
Received December 28, 2021, accepted January 12, 2022, date of publication January 25, 2022, date of current version February 3, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3145988

Configurable Mixed-Radix Number
Theoretic Transform Architecture
for Lattice-Based Cryptography
PHAP DUONG-NGOC , (Member, IEEE), AND HANHO LEE , (Senior Member, IEEE)
Department of Information and Communication Engineering, Inha University, Incheon 22212, South Korea

Corresponding author: Hanho Lee (hhlee@inha.ac.kr)

This work was supported by the Ministry of Science and ICT (MSIT) under the Information Technology Research Center (ITRC) support
program (IITP-2021-0-02052) supervised by the Institute for Information & Communications Technology Planning & Evaluation (IITP),
in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1011232),
and in part by the IITP grant funded by the Korea government (MSIT) (No. 20210007790012003).

ABSTRACT Lattice-based cryptography continues to dominate in the second-round finalists of the National
Institute of Standards and Technology post-quantum cryptography standardization process. Computational
efficiency is primarily considered to evaluate promising candidates for final round selection. In lattice-based
cryptosystems, polynomial multiplication is the most expensive computation and critical to improve the per-
formance. This paper proposes an efficient number theoretic transform (NTT) architecture to accelerate the
polynomial multiplication. The proposed design applies mixed-radix multi-path delay feedback architecture
and flexibly adopts various polynomial sizes. Configurable NTT design is realized to perform forward and
inverse NTT computations on a unified hardware, which is then used to develop an efficient polynomial
multiplier. The proposed architectures were successfully accelerated on several Xilinx FPGA platforms to
directly compare with state-of-the-art works. The implementation results show that the proposed NTT archi-
tectures have comparable area-time product and demonstrate 1.7∼17× performance improvement, and the
proposed polynomial multipliers achieve higher performance compared with previous works. Experimental
results confirmed the proposed design’s applicability for high-speed large-scale data cryptoprocessors.

INDEX TERMS Lattice-based cryptography, number theoretic transform, mixed-radix, multi-path delay
feedback, post-quantum cryptography.

I. INTRODUCTION
In the explosive era of internet-of-things (IoT) and rapid
development of next generation networks, post-quantum
cryptography (PQC) has attracted increasing interest for
securing data privacy against potential quantum attacks.
The National Institute of Standards and Technology (NIST)
second-round report [1] showed that lattice-based cryp-
tography (LBC) schemes have become promising candi-
dates for future standardization. These schemes include
public-key encryption (PKE) protocols, key-establishment
mechanisms (KEM), and digital signatures with strong
theoretical security guarantees, such as CRYSTALS-Kyber
(shortly Kyber) [2], Saber [3], CRYSTALS-Dilithium [4],
and NewHope [5]. Polynomial multiplication is the critical
bottleneck in LBC systems. Naïve polynomial multiplication

The associate editor coordinating the review of this manuscript and

approving it for publication was Weizhi Meng .

in n-point cyclotomic rings is expensive with time complexity
of O(n2) operations. Fortunately, the number theoretic trans-
form (NTT) is a strong tool with efficient memory utilization
that performs the polynomial multiplication in O(n log n)
operations. Thus, designing an efficient NTT architecture has
top priority to accelerate cryptoprocessors, particularly for
multi-connected cryptosystems and large-scale data encrypt-
ing applications, e.g., IoT [6], biometrics [7], and video-based
facial images [8].

There are many approaches to design NTT architectures
based on the trade-off between throughput rate and hardware
complexity. Conventional methods construct a mutual but-
terfly circuit and iteratively execute NTT stages based on a
memory unit. In each stage, groups of coefficients are fetched
from the memory unit, transformed, and written back to the
memory in appropriate orders. However, the memory-based
NTT architecture is constrained by the cost of memory access
operations. The memory access scheme changes from stage

12732 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0311-9387
https://orcid.org/0000-0001-8815-1927
https://orcid.org/0000-0003-4384-5786


P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

to stage and the memory read/write operations are complex
due to data-dependency between adjacent NTT stages.

Several previous studies have investigated strategies to
reduce the access pattern complexity of memory-based
approaches. Xing and Li proposed an NTT architecture
with four multipurpose butterfly units (BUs) and mem-
ory ping-pong strategy to settle the non in-place writ-
ing issue between adjacent stages [9]. The ping-pong
technique helped simplify the memory access operations
but doubling the memory size. Zhang et al. presented a
low-complexity compact NTT

/
INTT architecture for highly

efficient NewHope-NIST on an FPGA device [10]. Their
NTT architecture’s outstanding strength came from the
address conflict-free multi-bank memory access scheme,
which was efficient with a small number of parallel radix-2
BUs. Yaman et al. subsequently proposed three differ-
ent hardware architectures (lightweight, balanced, high-
performance) for polynomial multiplication in Kyber [11].
Their unified BU architecture could support butterfly opera-
tions and point-wise multiplication (PWM). The NTT, INTT,
and polynomial multiplication could be done using a uni-
fied hardware design with different numbers of execution
clock cycles (CCs). Recently, Bisheh-Niasar et al. have
presented the state-of-the-art FPGA-based implementation
of high-speed NTT architecture for Kyber [12]. Four BUs
have been grouped in a 2 × 2 BU array together with
several optimization strategies to speed-up the NTT com-
putation. Bisheh-Niasar et al. have then proposed a recon-
figurable resource-efficient NTT architecture supporting the
Kyber [13]. In which, multiple BUs have been paralleled
based on the memory ping-pong strategy to adopt various
Kyber configurations. However, when increasing the number
of parallel BUs for high speed, the memory banks will double
and the routing becomes more complex. In pipeline executing
aspect, the aforementioned memory-based NTT architectures
might cause some bubble cycles between computation rounds
due to the data-dependency of adjacent stages. Furthermore,
the final NTT results are only produced at the last compu-
tational stage after a delay of log n stages, which causes a
big gap between two consecutive polynomials. These short-
comings are the obstacle to improve performance of the NTT
design.

To speed up the NTT computation, some previous studies
deployed multiple BUs in parallel. Feng et al. implemented d
lanes of BUs (d is set up to 16) to target at high-speed polyno-
mial multiplier [14]. Mert et al. also proposed a flexible NTT
design for various parameter sets and increased the number of
processing elements up to 32 at the expense of more hardware
resources [15]. The deployment of multiple BUs in parallel
aims to reduce the number of execution CCs. Nevertheless,
this strategy often requires high memory bandwidth making
the on-chip memory access pattern complicated, which are
challenging to improve the clock frequency for a high-speed
NTT design.

A different approach would be to develop highly pipelined
NTT architectures based on systolic array technique.

Rentería-Mejía and Velasco-Medina proposed a high-radix
multi-path delay commutator NTT architecture to accelerate
the ring learning with error based cryptoprocessors [16]. Tan
and Lee subsequently proposed an efficient multi-path delay
feedback (MDF) NTT architecture specifically for short-term
security parameters [17]. Recently, Duong and Lee have
implemented the MDF NTT architectures of k-parallel data
paths for 1024-point polynomial [18], which confirmed the
reasonable choice of k can achieve high efficiency. How-
ever, these works have not fully investigated the flexibility
and reconfiguration of NTT

/
INTT architecture for different

lattice-based cryptography schemes.
This paper focuses on implementing an efficient NTT

architecture specifically for high-speed computing environ-
ments. The proposed approach deploys all computational
stages in fully pipelined and parallel manner. The NTT design
transforms polynomials sequentially, in which polynomial
coefficients are generated every CC with multiple parallel
data paths. In addition, advanced cryptography protocols can
support various security levels and perform NTT or INTT on-
demand out-of-turn between parties. Thus, expanding previ-
ous designs from specific to more generic and configurable
settings would be significant for advanced cryptosystems.
In NIST’s current view, Kyber is the most promising LBC
candidate for PKE

/
KEM standardization at the end of the

third round [1]. However, other LBC schemes and their vari-
ants are still worthy in different research areas based on
their novel ideas, different security standards and potential
for further improvement. This work illustrates the recon-
figurable capability of the proposed NTT architecture by
employing parameter sets (n, q) of polynomial degree n and
modulo prime q such as (1024, 12289) and (512, 12289) in
NewHope [5], (256, 3329) in Kyber [2] of the second and
the third round NIST PQC submissions, respectively. The
proposed NTT engine operates as a major accelerator and
flexibly switches between parameter sets. These parameter
sets satisfy various security strength categories required in
NIST PQC Call for Proposals [19].

We summarize the main contributions of present paper as
follows:

1) Building on the prior NTT architecture [18], we select a
rational radix value (i.e., k = 4) and propose a flexible
mixed-radixMDFNTT architecture supporting various
parameter sets of (n, q). The proposed NTT architec-
ture has four parallel data paths and is fully pipelined
for high throughput implementation. Output polynomi-
als are produced sequentially after execution time of n4
CCs. Additional multiplexers select the configuration
corresponding to the given parameter set.

2) A configurable NTT
/
INTT architecture is realized to

perform NTT and INTT computations on a unified
hardware. The configurable design completes the NTT
and INTT computations in the same number of execu-
tion CCs and provides a versatile tool for implementing
cryptographic algorithms and reducing the hardware
costs for high performance cryptosystems.

VOLUME 10, 2022 12733



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

3) We develop a polynomial multiplier using the config-
urable NTT

/
INTT architecture. The proper scheduling

of configurable modules performs the polynomial mul-
tiplication effectively. Experiment verified that the pro-
posed architecture achieved higher performance and
better efficiency compared with previous works.

The remainder of this paper is organized as follows.
Section II gives the background of NTT. Section III pro-
poses a flexible mixed-radix MDF NTT architecture and
a configurable NTT

/
INTT based polynomial multiplier.

Section IV presents implementation results and discussion.
Finally, Section V summarizes and concludes the paper.

II. NUMBER THEORETIC TRANSFORM
NTT is a form of fast Fourier transform (FFT) in a finite
field with integers and provides an effective tool to perform
the polynomial multiplication in LBC schemes. Algorithm 1
describes a fast iterative radix-2 NTT computation in ring
Rq = Zq

/
(xn + 1), where n is a power of two and q is

a prime number [20]. This approach applies the negative
wrapped convolutionmethod to avoid zero-padding and elim-
inate modulo (xn + 1) in polynomial multiplication. ψ ∈ Zq
is defined as the square root of ω (i.e., the primitive n-th root
of unity), where ψ2

= ω mod q. Powers of ψ (denoted as ψ i,
i = 1 ∼ n − 1) are pre-computed and listed in 9[j] where
j is the bit reversal of i. We apply the Cooley-Tukey (CT)
and Gentleman-Sande (GS) algorithms to perform NTT and
INTT respectively, which help to avoid expensive reordering
steps [21]. The function ModMult() performs the modular
multiplication by q. For polynomial a = (a[0], . . . , a[n− 1])
in Rq as an example, the NTT and INTT forms are respec-
tively defined as follow,

A[i] = NTTCTψ (a) = ψ i
n−1∑
j=0

a[j]ωij mod q (1)

Algorithm 1 Iterative Radix-2 NTT Algorithm [20]

Input: a(x) ∈ Zq[x]
/
(xn + 1), 9 lists n powers of ψ in bit-

reversed order
Output: A = NTTn(a)
1: A← a
2: for (m = 1; m < n; m = 2 ∗ m) do
3: for (i = 0; i < m; i = i+ 1) do
4: W ← 9[m+ i]
5: for (j = i∗n

m ; j <
(2i+1)n

2m ; j = j+ 1) do
6: temp← ModMult(W ,A[j+ n

m ], q)
7: A[j+ n

m ]← A[j]− temp mod q
8: A[j]← A[j]+ temp mod q
9: end for
10: end for
11: end for
12: return A

a[i] = INTTGS
ψ−1

(A) = n−1ψ−i
n−1∑
j=0

A[j]ω−ij mod q. (2)

When merging the powers of ψ i and ψ−i into ωij and ω−ij

respectively, the polynomial multiplication of a and b can be
computed as follow,

c = a× b = INTTGS
ψ−1

(NTTCTψ (a) ◦ NTTCTψ (b)). (3)

However, implementation of this algorithm on hardware
platforms is challenging to achieve desired throughput.
Therefore, we propose a mixed-radix NTT algorithm to adopt
the proposed method for high-speed hardware accelerators.

III. PROPOSED MIXED-RADIX NTT ARCHITECTURE
A. PROPOSED MIXED-RADIX 2k1

/
2k2 NTT ALGORITHM

Algorithm 2 performs the NTT computation of n-point poly-
nomial using the mixed-radix method, assuming that n is
decomposed into two components: radix-2k1 and radix-2k2 .
Hence, 2k1 -point NTT is performed 2k2 times to accomplish
the first transformation. A subsequent reordering function
reorders the coefficients for the next stage. The second trans-
formation performs 2k2 -point NTT 2k1 times. And the last
reordering function generates the final output in bit-reversed
order. With the pre-computed twiddle factor (TF) constants
listed in bit-reversed order, 2k2 radix-2k1 NTT computations
use the same first 2k1 TF constants, and 2k1 radix-2k2 NTTs
use remaining 2k1 groups of 2k2 -1 TF constants respectively.
The proposed algorithm has ability to parallel 2k2 radix-2k1
NTT computations efficiently. Radix-2k2 NTT operation can
transforms received coefficients with parallel BUs in each
stage and generates result in bit-reversed order.

Algorithm2 ProposedMixed-Radix 2k1
/
2k2 NTTAlgorithm

Input: a(x) ∈ Zq[x]
/
(xn + 1), n = 2k1 × 2k2

Output: A = NTTn(a)
1: for i = 0 to 2k2 − 1 do
2: for j = 0 to 2k1 − 1 do
3: temp[j]← a[j× 2k2 + i]
4: end for
5: b[i× 2k1 ]←NTT2k1 (temp) F radix-2k1 NTT
6: end for
7: B← reorder(b)
8: for j = 0 to 2k1 − 1 do
9: for i = 0 to 2k2 − 1 do
10: temp[i]← B[i× 2k1 + j]
11: end for
12: b[j× 2k2 ]←NTT2k2 (temp) F radix-2k2 NTT
13: end for
14: A← reorder(b)
15: return A

Fig. 1 illustrates the data-flow of mixed-radix NTT
approach, which clearly shows butterfly operations and data
dependency between adjacent stages. Algorithm 1 is used to

12734 VOLUME 10, 2022



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

FIGURE 1. Dataflow graph of mixed-radix NTT and INTT operations when n is 16 (22/
22). Module 1 parallels radix-2k1 computations whereas Module 2

sequentially performs radix-2k2 computations (faint lines). Scaling factor n−1 is merged into Stage 1 BU1 operation to complete the INTT computation.

perform partial NTT computations for radix-2k1 and radix-
2k2 . Each partial NTT respectively requests TFs ψ in 9 at
j-th step as follows,

For radix-2k1


W ← 9[m+ i] where:
• m = 1� j, with j = 0 ∼ k1 − 1
• i = 0 ∼ m− 1

and

For radix-2k2 =


W ← 9[2k1 × m+ i+ iter] where:
• m = 1� j, with j = 0 ∼ k2 − 1
• i = 0 ∼ m− 1
• iter = 0 ∼ 2k1+i − 1,

where TFs in each stage are divided into m groups and each
group with corresponding order i contains multiple BUs. The
number of groups doubles when the stage index increases by
one, and the number of BUs in each group halves. Therefore,
each radix-2k1 NTT uses the same group of TF constants
for 2k2 computational instances, whereas each radix-2k2 NTT
uses different groups of TF constants for k2 computational
stages run by iter indices respectively.
For example, Fig. 2 illustrates the order of TF and inverse

TF assigned to NTT and INTT computational stages when

FIGURE 2. The TF and inverse TF constants are assigned to corresponding
stages of the NTT and INTT operations for example in Fig. 1, respectively.

n is 16. Assuming k1 = k2 = 2, four partial NTT2k1
computations use the same group of TF constants with the
consecutive orders through two computational stages (e.g.,
9[1] for Stage 1, 9[2] and 9[3] for Stage 2). Meanwhile,
four partial NTT2k2 computations require different groups of
TF constants for each computation (e.g.,9[4],9[8] and9[9]
for two respective stages of first NTT2k2 ). iter points to the
order in 9 corresponding to each stage of each NTT2k2 com-
putation. The same order scheme of inverse TF constants is
used for INTT computation except that the scaling factor n−1

VOLUME 10, 2022 12735



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

FIGURE 3. Proposed flexible mixed-radix MDF NTT architecture for 256,
512, and 1024-point polynomials (k2 = 2). Module 2 bypasses ‘‘Stage 10’’
when supporting Kyber parameter set [2].

is early multiplied by inverse TF constants for Stage 1 INTT
computation.

B. OVERALL FLEXIBLE NTT ARCHITECTURE DESIGN
Fig. 3 illustrates the proposed flexible mixed-radix MDF
NTT architecture based on the aforementioned algorithms
intended for speed-optimized LBC schemes. Considering the
evaluation results of prior study [18], we select the optimal
radix value (k2 = 2) and design a flexible NTT architecture
for various parameter sets (n, q). The proposed NTT archi-
tecture includes two modules with respective BU1 and BU2.
Module 1 adopts theMDF architecture to performs k1 compu-
tational stages with four parallel data paths. This module con-
tinuously receives input vectors in normal order and generates
four coefficients per CC. Module 2 with two parallel BU2s
in each stage directly transforms four coefficients received
fromModule 1. The designmethodology naturally eliminates
the reordering steps in Algorithm 2. After k2 computational
stages, Module 2 generates the final results in bit-reversed
order. Four additional multiplexers select the data direction
corresponding to the given parameter set. Specially, the NTT
operation in Kyber [3] is slightly different by using n-th
roots of unity instead of 2n-th roots. However, the NTT
computation on a 256-point polynomial can be performed on
two separate 128-point classic ones according to the parity of
index. The proposed NTT architecture concurrently performs
two 128-point NTTs in 7 stages by bypassing the last stage
(i.e., Stage 10).

Fig. 4 examines BU1 and BU2 structures with the opti-
mization of critical path. Module 1 deploys serial k1 BU1s
in each data path to perform 2k1 -point NTTs. BU1 struc-
ture composes of modular multiplier (MM), modular adder
(MA), modular subtractor (MS), and first-in-first-out (FIFO).
Meanwhile, each Module 2 stage constructs two BU2s in
parallel to concurrently transform four coefficients received
from Module 1. BU2 structure differs from BU1 in requiring
only MM, MA, and MS for the butterfly circuit. TF constants
are distinctly assigned into BUs corresponding to the NTT
stage. The same first 2k1 TF constants are used for parallel
data paths in Module 1’s k1 stages. Module 2 uses the next
2k1 TFs for the first stage and remaining 2k1+1 TFs for the last
stage. The design methodology facilitates the TF assignment
through various computational stages.

FIGURE 4. Proposed configurable BU structures: (a) BU1 is for
MDF-based computations in Module 1 and (b) BU2 is for parallel
operations in Module 2. Faint lines are used for INTT operation.

FIGURE 5. Architectures for modular reduction of primes
(a) q = 3329 and (b) q = 12289 ((b) modified from [18]).

Additionally, modular reduction (MR) is the most
time-consuming component of these BUs. The realization
of MRs of specific primes was effectively executed in [22].
We realize and modify MR implementation for q = 3329 and
12289 as shown in Fig. 5 (a) and (b), respectively. The
compact MR architectures are fully pipelined with the same
latency (i.e., 5 CCs) using only bit-shift and addition to avoid
expensive integer multiplications.

The idea behind the mixed-radix MDF NTT architecture
is to implement a fully pipelined design without reorder-
ing buffers. The continuous transformation between modules
completely removes redundant cycles and eliminates addi-
tional memory for intermediate results. Taking n = 1024 for
example, Fig. 6 describes the timing diagram of the proposed
NTT architecture. For the very first input polynomial, the

12736 VOLUME 10, 2022



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

FIGURE 6. Pipeline timing diagram of NTT operation for Fig. 3 when n is
1024. The size of FIFOs halves gradually in first eight stages which
comprises CCs of NTT latency.

number of execution CCs through ten NTT stages is calcu-
lated by the sum of FIFO delay (255 CCs), pipelined BU
stages (1 CC for multiplier, 5 CCs for MR, and 1 CC for mod-
ular addition

/
subtraction), and pipeline registers between

stages (9 CCs), i.e., 255 + 70 + 9 = 334 CCs. Because the
pipeline is fulfilled, the NTT design accepts the next input
polynomial after n

4 CCs. Hence, the NTT design generates
four coefficients every CC and transforms input vectors every
n
4 CCs in sequential manner. Moreover, the proposed NTT
architecture is flexible to support various parameter sets with
additional multiplexers. The reasonable choice of k2 provides
an effective trade-off between throughput and resource uti-
lization for high performance LBC systems.

C. CONFIGURABLE NTT
/

INTT ARCHITECTURE AND
EFFICIENT POLYNOMIAL MULTIPLIER
Fig. 7 shows a configurable NTT

/
INTT architecture to

perform the NTT and INTT computations on a uni-
fied hardware. The INTT operation differs from the NTT
with mirror-symmetric data-flow topology and scaling step
by n−1. The proposed configurable architecture includes
Module 1,Module 2, NTT

/
INTTSelect units, and Controller

unit. Module 1 and 2 can exchange execution order, in that
the Module 1 first stage in the NTT operation becomes the
last stage of INTT computation. The Controller determines
which configuration mode is selected. Additional multiplex-
ers are added to change the direction of data paths, shown
as faint lines in Fig. 4. Scaling factor n−1 in the INTT
computation is prior-merged into the first two addresses of
9−1 as illustrated in Fig. 2 to eliminate redundant cycles.
Hence, the configurable architecture performs the NTT and
INTT computations in the same number of n4 execution CCs.
In terms of hardware utilization, the configurable architec-
ture consumes more logic circuits to implement additional
multiplexers compared with the flexible design. The config-
urable NTT

/
INTT architecture is significant to develop an

FIGURE 7. Block diagram of proposed configurable NTT
/

INTT
architecture.

FIGURE 8. Top-level view of the proposed polynomial multiplier
architecture. Some of pipeline registers in Four-path ModMult are
omitted for the sake of simplicity.

efficient polynomial multiplier as presented in the following
paragraph.

Fig. 8 shows a polynomial multiplier architecture using the
proposed NTT and INTT architectures. Applying the equa-
tion (3), the proposed polynomial multiplier initially uses
NTT1 and NTT2 to perform forward transformations on two
input polynomials In1 and In2, respectively. Subsequently,
Four-path ModMult unit executes the PWM. The Data Mem-
ory block is required to store PWM results. Then, only the
NTT2 is configurable to perform the INTT computation on
demand to produce polynomial multiplication results. Addi-
tional multiplexers are used to select the final output of poly-
nomial multiplication. The operation of functional modules is
orchestrated by Top Control Unit. Configurable NTT

/
INTT

architecture is beneficial to reduce the hardware complexity
of one NTT operation in the polynomial multiplication. Addi-
tionally, the Four-path ModMult is specifically designed to
support the basecase PWM in Kyber beside performing the
classic PWM. The operation of basecase PWM can reduce
the number of integer multiplications from five to four [23]
as follows,

ĥ2i + ĥ2i+1X

= (f̂2i + f̂2i+1X )(ĝ2i + ĝ2i+1X ) mod X2
− ζ 2br7(i)+1

= f̂2iĝ2i + f̂2i+1ĝ2i+1ζ 2br7(i)+1

+ (f̂2i + f̂2i+1)(ĝ2i + ĝ2i+1)− f̂2iĝ2i + f̂2i+1ĝ2i+1,

VOLUME 10, 2022 12737



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

where ζ = 17 is the first primitive 256-th root of unity
and br7(i) is the bit reversal of the unsigned 7-bit integer.
Experiment showed that the Four-path ModMult unit is fully
pipelined and performs the basecase PWM in 17CCswhereas
the classic PWM of remaining parameter sets is completed
in 6 CCs with four parallel modular multiplications. Every
clock cycle, four coefficients are generated, concatenated and
sequentially stored in the Data Memory block. The memory
writing and reading are independent and simply scheduled by
the Top Control Unit.

IV. IMPLEMENTATION RESULTS AND DISCUSSION
The proposed mixed-radix MDF NTT architectures were
modeled using the Verilog hardware description lan-
guage and synthesized using the Xilinx Vivado˙ 2020.1.
To directly compare with related works on similar FPGA
platforms, the implementation results were placed-and-
routed on four 28nm FPGA devices: (1) a Xilinx Zynq-
7000 (xc7z020clg484) that has 53K look-up table (LUT)
elements, 106K flip-flops (FFs), 220 digital signal pro-
cessing (DSP) slices, and 140 Block RAMs (BRAMs);
(2) a Xilinx Virtex-7 (xc7vx485tffg1761) that has 303K
LUTs, 607K FFs, 2800 DSPs, and 1030 BRAMs; (3) a Xilinx
Artix-7 (xc7a200tfbg676) that has 135K LUTs, 269K FFs,
740 DSPs, and 365 BRAMs; and (4) a Xilinx Spartan-7
(xc7s100fgga676) that has 64K LUTs, 128K FFs, 160 DSPs,
and 120 BRAMs. Resource consumption and achievable
clock frequency were obtained with default place-and-route
settings. We introduced area-time product (ATP) and hard-
ware efficiency metrics to enable fair comparison with previ-
ous works due to various hardware resource types.

Table 1 shows key implementation results of the pro-
posed flexible NTT architectures compared with previous
studies for various parameter sets (n, q). The second and
third columns of this table show the numbers of CCs and
achievable clock frequencies. The fourth column shows the
execution time of NTT designs that their latency is calcu-
lated as Latency (µs) = CCs

/
Freq. (MHz). For n = 1024,

the proposed NTT architecture operates approximately 9.6×,
12×, 8×, and 2× faster than that of [9], [10], [12], and [15]
respectively. Xing and Li [9] proposed a ping-pong NTT
architecture that used four BUs and required a large number
of CCs (i.e., 1280). Zhang et al. [10] used only two parallel
BUs for the iterative computation, which utilized hardware
resources effectively but consumed many CCs (i.e., 2569).
Although Mert et al. [15] significantly reduced the number
of CCs (i.e., 200) by paralleling 32 processing elements,
their NTT architecture operated at lower clock frequency and
required more hardware resources. Bisheh-Niasar et al. [12]
grouped two NTT stages into each computational round by
constructing the 2× 2 BU array. Their approach proposed to
reduce the access pattern complexity but still required a large
number of CCs (i.e., 1591). For n = 512, the proposed NTT
architecture runs approximately 12× and 2× faster than that
of [10] and [15], respectively. For n = 256, Yaman et al. [11]
deployed 16 BUs in high-performance unified hardware

architecture and significantly reduced the CC number of the
NTT operation (i.e., 69). Bisheh-Niasar et al. [12] deployed
2 × 2 BU array and improved the access pattern to reduce
the computational cycle (i.e., 324 CCs). Meanwhile, Bisheh-
Niasar et al. [13] employed two configurable BUs in parallel,
which required a larger number of CCs (i.e., 474) and per-
formed the NTT computation at low clock frequency. How-
ever, our fully pipelined NTT design has smallest CC number
and outperforms that of [11], [12], and [13] approximately
1.7×, 6×, and 17× acceleration, respectively. Thus, the
proposed NTT architecture achieves superior performance
compared to previous approaches.

To compare efficacy among NTT architectures, we eval-
uated ATP metric of the trade-off between area requirement
and latency. The fifth through eleventh columns report the
utilized numbers of LUTs, FFs, DSPs, and BRAMs and
their corresponding ATP values. The ATP values are mea-
sured by product of latency and utilized number of LUTs,
FFs, and DSPs, and denoted as ATP_LUT, ATP_FF, and
ATP_DSP, respectively. The proposed NTT architecture does
not require additional memory, so we omit the ATP value
of BRAM. As shown in the Table 1, the state-of-the-art
NTT architecture for n = 1024 in [12] has smallest overall
ATP value (see [13]). For n = 512, the NTT architecture
in [10] has smallest ATP values measured by LUTs, FFs,
and DSPs, which benefiting from the conflict-free memory
access operation specifically for two parallel radix-2 BUs.
Our NTT architectures have comparable ATPs with slightly
higher values but do not consume any BRAM compared
with six and two that in [10] and [12] for n = 1024, and
five that in [10] for n = 512, respectively. For n = 256,
the proposed NTT architecture has slightly better ATP value
of LUTs, comparable ATP values of FFs, DSPs and with-
out requiring BRAM compared with previous studies. Next,
we evaluate and compare the speed of various NTT designs
through achievable throughput in the following paragraph.

We introduce the throughput metric to measure the
amounts of bits passing through the NTT accelerator for a
second as follows,

Throughput (bps) =
Number of bits
Latency (s)

. (4)

The twelfth column of Table 1 compares the throughput
of various NTT designs. The proposed NTT architectures
achieve highest throughput among the NTT designs of
various parameter sets. Specifically compared with state-
of-the-art studies, our NTT designs can deliver significant
throughput approximately 12× and 8× that of [10] and [12]
for n = 1024, 12× that of [10] for n = 512, and 1.7×, 6×,
and 17× that of [11], [12], and [13] for n = 256, respectively.
Table 2 compares the configurableNTT

/
INTT based poly-

nomial multipliers with previous works. Hardware efficiency
is introduced as a fair comparison metric due to different
modulo prime sizes among the polynomial multipliers. The
hardware efficiency is used to evaluate the throughput that

12738 VOLUME 10, 2022



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

TABLE 1. Implementation results for the proposed flexible NTT architectures compared with previous approaches.

TABLE 2. Comparison of the proposed polynomial multipliers with other
approaches.

one FPGA hardware unit can deliver and defined as follows,

Efficiency =
Throughput

Utilized resource
. (5)

The efficiency values of utilized LUTs, FFs, DSPs, and
BRAMs are calculated by the equation (5), normalized, and
denoted as Eff_LUT, Eff_FF, Eff_DSP, and Eff_BRAM,
respectively. For n = 1024, Wang et al. [24] proposed
a hardware accelerator for shared polynomial multiplica-
tion, which traded parameterization and used one config-
urable BU to reduce the hardware complexity. However,
their polynomial multiplier required a large number of CCs

TABLE 3. FPGA resource breakdown of the proposed polynomial
multipliers on Zynq-7000 FPGA platform.

(i.e., 11455). The proposed polynomial multiplier outper-
forms [24] approximately 25× speed-up with much higher
BRAM efficiency value. For n = 512, Feng et al. [14] imple-
mented a high-speed polynomial multiplier on the Spartan-6
FPGA platform. The fifth column of this table shows that
the proposed polynomial multiplier consumes 5.7K slices

VOLUME 10, 2022 12739



P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

(19105 LUTs and 13677 FFs) with higher efficiency values
than that of [14]. Differ from Spartan-6, Spartan-7 has some
extended features of the 7 series family such as in DSP
and BRAM. However, our register-transfer logic design only
used basic logic elements except the 36Kb BRAM, which
operated in simple dual-port mode and was better suited to
the Data Memory structure than the 18Kb BRAM included
in Spartan-6. For n = 256, the unified hardware architecture
in [11] required 256 CCs to complete the polynomial mul-
tiplication. Our polynomial multiplier runs faster, has better
LUT and BRAM, but worse FF and DSP efficiency metrics
compared with [11]. However, the key generation, encryp-
tion, and decryption processes in Kyber [2] show that the
NTT, PWM, and INTT are performed on-demand. In which,
only one or even no NTT computation are required for the
two input polynomials right before the PWM. It means that
the proposed approach can perform the polynomial multipli-
cation in [2] more efficiently in a highly pipelined manner.
Regarding memory usage, the proposed approach allocates
one 36Kb BRAM unit in simple dual-port mode for the Data
Memory unit (512 addresses of 72-bit). The Data Memory
only consumes 64, 128, and 256 addresses of 36Kb BRAM
unit for 256, 512, and 1024-point polynomials, respectively.

Table 3 shows the utilized FPGA resource breakdown of
the proposed polynomial multipliers. Except for BRAM, the
NTT modules occupy most of the hardware resources, and
the NTT2 consumes more LUTs for configurable function
than the NTT1. For n = 256, the Four-path ModMult unit
consumes more LUTs, FFs, and DSPs for the specific PWM
than the classic PWM in cases of n = 1024 and 512.
Percentage values indicate the utilized resource proportion of
respective modules in polynomial multipliers. Additionally,
we report the hardware consumption of submodules such as
configurable BUs in Fig. 4 and MR units in Fig. 5. Please
notice that the BU1 implementation result is reported with
one FIFO register. The MR operation of two modulo primes
can share some of bit-shift operations.

Thus, the proposed NTT architecture can achieve superior
throughput with comparable efficiency compared to previous
approaches. Although different parameter sets were imple-
mented and compared, the proposed polynomial multiplier is
primarily directed towards supporting potential LBC schemes
for the third round NIST finalists.

V. CONCLUSION
The paper proposed an efficient mixed-radix MDF NTT
architecture preferable for high-performance large-scale data
cryptoprocessors. Flexible design adapted the NTT archi-
tecture to various parameter sets (n, q) and the reasonable
choice of radix values helped achieve high performance.
The proposed configurable NTT

/
INTT architecture offers

a versatile tool to effectively perform expensive polynomial
multiplication in LBC schemes.

For future works, the proposed NTT architectures could
be improved with various levels of parallelism in stages
and customized for high degree large modulus polynomial

constructors. Coming study is applying the proposed con-
figurable NTT

/
INTT architecture to accelerate the NIST

lattice-based PQC finalists, particularly on co-designed soft-
ware and hardware platforms.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their constructive and insightful comments.

REFERENCES
[1] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,

J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, and
R. Perlner, ‘‘Status report on the second round of the NIST post-
quantum cryptography standardization process,’’ NIST, Gaithersburg,
MD, USA, Tech. Rep. 8309, Jul. 2020. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

[2] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle, ‘‘CRYSTALS-
kyber: Algorithm specifications and supporting documentation,’’ NIST
PQC Round 3 Submission, Gaithersburg, MD, USA, Ver. 3.02, Aug. 2021,
pp. 1–43. [Online]. Available: https://csrc.nist.gov/Projects/postquantum-
cryptography/round-3-submissions

[3] A. Basso, J. M. B. Mera, J.-P. D’Anvers, S. S. R. A. Karmakar,
M. V. Beiren-Donck, and F. Vercauteren, ‘‘SABER: Mod-LWR based
KEM,’’ NIST PQC Round 3 Submission, Gaithersburg, MD, USA, Ver. 2,
Oct. 2020, pp. 1–44.

[4] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehle, ‘‘CRYSTALS-dilithium: Algorithm specifica-
tions and supporting documentation,’’ NIST PQC Round 3 Submission,
Gaithersburg, MD, USA, Ver. 3.1, Feb. 2021, pp. 1–38.

[5] E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann,
P. Schwabe, and D. Stebila, ‘‘NewHope: Algorithm specification and sup-
porting documentation,’’ NIST PQC Round 2 Submission, Gaithersburg,
MD, USA, Ver. 1.1, Apr. 2020, pp. 1–47.

[6] A. Lohachab, A. Lohachab, and A. Jangra, ‘‘A comprehensive sur-
vey of prominent cryptographic aspects for securing communication
in post-quantum IoT networks,’’ Internet Things, vol. 9, Mar. 2020,
Art. no. 100174.

[7] T. N. Tan andH. Lee, ‘‘High-secure fingerprint authentication system using
ring-lwe cryptography,’’ IEEE Access, vol. 7, pp. 23379–23387, 2019.

[8] P. Duong-Ngoc, T. N. Tan, and H. Lee, ‘‘Efficient NewHope cryptog-
raphy based facial security system on a GPU,’’ IEEE Access, vol. 8,
pp. 108158–108168, 2020.

[9] Y. Xing and S. Li, ‘‘An efficient implementation of the NewHope key
exchange on FPGAs,’’ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67,
no. 3, pp. 866–878, Mar. 2020.

[10] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, ‘‘Highly
efficient architecture of NewHope-NIST on FPGA using low-complexity
NTT/INTT,’’ IACR Trans. Cryptograph. Hardw. Embedded Syst.,
vol. 2020, pp. 49–72, Mar. 2020.

[11] F. Yaman, A. C. Mert, E. Ozturk, and E. Savas, ‘‘A hardware accel-
erator for polynomial multiplication operation of CRYSTALS-KYBER
PQC scheme,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
Feb. 2021, pp. 1020–1025.

[12] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, ‘‘High-
speed NTT-based polynomial multiplication accelerator for post-quantum
cryptography,’’ in Proc. IEEE 28th Symp. Comput. Arithmetic (ARITH),
Jun. 2021, p. 563.

[13] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani,
‘‘Instruction-set accelerated implementation of CRYSTALS-kyber,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 68, no. 11, pp. 4648–4659,
Nov. 2021, doi: 10.1109/TCSI.2021.3106639.

[14] X. Feng, S. Li, and S. Xu, ‘‘RLWE-oriented high-speed polynomial multi-
plier utilizing multi-lane Stockham NTT algorithm,’’ IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 67, no. 3, pp. 556–559, Mar. 2020.

[15] A. C. Mert, E. Karabulut, E. Ozturk, E. Savas, and A. Aysu, ‘‘An exten-
sive study of flexible design methods for the number theoretic trans-
form,’’ IEEE Trans. Comput., early access, Aug. 19, 2020, doi: 10.
1109/TC.2020.3017930.

12740 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCSI.2021.3106639
http://dx.doi.org/10.1109/TC.2020.3017930
http://dx.doi.org/10.1109/TC.2020.3017930


P. Duong-Ngoc, H. Lee: Configurable Mixed-Radix NTT Architecture for Lattice-Based Cryptography

[16] C. P. Rentería-Mejía and J. Velasco-Medina, ‘‘High-throughput ring-LWE
cryptoprocessors,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 8, pp. 2332–2345, Aug. 2017.

[17] T. N. Tan and H. Lee, ‘‘Efficient-scheduling parallel multiplier-based ring-
LWE cryptoprocessors,’’ Electron., vol. 8, 413, pp. 1–13, Apr. 2019.

[18] P. Duong-Ngoc, Y. Kim, and H. Lee, ‘‘Efficient k-parallel pipelined NTT
architecture for post quantum cryptography,’’ in Proc. Int. SoC Design
Conf. (ISOCC), Yeosu, South Korea, Oct. 2020, pp. 212–213.

[19] NIST. (Aug. 2016). Submission Requirements and Evaluation Criteria
for the Post-Quantum Cryptography Standardization Process. [Online].
Available: https://csrc.nist.gov/Projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/Call-for-Proposals

[20] P. Longa andM. Naehrig, ‘‘Speeding up the number theoretic transform for
faster ideal lattice-based cryptography,’’ in Cryptology and Network Secu-
rity (Lecture Notes in Computer Science), vol. 10052. Cham, Switzerland:
Springer, Nov. 2016, pp. 124–139.

[21] P. Thomas, T. Oder, and G. Tim, ‘‘High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers,’’ in Proc. LATINCRYPT
in Lecture Notes in Computer Science, vol. 9230. Cham, Switzerland:
Springer, Aug. 2015, pp. 346–365.

[22] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, ‘‘Sapphire: A config-
urable crypto-processor for post-quantum lattice-based protocols,’’ IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 4, pp. 17–61, Aug. 2019.

[23] Y. Xing and S. Li, ‘‘A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA,’’ IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2021, no. 2, pp. 328–356,
Feb. 2021.

[24] W.Wang, S. Tian, B. Jungk, N. Bindel, P. Longa, and J. Szefer, ‘‘Parameter-
ized hardware accelerators for lattice-based cryptography and their appli-
cation to the HW/SW co-design of qTESLA,’’ IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, no. 3, pp. 269–306, Jun. 2020.

PHAP DUONG-NGOC (Member, IEEE) received
the B.S. degree in electronic and telecommu-
nication engineering from the Danang Univer-
sity of Technology, in 2009, and the M.S.
degree in electronic engineering from Danang
University, Vietnam, in 2015. He is currently
pursuing the Ph.D. degree in information and
communication engineering with Inha Univer-
sity. His research interests include algorithms and
architectures for post-quantum cryptography and
homomorphic encryption.

HANHO LEE (SeniorMember, IEEE) received the
M.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the University of Min-
nesota, Minneapolis, USA, in 1996 and 2000,
respectively. He was a member of the technical
staff at Lucent Technologies (Bell Labs Innova-
tions), Allentown, from April 2000 to August
2002, and an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering,
University of Connecticut, USA, from August

2002 to August 2004. Hewas a Visiting Scholar at Bell Labs, Alcatel-Lucent,
Murray Hill, NJ, USA, from August 2010 to August 2011. He has been
with the Department of Information and Communication Engineering, Inha
University, sinceAugust 2004, where he is currently a Professor. His research
interests include algorithms and architectures for cryptography, forward error
correction coding, and digital signal processing.

VOLUME 10, 2022 12741


