNAL PROCESSING
Ultrasound sensors are the most simple and most immedi-
ate approach to the problem of obstacle detection, which
is a fundamental aspect of any autonomous vehicle. The
corresponding signal processing is not easy but is also well
integrated into the system.

Inertial navigation systems provide a high rate and accurate
measurements for the short term. However, inertial sensors
errors tend to accumulate for longer terms due to the intrinsic
integration in the navigation algorithm. On the other hand,
global navigation satellite systems need a direct line of sight
of at least four satellites, which is not always possible due
to signal blockages. GNSS prevents the inertial navigation
solution from drifting, whereas the inertial navigation sys-
tem provides a non-stop navigational solution. In case of
inefficient integration, GNSS navigation solutions and INS
mechanization operate independently and provide separate
navigation solutions. For improvement, the data from GNSS
is fed to an optimal estimator, usually, a Kalman Filter
(KF) [178]. In the case of accelerometer and gyroscope
errors, the relative dynamics between spoofed GNSS solu-
tions and that of INS are not significant for a vehicle during
a typically short update interval leading to a non-detected
spoofing attack [179].

Fig. 15 summarizes the perception of multiple sensors in
the context of autonomous vehicles. In perception, the vehicle

utilizes a group of onboard sensors to detect, understand, and
interpret the environment to enable a connected operation of
autonomous vehicles. It shows the types of targets expected
against each sensor and the corresponding type of classifica-
tion. All of this is fused to track moving objects, and this data
is fed to the vehicle state block as feedback.

IV. EMERGING TRENDS AND FUTURE DIRECTIONS
In this section, we outline some of the crucial and challenging
issues facing CAV for the widespread adoption of the tech-
nology. In addition, we also propose some of the futuristic
research problems and possible directions.

A. EMERGING TRENDS IN COMMUNICATION AND
NETWORKING DOMAIN
Recent advances in the communication and networking
domain for CAV include vehicular fog computing nodes, edge
intelligence, Internet of vehicles with social impact (SIoV),
integration of 6G in vehicular networks, and unmanned aerial
vehicles.

1) Vehicular Fog Nodes:
5G and beyond will realize ultra-dense deployment
of users and devices requiring massive computations
as well as connectivity. [180] addresses the compu-
tational needs of 5G networks by proposing the use
of mobile vehicles as fog nodes to perform tasks.
These computational tasks are offloaded from mobile
users to connected vehicles. From latency and com-
putation resources, prospective vehicular fog nodes
become the preferred choice. However, several issues
still need to be addressed, such as data packet relay,
load balancing, and so on. The authors in [181] have
also presented a novel fog-based architecture for real-
time control application in CAV. A use case discussed
in this work is connected cruise control through the
use of autonomous cars as Fog nodes. [180] also
introduces the concept of Vehicular Fog Communi-
cation (VFC) complementing fog nodes. This work
also discusses key challenges involved in creating and
sustaining VFC, such as the data packet relay, latency
optimization, and load balancing(decision making for
task allocation).

2) Edge Intelligence in CAV:
Cooperative intelligencemergedwithmachine learning
has delivered a new research direction coined as the
Edge Intelligence, which is discussed in this section.
Edge intelligence (EI), a merger of artificial intelli-
gence in edge computing devices, is an interesting
research dimension for CAV. [182] has discussed EI
design challenges and solutions for CAV networks.
EI can help in object detection, intelligent decisions,
and also in traffic flow prediction. EI is significantly
different from conventional cloud computing-based
methods since EI offloads the vehicular computa-
tion hence minimizing the vehicle-based computation
delays. EI allows CAVs to upload sensed data to the
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FIGURE 15. Multiple Sensors Perception.

edge server, where cloud computation is carried out on
the sensed data. One computation has been carried out
by the cloud the CAVs may obtain the inferring results
within a limited time. This work presents a two-tier
framework (AV tier and EI tier) to realize EI in CAV.

3) Internet of Vehicles and Social Internet of Vehicles:
As more and more data sensing is carried out by
CAVs by increasingly being connected to various (IoT)
devices, the conventional VANET is evolving into the
Internet of vehicles. Some of the works related to
IoV include [183] and [2]. In [2] authors relate that
IoV as being composed of three fundamental compo-
nents. These are classified as the inter-vehicular net-
work, intra-vehicular network, and vehicular mobile
Internet. IoV falls in the paradigm where vehicles
are connected to the Internet at the backend. This
enables vehicles to provide information for differ-
ent services ranging from traffic management to road
safety or even infotainment. Some of the protocols
being currently used for IoV include standards such
as IEEE 802.11p, Directional Medium Access Con-
trol (DMAC), Vehicular Cooperative Media Access
Control (VC-MAC), Ad hoc On-Demand Distance
Vector (AODV), Dynamic Source Routing, General
Packet Radio Services (GPRS). These have been
covered earlier in various sections of this paper
as well.

Following IoV [184] proposes the social IoV (SIoV)
architecture which leverages the same existing
VANETs technologies such as V2V, V2I, and IoV
communications. The authors in this paper present
a vehicular social network platform following cyber-
physical architecture. The cyber-physical SIoV system
utilizes social relationships among physical compo-
nents to support different types of communications
and saves the information (e.g., safety, efficiency, and
infotainment messages) as a social graph. This social
graph is shared in various layers of communications,
and it can offer near real-time or offline use cases for
intelligent transport systems (ITS).

4) 6G for CAV and CAV for 6G:
Authors in [185] explored two complementary direc-
tions of future research in CAV. These are 6G for CAVs
and CAVs for 6G. Discussions have shown how vari-
ous 6G technologies like TeraHertz (THz) or cell-less
communications can be utilized for CAV in its time-
critical communication. Authors have also illustrated
how CAVs can be used for more effective and effi-
cient deployment and operation of 6G systems. CAV
can help the 6G network in the extension of commu-
nication infrastructure, mobile edge computing, and
network performance monitoring. The intersection of
CAV systems and 6G networks will bring significant
innovations and momentum to both areas. [182] also
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presents in detail the envisioned role of edge computing
in a 6G network. The authors highlight the application
scenarios associated with such intelligent edge comput-
ing before focusing on the technical challenges.

5) Unmanned Aerial Vehicles:
Unmanned Aerial Vehicles (UAVs) are another key
ingredient in realizing intelligent transportation sys-
tems for connected autonomous vehicles. Some of the
applications that can be enabled by UAVs include
incident or accident reporters, dynamic roadside units
(RSUs), movable speed cameras, flying trackers for
policing, and flying dynamic traffic signals [186].
These applications sometimes require multiple UAVs
to fly together, collaborate, and communicate among
themselves and with ground stations/vehicles to exe-
cute a specific task.
Another key application for autonomous UAVs
is for logistical purposes [187]. [188] presents a
UAV-based infrastructure to replace the traditional
cloud-computing-based infrastructure for computing
and storage facilities to be available near CAVs.Owing
to the widespread fame of unmanned aerial vehicles
(UAVs), tremendous amounts of information will be
shared between edge devices and UAVs. In this sce-
nario, traffic monitoring using UAVs and edge com-
puting devices is supposed to become an essential
part of the next generation of intelligent transportation
systems.

6) Visible Light Communication:
With the scarcity of free RF bandwidth, a new
way of communication known as Visible Light
Communication (VLC), which uses visible light
(380-780 nm) as an information carrier and can
provide 1000 times more bandwidth than RF commu-
nication, is being pursued vehicular communication.
Light-Emitting Diodes (LED) are deployed to trans-
mit messages at frequencies ranging from 430 THz
to 790 THz [210]. In VLC technology, the data can
be modulated to the instantaneous power of light
by On-Off-Keying (OOK) and Variable Pulse Posi-
tion Modulation (VPPM). At the receiver, photode-
tectors or cameras are used to detect data. The IEEE
802.15.7 standard defines the PHY layer and the MAC
layer for short-range wireless optical communication.
Some works highlighting the trend of implementing
VLC for vehicular communication are [189]–[191]

B. EMERGING TRENDS FOR CAV SENSORS AND SENSOR
FUSION
Following are a few of the points extracted from the section
on multi-modal sensors and data fusion.

1) Enhanced Capabilities of Sensors:
There are a number of performance parameters that are
expected in an automotive RADAR like range/velocity
precision, range/angular resolution, and the angular

width [79]. Moreover, as mentioned in the paper,
it should have a number of features like automatic
cruise control, collision warning, emergency braking,
parking slot measurement, pre-crash sensing, blind-
spot detection, and lane change assistance, etc., and this
list keeps on increasing with time. All of these features
demand an interference-free environment which is an
area with a lot of research potential. The automotive
industry assured a fully autonomous car that can drive
itself without any assistance. These vehicles will need
powerful RADAR sensors that can provide accurate
data about the surrounding of the vehicle. This area
has a lot of potential for embedded systems engineers
working in the automotive industry. Self-localization
is an area that has a lot of research potential that can
be exploited by scientists and researchers working in
this domain. As mentioned in the paper, the landmarks
offer a better approach than the conventional satellite-
based approach, which is prone to changing weather
conditions.

2) Integration of Sensors:
The integration of sensors holds a key as there are
different kinds of sensors mounted on the same plat-
form. The study of the realization of sensors’ accuracy
and speed in an integrated system according to varying
environmental conditions is of great significance to the
future development of the automotive industry. Inter-
connection of automotive vehicles should be well inte-
grated with the existing mobile network in its locality.
The emergence of 6G communication and the gradual
deployment of 5G mobile networks has created a lot of
room for research in this domain. Integrated automotive
sensors need a computing platform that can ensure real-
time processing of the received signals. The increase
in complexity is one of the most important issues that
is faced during the fusion process of a large number
of sensors as it compromises the smooth integration of
multiple data sets into a consistent, accurate, and use-
ful representation. This is an area with a considerable
research gap.
Hybrid techniques for data fusion are being con-
sidered for efficient and robust operation for fully
autonomous connected vehicles. Time synchroniza-
tion between individual sensors to avoid interference
is another area of research for communication engi-
neers working in this domain. Extensive research is
required to design layers to process the RADAR data
prior to the data fusion in order to remove the filter
in the RADAR data. The study of the robustness of
neural fusion approaches against spatial and temporal
miscalibration of the sensors needs to be evaluated.
The application of fusion to 3D object detection is
another direction that needs further in-depth analy-
sis. In addition to this, removal of clutter from the
fused data is an area that would require multidimen-
sional research and development hence enabling an
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increase in the performance of connected autonomous
vehicles.

3) Quantum Sensing:
Research and development in the area of AI-enabled
communication-based automotive RADARs have been
on a high over the last few years for different tar-
get ranges. Quantum sensing is an emerging area that
promises to improve performance and transform nav-
igation and positioning capabilities for autonomous
vehicles that will be driven by laws of quantum
physics. The sensors require nano-engineered mechan-
ical devices fabricated on a silicon chip. Although
quantum sensing frameworks are costly and complex,
however another generation of smaller, more affordable
sensors should open up new applications. The signals
utilized by quantum navigation frameworks are secure
as they are difficult to get replicated for malicious
activities as they depend on key properties of nature.

4) Re-configurable Intelligent Surfaces:
Autonomous vehicles produce a large amount of data
that is also required to be exchanged for safety
and security-based applications. Some of the criti-
cal issues faced by Vehicular networks, such as cov-
erage and connectivity issues, can be addressed by
using re-configurable intelligent surfaces-based solu-
tions because of their capabilities of controlling waves
and programming the environment. In order to resolve
the increasing demand for emerging applications in the
vehicular communication domain, new state-of-the-art
technology is needed.

V. CONCLUSION
The field of vehicular communication and intelligent trans-
portation systems has been progressing fast since the last
decade. This article provides a comprehensive review of con-
nected and autonomous vehicles in the context of vehicular
communication, networking, signal processing and multi-
modal sensor fusion. Research issues and challenges for con-
nected and autonomous vehicles of the near future are also
highlighted, and guidelines for future research are proposed
with high priority use-case scenarios. This survey covers the
recent and future trends in these sub-domains. Moreover,
emerging applications connected to these areas have also
been highlighted. The cutting-edge communication and net-
working technologies and potential bottlenecks for use case
scenarios are also presented. Hence, a detailed perspective on
CAVs are jointly reviewed from a communication and sensor
fusion perspective in this article.
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